Состав почвы
Почва – это сложная динамическая система. Она состоит из минеральных и органических веществ. Минеральные компоненты поступают в почву, в первую очередь, из материнской породы , на которой она образовалась. Органические вещества появляются и развиваются благодаря живым организмам, населяющим почвенный покров. Взаимодействие минералов и органики создает сложный комплекс разных соединений.
В этом разделе мы расскажем, из чего состоит почва. Вы узнаете о ее фазах и их особенностях. Также вы прочитаете о минеральном и органическом составах покрова, их соотношении и характеристиках.
Фазы почвы
Прежде всего мы поговорим о фазах почвы.
Выделяют четыре основных части:
Все они взаимосвязаны и активно влияют друг на друга.
К твердой фазе относятся органические и минеральные вещества. Это частицы разного размера и формы, которые неплотно примыкают друг к другу (глыбы, обломочные породы, глина, песок, пыль и другие). Тем не менее, они создают твердый почвенный каркас, на котором размещаются другие части. Эта фаза определяет петрографический (гранулометрический) состав, структуру, сложение и пористость почвенного покрова.
Сама по себе тве р дая часть является малодинамичной системой. Она же самая объемная – занимает 45-60% покрова. С ней связаны многие физические, физико-химические и химические свойства материала.
Подробнее об этом читайте на нашей странице Твердая фаза почвы.
Жидкая часть – это вода и растворенные в ней соли. Данная фаза формируется из атмосферных осадков, грунтовых вод, конденсации водяных паров. Она составляет около 25% от всего объема почвенного покрова.
Эта фаза считается самой динамичной. Именно из нее растения усваивают питательные вещества. Ведь без достаточного количества влаги нормальное развитие флоры и почвенных микроорганизмов невозможно. Кроме того, жидкая фаза участвует в таких процессах как гумификация и минерализация органических остатков, выветривание, перемещение веществ внутри покрова и формирование почвенного профиля.
Вода является и терморегулирующим фактором. Она определяет расход тепла из почвы и растений вследствие испарения и транспирации. С влажностью покрова тесно связаны его физико-механические свойства (твердость , крошение, липкость и другие). Стоит отметить, что передвижение влаги в почве и по ее поверхности также влияет и на отрицательно сказывающиеся на плодородии процессы. Среди них эрозия и вынос из верхних слоев питательных элементов.
Подробнее об этом читайте на нашей странице Жидкая фаза почвы.
Газообразная часть – это почвенный воздух. Он занимает все поры в почве, не занятые водой.
Эта фаза, как и жидкая, является динамической. Она покрывает 20-25% от общего объема почвы. В отличие от атмосферного воздуха, почвенный беден на кислород. В нем много углекислот. Это объясняется деятельностью микроорганизмов и растений: чем их больше в почве, тем больше кислорода они потребляют и углекислого газа выделяют.
Также в составе почвенного воздуха постоянно присутствуют нелетучие органические соединения (углеводороды жирного и ароматического рядов, сложные альдегиды, спирты и другие). Они , пусть и в небольшом количестве, тоже образуются в процессе жизнедеятельности почвенных микроорганизмов. Эти вещества поглощаются корнями, способствуя росту растений и повышению их жизнедеятельности.
Подробнее об этом читайте на нашей странице Газообразная фаза почвы.
Все фазы взаимодействуют друг с другом, активно переходят из одной в другую. Это возможно благодаря деятельности живых организмов. Они являются четвертой, живой фазой почвенного покрова. К ней относятся растения, грибы, бактерии, простейшие, мелкие животные. Высокая активность этих организмов доказывает, что все естественные процессы, которые происходят в почве, прямо или косвенно являются биохимическими по своей природе.
Подробнее об этом читайте на нашей странице Живая фаза почвы.
Примерное соотношение всех фаз почвы показано на диаграмме ниже.
Следующее, о чем мы поговорим, – это химический состав почвенного покрова. Он представлен минеральными и органическими веществами. Они сконцентрированы в твердой и жидкой фазах. В синтезе химических соединений принимают активное участие живые организмы.
Минеральный состав почвы
Минеральные вещества составляют 80-90% от общего объема покрова. Они поступают в почву двумя путями – из материнской породы и при полном разложении живых организмов. Из горной по р оды в почву попадают первичные минералы. Они имеют кристаллическое строение и практически не усваиваются растениями. Вторичные минералы аморфные, способны набухать и задерживать воду. Именно они являются источником питательных элементов почвы.
В составе почвы содержатся практически все известные химические элементы. Процентное содержание основных вы найдете в таблице ниже (средние значения).
Основные химические элементы почвы | Процентное содержание (от общего числа всех химических элементов) |
Кислород (O) | 49% |
Кремний (Si) | 33% |
Алюминий (Al) | 7,13% |
Железо (Fe) | 3,8% |
Углерод (C) | 2% |
Кальций (Ca) | 1,37% |
Калий (K) | 1,36% |
Натрий (Na) | 0,63% |
Магний (Mg) | 0,6% |
Кроме того, около 1-3% составляют фосфор, марганец, хлор, азот, сера и микроэлементы (кобальт, фтор, йод, медь, цинк, молибден). Все элементы входят в состав оксидов, гидроксидов, растворимых и нерастворимых солей. Для роста и развития флоры наибольшее значение имеют калий, фосфор, азот, в меньшей мере – кальций и магний. Но в небольших количествах растениям требуются и другие элементы.
Первоисточником всех минералов в почве являются магматические породы. Они составляют 95% от общей толщи литосферы. На долю осадочных пород приходятся оставшиеся 5%. Метаморфические же причисляются к тем материалам , из которых они образовались. Поэтому здесь они в расчет не принимаются.
Подробно о влиянии горных пород на почву и процессы формирования почвенного покрова вы сможете узнать в нашей статье Почвообразующая порода как фактор почвообразования.
Химический состав почв находится в состоянии постоянного изменения. Это связано с непрерывностью процессов выветривания и почвообразования.
Органический состав почвы
Органические вещества составляют от 1-2% до 10-15% почвы. Они образуются при частичном разложении растений, животных и микроорганизмов. В состав почвы входят белки, углеводы, смолы, воски, лигнин, липиды и продукты их распада (спирты, аминокислоты, пептиды, моносахариды). Эти вещества составляют около 10% от всей органики, являются источником минералов и питательной средой для почвенной фауны, бактерий, грибов.
Скорость разложения растительных остатков зависит от содержащихся в них веществ. Так, древесина и хвоя содержат много лигнина, смол и дубильных веществ, но мало белков. Их разложение идет медленно. Остатки же бобовых трав, богатые белками, разлагаются быстро.
Основную часть почвенной органики (80-90%) составляют гуминовые вещества. Они и определяют плодородие грунта.
В группу входят:
- Гуминовые кислоты
Это вещества темного цвета. Они образуют нерастворимые соли с железом и алюминием. Гуминовые кислоты способны поглощать и задерживать в верхних слоях почвы воду и питательные элементы , затем постепенно их высвобождать. Они участвуют в превращении химических соединений в доступную для растений форму. Эти кислоты играют главную роль в формировании структуры почвы и ее плодородия. - Фульвокислоты
Это растворимые вещества желтого цвета. Они быстро вымываются в нижние горизонты, плохо задерживают влагу и минералы, подкисляют почву. - Гумины
Это инертные вещества, связывающие минералы. Они не участвуют в почвообразовании.
Помимо соединений, органические остатки всегда содержат некоторый объем зольных элементов. Их количество и состав варьируются в зависимости от вида организмов и условий среды их обитания. В состав золы входят калий, кальций, магний, кремний, фосфор, сера, железо и многие другие элементы, содержащиеся в незначительных количествах. Очень низкая зольность характерна для древесины. Большое количество зольных элементов содержат остатки травянистой растительности.
Знание минерального и органического состава почвы и ее фаз помогает лучше разобраться в свойствах материала, его применении. Отсюда также становится понятно, какими способами можно улучшить плодородие почвенного покрова. Об этом мы у же писали в нашей статье Плодородность почвы: как ее сохранить и повысить. Возможно вам также будет полезна наша статья о кислотности почв. В ней подробно рассказано, как можно регулировать такой показатель как кислотность почвенного покрова, делать почву более кислой или щелочной.
Источник
Почва
По́чва — поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную гетерогенную открытую четырёхфазную (твёрдая, жидкая, газообразная фазы и живые организмы) структурную систему, образовавшуюся в результате выветривания горных пород и жизнедеятельности организмов. [1] Её рассматривают как особую природную мембрану (биогеомембрану), регулирующую взаимодействие между биосферой, гидросферой и атмосферой Земли. Почвы являются функцией от климата, рельефа, исходной почвообразующей породы, микроорганизмов, растений и животных (то есть биоты в целом), человеческой деятельности и изменяются со временем.
Почва (определение по ГОСТ 27593-88) — самостоятельное естественноисторическое органоминеральное природное тело, возникшее на поверхности Земли в результате длительного воздействия биотических, абиотических и антропогенных факторов, состоящее из твёрдых минеральных и органических частиц, воды и воздуха и имеющее специфические генетико-морфологические признаки, свойства, создающие для роста и развития растений соответствующие условия. [2]
Почвоведение — наука, занимающаяся изучением почвы.
Содержание
Морфология
Термины по ГОСТ 27593-88:
Почвенный профиль [2] — совокупность генетически сопряжённых и закономерно сменяющихся почвенных горизонтов, на которые расчленяется почва в процессе почвообразования.
Почвенный горизонт [2] — специфический слой почвенного профиля, образовавшийся в результате воздействия почвообразовательных процессов.
Почвенный покров [2] — совокупность почв, покрывающих земную поверхность.
В процессе почвообразования, прежде всего под действием вертикальных (восходящих и нисходящих) потоков вещества и энергии, а также неоднородности распределения живого вещества исходная порода расслаивается на генетические горизонты. Часто почвы формируются на исходно вертикально неоднородных двучленных породах, что откладывает отпечаток на почвообразование и сочетание горизонтов.
Горизонты рассматриваются как однородные (в масштабе всей почвенной толщи) части почвы, взаимосвязанные и взаимообусловленные, отличающиеся по химическому, минералогическому, гранулометрическому составу, физическим и биологическим свойствам. Комплекс горизонтов, характерный для данного типа почвообразования, образует почвенный профиль.
Выделяются следующие типы горизонтов [4] :
- Органогенные — (подстилка (A0, O), торфяной горизонт (T), перегнойный горизонт (Ah, H), дернина (Ad), гумусовый горизонт (A) и т. д.) — характеризующиеся биогенным накоплением органического вещества.
- Элювиальные — (подзолистый, лессированный, осолоделый, сегрегированный горизонты; обозначаются буквой E с индексами, либо A2) — характеризующиеся выносом органических и/или минеральных компонентов.
- Иллювиальные — (B с индексами) — характеризующиеся накоплением вынесенного из элювиальных горизонтов вещества.
- Метаморфические — (Bm) — образуются при трансформации минеральной части почвы на месте.
- Гидрогенно-аккумулятивные — (S) — образуются в зоне максимального накопления веществ (легкорастворимые соли, гипс, карбонаты, оксиды железа и т. д.), приносимых грунтовыми водами.
- Коровые — (K) — горизонты, сцементированные различными веществами (легкорастворимые соли, гипс, карбонаты, аморфный кремнезём, оксиды железа и др.).
- Глеевые — (G) — с преобладающими восстановительными условиями.
- Подпочвенные — материнская порода (C), из которой образовалась почва, и залегающая ниже подстилающая порода (D) иного состава.
Твёрдая фаза почв
Почва высокодисперсна и обладает большой суммарной поверхностью твёрдых частиц: от 3—5 м²/г у песчаных до 300—400 м²/г у глинистых. Благодаря дисперсности почва обладает значительной пористостью: объём пор может достигать от 30 % общего объёма в заболоченных минеральных почвах до 90 % в органогенных торфяных. В среднем же этот показатель составляет 40—60 %.
Плотность твёрдой фазы (ρs) минеральных почв колеблется от 2,4 до 2,8 г/см³, органогенных: 1,35—1,45 г/см³. Плотность почвы (ρb) ниже: 0,8—1,8 г/см³ и 0,1—0,3 г/см³ соответственно. Пористость (порозность, ε) связана с плотностями по формуле:
Минеральная часть почвы
Минеральный состав
Около 50—60 % объёма и до 90—97 % массы почвы составляют минеральные компоненты. Минеральный состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.
Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы, пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10—15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.
Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов — каолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.
Высоко содержание минералов-оксидов и гидроксидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.
Гранулометрический состав
В почвах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) — с водным режимом.
Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.
В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (silt, 0,002—0,05 мм) частиц, по второй — глинистых (clay, Органическая часть почвы
В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.
В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом. В составе последнего находятся как неспецифические вещества известного строения (липиды, углеводы, лигнин, флавоноиды, пигменты, воск, смолы и т. д.), составляющие до 10—15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты.
Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты.
Элементный состав гуминовых кислот (по массе): 46—62 % C, 3—6 % N, 3—5 % H, 32—38 % O. Состав фульвокислот: 36—44 % C, 3—4,5 % N, 3—5 % H, 45—50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20—80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4—15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне pH (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (Cгк/Cфк) является важным показателем гумусового состояния почв.
В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец, в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения, обуславливающие тёмную окраску вещества [5] . Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.), что является причиной высокой ёмкости поглощения — 180—500 мг-экв/100 г.
О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения — до 670 мг-экв/100 г.
Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе [6] (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой [7] гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты, образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов.
Почвенная структура
Структура почвы [2] — физическое строение твёрдой части и порового пространства почвы, обусловленное размером, формой, количественным соотношением, характером взаимосвязи и расположением как механических элементов, так и состоящих из них агрегатов.
Твёрдая часть почвы [2] — совокупность всех видов частиц, находящихся в почве в твёрдом состоянии при естественном уровне влажности.
Поровое пространство в почве [2] — разнообразные по размерам и форме промежутки между механическими элементами и агрегатами почвы, занятые воздухом или водой.
Минеральные частицы почвы всегда объединяются в агрегаты различной прочности, размеров и формы. Вся совокупность агрегатов, характерных для почвы, называется её структурой. Факторами образования агрегатов являются: набухание, сжатие и растрескивание почвы в ходе циклов увлажнения-иссушения и замерзания-оттаивания, коагуляция почвенных коллоидов (наиболее важна в этом роль органических коллоидов), цементация частиц малорастворимыми соединениями, образование водородных связей, связей между нескомпенсированными зарядами кристаллической решётки минералов, адсорбция, механическое сцепление частиц гифами грибов, актиномицетов и корнями растений, агрегация частиц при прохождении через кишечник почвенных животных.
Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7—10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.
Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют [8] округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй — для иллювиальных, метаморфических горизонтов, третий — для элювиальных.
Новообразования и включения
Новообразования — скопления веществ, образующиеся в почве в процессе её формирования.
Широко распространены новообразования железа и марганца, чья миграционная способность зависит от окислительно-восстановительного потенциала и контролируется организмами, в особенности бактериями. Они представлены конкрециями, трубками по ходам корней, корками и др. В некоторых случаях происходит цементация почвенной массы железистым материалом. В почвах, особенно аридных и семиаридных регионов, распространены известковые новообразования: налёты, выцветы, псевдомицелий, конкреции, корковые образования. Новообразования гипса, также характерные для аридных областей, представлены налётами, друзами, гипсовыми розами, корками. Встречаются новообразования легкорастворимых солей, кремнезёма (присыпка в элювиально-иллювиально дифференцированных почвах, опаловые и халцедоновые прослои и коры, трубки), глинистых минералов (кутаны — натёки и корочки, образующиеся в ходе иллювиального процесса), часто вместе с гумусом.
К включениям относят любые объекты, находящиеся в почве, но не связанные с процессами почвообразования (археологическое находки, кости, раковины моллюсков и простейших, обломки породы, мусор). Неоднозначно отнесение к включениям, либо новообразованиям копролитов, червоточин, кротовин и прочих биогенных образований.
Жидкая фаза почв
Состояния воды в почве
В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести,а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.
Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путем нагревания, а некоторые формы (конституционную воду) — прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.
Физически связанную воду почва удерживает силами поверхностной энергии. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у цредколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определенное влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.
Первые слои молекул воды, т.е. гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие свойства воды. Она приобретает качества как бы твердого тела.. Рыхло связанную воду почва удерживает с меньшей силой, ее свойства не так резко отличны от свободной воды. Тем не менее сила притяжения еще настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.
Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.
При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.
Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.
В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.
Взаимодействие с твёрдой фазой
Почвенный поглощающий комплекс
Почва может удерживать поступившие в неё вещества по разным механизмам (механическая фильтрация, адсорбция мелких частиц, образование нерастворимых соединений, биологическое поглощение), важнейшим из которых является ионный обмен между почвенным раствором и поверхностью твёрдой фазы почвы. Твёрдая фаза за счёт сколов кристаллической решётки минералов, изоморфных замещений, наличия карбоксильных и ряда других функциональных групп в составе органического вещества заряжена преимущественно отрицательно, поэтому наиболее ярко выражена катионообменная способность почвы. Тем не менее, положительные заряды, обуславливающее анионный обмен, в почве также присутствуют.
Вся совокупность компонентов почвы, обладающих ионообменной способностью, называется почвенным поглощающим комплексом (ППК). Входящие в состав ППК ионы носят название обменных или поглощённых. Характеристикой ППК является ёмкость катионного обмена (ЕКО) — общее количество обменных катионов одного рода, удерживаемых почвой в стандартном состоянии — а также сумма обменных катионов, характеризующая природное состояние почвы и не всегда совпадающая с ЕКО.
Отношения между обменными катионами ППК не совпадают с отношениями между теми же катионами в почвенном растворе, то есть ионный обмен протекает селективно. Предпочтительнее поглощаются катионы с более высоким зарядом, а при их равенстве — с большей атомной массой, хотя свойства компонентов ППК могут несколько нарушать эту закономерность. Например, монтмориллонит поглощает больше калия, чем протонов водорода, а каолинит — наоборот.
Обменные катионы являются одним из непосредственных источников минерального питания растений, состав ППК отражается на образовании органоминеральных соединений, структуре почвы и её кислотности.
Почвенная кислотность
Почвенный воздух.
Почвенный воздух состоит из смеси различных газов:
- кислород, который поступает в почву из атмосферного воздуха; содержание его может меняться в зависимости от свойств самой почвы (её рыхлости, например), от количества организмов, использующих кислород для дыхания и процессов метаболизма;
- углекислота, которая образуется в результате дыхания организмов почвы, то есть в результате окисления органических веществ;
- метан и его гомологи (пропан, бутан), которые образуются в результате разложения более длинных углеводородных цепей;
- водород;
- сероводород;
- азот; более вероятно образование азота в виде более сложных соединений (например, мочевины)
И это далеко не все газообразные вещества, которые составляют почвенный воздух. Его химический и количественный состав зависят от содержащихся в почве организмов, содержания в ней питательных веществ, условий выветривания почвы и др.
Живые организмы в почве
Почва — это среда обитания множества организмов. Существа, обитающие в почве, называются педобионтами. Наименьшими из них являются бактерии, водоросли, грибки и одноклеточные организмы, обитающие в почвенных водах. В одном м³ может обитать до 10¹⁴ организмов. В почвенном воздухе обитают беспозвоночные животные, такие как клещи, пауки, жуки, ногохвостки и дождевые черви. Они питаются остатками растений, грибницей и другими организмами. В почве обитают и позвоночные животные, одно из них — крот. Он очень хорошо приспособлен к обитанию в абсолютно тёмной почве, поэтому он глухой и практически слепой.
Неоднородность почвы приводит к тому, что для организмов разных размеров она выступает как разная среда.
- Для мелких почвенных животных, которых объединяют под названием нанофауна (простейшие, коловратки, тихоходки, нематоды и др.), почва — это система микроводоемов.
- Для дышащих воздухом несколько более крупных животных почва предстает как система мелких пещер. Таких животных объединяют под названием микрофауна. Размеры представителей микрофауны почв — от десятых долей до 2-3 мм. К этой группе относятся в основном членистоногие: многочисленные группы клещей, первичнобескрылые насекомые (коллемболы, протуры, двухвостки), мелкие виды крылатых насекомых, многоножки симфилы и др. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет дышать через покровы. Многие виды не имеют трахейной системы. Такие животные очень чувствительны к высыханию.
- Более крупных почвенных животных, с размерами тела от 2 до 20 мм, называют представителями мезофауны. Это личинки насекомых, многоножки, энхитреиды, дождевые черви и др. Для них почва — плотная среда, оказывающая значительное механическое сопротивление при движении. Эти относительно крупные формы передвигаются в почве либо расширяя естественные скважины путём раздвигания почвенных частиц, либо роя новые ходы.
- Мегафауна или макрофауна почв — это крупные землерои, в основном из числа млекопитающих. Ряд видов проводит в почве всю жизнь (слепыши, слепушонки, цокоры, кроты Евразии, златокроты Африки, сумчатые кроты Австралии и др.). Они прокладывают в почве целые системы ходов и нор. Внешний облик и анатомические особенности этих животных отражают их приспособленность к роющему подземному образу жизни.
- Кроме постоянных обитателей почвы, среди крупных животных можно выделить большую экологическую группу обитателей нор (суслики, сурки, тушканчики, кролики, барсуки и т. п.). Они кормятся на поверхности, но размножаются, зимуют, отдыхают, спасаются от опасности в почве. Целый ряд других животных использует их норы, находя в них благоприятный микроклимат и укрытие от врагов. Норники обладают чертами строения, характерными для наземных животных, но имеют ряд приспособлений, связанных с роющим образом жизни.
Пространственная организация
В природе практически не бывает таких ситуаций, чтобы на много километров простиралась какая-нибудь одна почва с неизменными в пространстве свойствами. При этом различия почв обусловлены различиями в факторах почвообразования.
Закономерное пространственное размещение почв на небольших территориях называется структурой почвенного покрова (СПП). Исходной единицей СПП является элементарный почвенный ареал (ЭПА) — почвенное образование, внутри которого отсутствуют какие-либо почвенно-географические границы. Чередующиеся в пространстве и в той или иной степени генетически связанные ЭПА образуют почвенные комбинации.
Почвообразование
- Элементы природной среды: почвообразующие породы, климат, живые и отмершие организмы, возраст и рельеф местности,
- а также антропогенная деятельность, оказывающие существенное влияние на почвообразование.
Первичное почвообразование
В русском почвоведении приведена концепция [9] , что любая субстратная система, обеспечивающая рост и развитие растений «от семени до семени», есть почва. Идея эта дискуссионная, поскольку отрицает докучаевский принцип историчности, подразумевающий определённую зрелость почв и разделение профиля на генетические горизонты, но полезна в познании общей концепции развития почв.
Зачаточное состояние профиля почв до появления первых признаков горизонтов можно определять термином «инициальные почвы» [10] . Соответственно выделяется «инициальная стадия почвообразования» — от почвы «по Вески» до того времени, когда появится заметная дифференциация профиля на горизонты, и можно будет прогнозировать классификационный статус почвы. За термином «молодые почвы» предложено закрепить стадию «молодого почвообразования» — от появления первых признаков горизонтов до того времени, когда генетический (точнее, морфолого-аналитический) облик будет достаточно выраженным для диагностики и классификации с общих позиций почвоведения.
Генетические характеристики можно давать и до достижения зрелости профиля, с понятной долей прогностического риска, например, — «инициальные дерновые почвы»; «молодые проподзолистые почвы», «молодые карбонатные почвы». При таком подходе номенклатурные трудности разрешаются естественно, на базе общих принципов почвенно-экологического прогнозирования в соответствии с формулой Докучаева-Йенни (представление почвы как функции факторов почвообразования: S = f(cl, o, r, p, t …)).
Антропогенное почвообразование
В научной литературе для земель после горных работ и других нарушений почвенного покрова закрепилось обобщённое название «техногенные ландшафты», а изучение почвообразования в этих ландшафтах оформилось в «рекультивационное почвоведение» [11] . Был предложен также термин «технозёмы» [12] , по сути представляющий попытку объединить Докучаевскую традицию «-зёмов» с техногенными ландшафтами.
Отмечается, что логичнее применять термин «технозём» к тем почвам, которые специально создаются в процессе технологии горных работ путём разравнивания поверхности и насыпания специально снятых гумусовых горизонтов или потенциально плодородных грунтов (лёсса). Использование этого термина для генетического почвоведения вряд ли оправданно, так как итоговым, климаксным продуктом почвообразования будет не новый «-зём», а зональная почва, например, дерново-подзолистая, или дерново-глеевая.
Для техногенно-нарушенных почв предлагалось использовать термины «инициальные почвы» (от «нуль — момента» до появления горизонтов) и «молодые почвы» (от появления до оформления диагностических признаков зрелых почв), указывающие на главную особенность таких почвенных образований — временные этапы их эволюции из недифференцированных пород в зональные почвы.
Классификация почв
Единой общепринятой классификации почв не существует. Наряду с международной (Классификация почв ФАО и сменившая её в 1998 году WRB) во многих странах мира действуют национальные системы классификации почв, часто основанные на принципиально разных подходах.
В России к 2004 году специальной комиссией Почвенного института им. В. В. Докучаева, руководимой Л. Л. Шишовым, подготовлена новая классификация почв, являющаяся развитием классификации 1997 года. Однако российским почвоведами продолжает активно использоваться и классификация почв СССР 1977 года[1].
Из отличительных особенностей новой классификации можно назвать отказ от привлечения для диагностики факторно-экологических и режимных параметров, трудно диагностируемых и часто определяемых исследователем чисто субъективно, фокусирование внимания на почвенном профиле и его морфологических особенностях. В этом ряд исследователей видят отход от генетического почвоведения, делающего основной упор на происхождении почв и процессах почвообразования. В классификации 2004 года вводятся формальные критерии отнесения почвы к определённому таксону, привлекается понятие диагностического горизонта, принятое в международной и американской классификациях. В отличие от WRB и американской Soil Taxonomy, в российской классификации горизонты и признаки не равноценны, а строго ранжированы по таксономической значимости. Бесспорно важным нововведением классификации 2004 года стало включение в неё антропогенно-преобразованных почв.
В американской школе почвоведов используется классификация Soil Taxonomy, имеющая распространение также в других странах. Характерной её особенностью является глубокая проработка формальных критериев отнесения почв к тому или иному таксону. Используются названия почв, сконструированные из латинских и греческих корней. В классификационную схему традиционно включаются почвенные серии — группы почв, отличных лишь по гранулометрическому составу, и имеющие индивидуальное название — описание которых началось ещё при картировании Почвенным бюро территории США в начале XX века.
Термины по ГОСТ 27593-88(2005) [13] :
Классификация почв — система разделения почв по происхождению и (или) свойствам.
- Тип почвы — основная классификационная единица, характеризуемая общностью свойств, обусловленных режимами и процессами почвообразования, и единой системой основных генетических горизонтов.
- Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
- Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
- Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
- Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
- Разряд почвы — классификационная единица, группирующая почвы по характеру почвообразующих и подстилающих пород.
- Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
- Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
- Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
- Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
Закономерности распространения
Климат как фактор географического распространения почв
Климат — один из важнейших факторов почвообразования и географического распространения почв — в значительной степени определяется космическими причинами (количеством энергии, получаемой земной поверхностью от Солнца). С климатом связано проявление самых общих законов географии почв. Он влияет на почвообразование как непосредственно, определяя энергетический уровень и гидротермический режим почв, так и косвенно, воздействуя на другие факторы почвообразования (растительность, жизнедеятельность организмов, почвообразующие породы и т. д.).
Непосредственное влияние климата на географию почв проявляется в разных типах гидротермических условий почвообразования. Тепловой и водный режимы почв оказывают влияние на характер и интенсивность всех физических, химических и биологических процессов, протекающих в почве. Ими регулируются процессы физического выветривания горных пород, интенсивность химических реакций, концентрация почвенного раствора, соотношение твёрдой и жидкой фазы, растворимость газов. Гидротермические условия влияют на интенсивность биохимической деятельности бактерий, скорость разложения органических остатков, жизнедеятельность организмов и другие факторы, поэтому в разных районах страны с неодинаковым тепловым режимом скорость выветривания и почвообразования, мощность почвенного профиля и продуктов выветривания существенно различны.
Климат определяет наиболее общие закономерности распространения почв — горизонтальную зональность и вертикальную поясность.
Климат является результатом взаимодействия климатообразующих процессов, протекающих в атмосфере и деятельном слое (океанах, криосфере, поверхности суши и биомассе) — так называемой климатической системе, все компоненты которой непрерывно взаимодействуют друг с другом, обмениваясь веществом и энергией. Климатообразующие процессы можно разделить на три комплекса: процессы теплооборота, влагооборота и атмосферной циркуляции.
Значение почв в природе
Почва как среда обитания живых организмов
Почва обладает плодородием — является наиболее благоприятным субстратом или средой обитания для подавляющего большинства живых существ — микроорганизмов, животных и растений. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности.
Геохимические функции
Свойство различных почв по-разному аккумулировать разнообразные химические элементы и соединения, одни из которых необходимы для живых существ (биофильные элементы и микроэлементы, различные физиологически-активные вещества), а другие являются вредными или токсичными (тяжёлые металлы, галогены, токсины и пр.), проявляется на всех живущих на них растениях и животных, включая и человека. В агрономии, ветеринарии и медицине такая взаимосвязь известна в виде так называемых эндемических болезней, причины которых были раскрыты только после работ почвоведов.
Почва оказывает существенное влияние на состав и свойства поверхностных, подземных вод и всю гидросферу Земли. Фильтруясь через почвенные слои вода извлекает из них особый набор химических элементов, характерный для почв водосборных территорий. А поскольку основные хозяйственные показатели воды (её технологическая и гигиеническая ценность) определяются содержанием и соотношением этих элементов, то нарушение почвенного покрова проявляется также в изменении качества воды.
Регуляция состава атмосферы
Почва является главным регулятором состава атмосферы Земли. Обусловлено это деятельностью почвенных микроорганизмов, в огромных масштабах продуцирующих разнообразные газы — азот и его окисды, кислород, диоксид и оксид углерода, метан и другие углеводороды, сероводород, ряд прочих летучих соединений. Большинство из этих газов вызывают «парниковый эффект» и разрушают озоновый слой, вследствие чего изменение свойств почв может привести к изменению климата на Земле. Не случайно происходящий в настоящее время сдвиг в климатическом равновесии нашей планеты специалисты связывают в первую очередь с нарушениями почвенного покрова.
Экономическое значение
Почву часто называют главным богатством любого государства в мире, поскольку на ней и в ней производится около 90 % продуктов питания человечества. Деградация почв сопровождается неурожаями и голодом, приводит к бедности государств, а гибель почв может вызвать гибель всего человечества. Также земля применялась в древности в качестве строительного материала.
История изучения
Описанию свойств почв и их классификации человек уделял внимание со времени возникновения земледелия. Тем не менее, появление почвоведения как науки произошло лишь в конце XIX века и связано с именем В. В. Докучаева. В. И. Вернадский также внёс вклад в почвоведение. Он называл почву биокосным образованием, то есть состоящим из живого и неживого вещества.
Источник
➤ Adblockdetector