Меню

Абиотические факторы леса температура освещенность влажность ph почвы

Абиотические факторы.

Абиотические (от греч. – безжизненные) – это компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. В соответствии с имеющейся классификацией выделяют следующие абиотические факторы:

· климатические (солнечная радиация, свет и световой режим, температура, влажность, атмосферные осадки, ветер, давление и др.),

· эдафические (почвенные) механический и химический состав почвы, влагоемкость, водный, воздушный и тепловой режим почвы, уровень грунтовых вод и др.,

· орографические или топографические (рельеф (относится к косвенно действующим экологическим факторам, так как непосредственного влияния на жизнь организмов не оказывает); экспозиция (расположение элементов рельефа по отношению к странам света и господствующим ветрам, приносящим влагу); высота над уровнем моря),

· гидрографические (водная среда) – факторы водной среды (солёность, температура, содержание кислорода, содержание органического вещества и др.),

· химические (газовый состав атмосферы, солевой состав воды).

Одними из важнейших абиотических факторов являются свет, температура, влажность.

Свет. Солнечное излучение служит основным источником энергии для всех процессов, происходящих на Земле. По отношению к свету различают следующие экологические группы растений: светолюбивые (световые), тенелюбивые (теневые), теневыносливые. Тенелюбивые растения не выносят сильного освещения и живут под пологом леса в постоянной тени. Это в основном лесные травы. Теневыносливые растения могут жить при хорошем освещении, но легко переносят и некоторое затенение. К ним относится большинство растений лесов. Светолюбивые растения – это в основном растения лугов и других открытых пространств. Свет является условием ориентации животных. Среди животных различают дневные, ночные и сумеречные виды. Световой режим оказывает влияние и на географическое распространение животных. Так, определенные виды птиц, млекопитающих летом поселяются в высоких широтах с длинным полярным днем, а осенью, когда день сокращается, мигрируют или откочевывают на юг.

Температура. Одним из важнейших экологических факторов. Она определяет уровень активности организмов, влияет на обменные процессы, размножение, развитие, другие стороны их жизнедеятельности. От нее зависит распространение организмов. Следует отметить, что в зависимости от температуры тела, выделяют пойкилотермные и гомойотермные организмы. Пойкилотермные организмы (от греч. – различный и тепло) – это холоднокровные животные с непостоянной внутренней температурой тела, меняющейся в зависимости от температуры окружающей среды. К ним относятся все беспозвоночные, а из позвоночных – рыбы, земноводные и пресмыкающиеся. Их температура тела, как правило, выше температуры внешней среды на 1–2° С или равна ей. При повышении или понижении температуры среды за пределы оптимальных величин эти организмы впадают в оцепенение или гибнут. Отсутствие совершенных терморегуляционных механизмов у пойкилотермных животных обусловлено относительно слабым развитием нервной системы и низким уровнем обмена веществ по сравнению с гомойотермными организмами. Гомойотермные организмы – теплокровные животные, температура которых более или менее постоянна и, как правило, не зависит от температуры окружающей среды. К ним относятся млекопитающие и птицы, у которых постоянство температуры связано с более высоким по сравнению с пойкилотермными организмами уровнем обмена веществ. Кроме того, у них существует термоизоляционный слой (оперение, мех, жировой слой). Температура их относительно высокая: у млекопитающих она составляет 36–37° С, а у птиц в состоянии покоя – до 40–41° С.

Приспособления у растений, сглаживающие вредное влияние высоких и низких температур:

· интенсивность транспирации (при понижении температуры испарение воды через устьица протекает менее интенсивно и в результате уменьшается теплоотдача и, наоборот);

· накопление в клетках солей, изменяющих температуру свертывания плазмы,

· свойство хлорофилла препятствовать проникновению наиболее горячих солнечных лучей.

· накопление у морозоустойчивых растений в клетках сахара и других веществ, увеличивающих концентрацию клеточного сока, делает растение более выносливым и имеет большое значение для их терморегуляции.

Влияние теплового режима прослеживается и у животных:

· правило Бергмана: «по мере удаления от полюсов к экватору размеры близких в систематическом отношении животных с непостоянной температурой тела увеличиваются, а с постоянной – уменьшаются». Одна из причин такого явления – повышение температуры в тропиках и субтропиках. У мелких форм относительная поверхность тела возрастает и увеличивается теплоотдача, что отрицательно сказывается в умеренных и высоких широтах прежде всего на животных с непостоянной температурой тела. Температура тела организмов оказывает существенное формообразующее влияние.

· Физиологические приспособления: жировые отложения, пуховый, перьевой и шерстный покровы у птиц и млекопитающих; в Арктике, в горах большинство насекомых имеют темную окраску, что способствует усиленному поглощению солнечных лучей.

· Правила Аллена: «у животных спостоянной температурой тела в холодных климатических зонах наблюдается тенденция к уменьшению площади выступающих частей тела, поскольку они отдают в окружающую среду наибольшее количество тепла». У млекопитающих при низких температурах относительно сокращаются размеры хвоста, конечностей, ушей, лучше развивается волосяной покров.

Вода. Также важнейший и незаменимый экологичский фактор. С участием воды протекают все физиологические процессы. Живые организмы используют водные растворы (такие, как кровь и пищеварительные соки) для поддержания своих физиологических процессов. Она чаще других экологических факторов лимитирует рост и развитие растений.

Источник

Абиотические факторы леса и его характеристики

абиотические факторы джунглей все те неживые компоненты окружающей среды, которые влияют на организмы и регулируют функционирование джунглей.

Эти компоненты включают в себя как физические условия, так и неживые ресурсы, которые влияют на живые организмы и влияют на них с точки зрения роста, содержания и воспроизводства. Абиотические факторы включают свет, температуру, влажность и почву.

С другой стороны, густые леса называются джунглями, с листовой растительностью и широколистными и с их пологом (пологом) очень закрытым. Эта экосистема таит в себе большое биологическое разнообразие.

Растительность обычно имеет несколько этажей или уровней с биоразнообразным подлеском. Джунгли расположены в межтропических зонах и типичны для теплого климата и малых высот. В джунглях живут около 66% наземных видов, тем не менее, виды среднего и большого размера встречаются не часто.

  • 1 Абиотические факторы в джунглях
    • 1.1 Солнечный свет
    • 1.2 Этажи
    • 1.3 Влажность
    • 1.4 Температура
  • 2 Типы лесов
    • 2.1 — По температуре и географическому положению
    • 2.2 — По количеству воды и сезонности
    • 2.3 — По высоте
  • 3 Ссылки

Абиотические факторы в джунглях

Солнечный свет

Солнечный свет является основным источником энергии для всех наземных экосистем. В джунглях, в основном из-за межтропического положения, в течение всего года есть хорошее освещение..

Однако большая часть этой энергии поглощается до достижения земли. Полог деревьев, достигающих 30 метров, использует большую часть этой энергии, полагая, что только 1% света достигает земли.

Как приспособление к этим условиям, у более крупных растений есть маленькие листья, чтобы уменьшить потерю воды из-за прямого воздействия солнечного света.

Растения подлеска представляют большие листья, чтобы использовать свет, который проникает через верхний полог. В растительности нижнего слоя преобладают мхи.

Многочисленные мелкие виды приспособились к эпифитной жизни, растя на больших растениях, чтобы получить доступ к солнечному свету..

этажей

Почвы леса тонкие, очень мелкие, с низким pH и с низким содержанием питательных веществ и растворимых минералов, если рассматривать их с точки зрения требований к сельскому хозяйству..

Это потому, что органическое вещество разлагается под воздействием тепла и влаги очень быстро. Затем питательные вещества вымываются проливными дождями, очищая почву.

В результате постоянной очистки почвы от дождей питательные вещества в лесу обнаруживаются главным образом в корнях и листьях деревьев, а также в подстилке и других остатках гниющей растительности на земле, а не на земле. сам по себе.

Другой характеристикой этих субстратов является их низкий рН. Как приспособление к этому типу почвы, у больших деревьев появились мелкие корни, а также структуры, которые служат опорой для поддержки их ствола и ветвей..

влажность

Влажность в лесах очень высокая. Среднегодовое количество осадков может составлять от 1500 до 4500 мм. Эти осадки должны быть очень хорошо распределены в течение года.

Из-за этого средний уровень влажности составляет от 77 до 88%. Деревья также дают воду через пот. Воздух под верхним пологом леса остается стабильным и очень влажным. Почва также остается влажной из-за небольшого количества солнечного света, который достигает ее.

температура

Температура в джунглях в среднем составляет 25 ºC в год. Это может колебаться между 27º и 29º C в тропическом лесу, в то время как в субтропическом лесу оно составляет в среднем 22 ° C, а в горном лесу 18 ° C..

Высокие и постоянные температуры позволяют поддерживать высокий уровень влажности за счет транспирации растений. Они также позволяют быстрый рост, как растений, так и животных.

Последние не должны расходовать энергию, чтобы согреться, что позволяет им тратить больше энергии на репродукцию чаще. Это объясняет продуктивность и биоразнообразие, которые можно найти в джунглях.

Типы лесов

Эти экосистемы могут варьироваться в зависимости от нескольких переменных, среди которых можно упомянуть количество доступной воды и температуру и ее временную изменчивость, а также ее географическое и высотное расположение..

Они могут быть классифицированы различными способами, среди которых можно упомянуть:

-По температуре и географическому положению

Экваториальные джунгли

Расположен в экваториальной зоне. Это самый обильный и биоразнообразный. Его температура в течение всего года близка к 27ºC, а количество осадков от 2000 до 5000 мм в год. Он расположен в регионе Амазонки, Конго (Африка) и между регионом Индомалая и Австралазией (Малайзия).

дождевой лес

Также называется тропическим лесом или макротермическим лесом. Среднегодовая температура выше 24ºC. Среднегодовое количество осадков немного ниже, чем в экваториальных тропических лесах.

Он расположен в районе, где сходятся пассаты севера и юга. В Северной Америке он достигает Мексики, а в Африке — Мозамбика и даже Мадагаскара. Некоторые авторы считают это синонимом экваториального тропического леса.

Субтропические джунгли

Среднегодовая температура составляет от 18 до 24ºC. Среднегодовое количество осадков колеблется между 1000 и 2000 мм, хотя может достигать 4000 мм..

Это тип леса, который встречается в субтропических климатических зонах с высоким содержанием влаги, с очень жарким летом и зимой с относительно низкими температурами..

В Южной Америке они расположены к югу от Бразилии, в Парагвае и самой северной части Аргентины. На юге Африки, а также в Австралии они расположены в прибрежных районах.

-По количеству воды и сезонности

Тропический лес

Этот тип джунглей, по мнению некоторых авторов, является настоящими джунглями. Влажность может быть высокой или очень высокой. Из-за сезонного характера дождей растительность всегда может быть зеленой, и до 50% деревьев могут потерять свои листья в течение сухого сезона..

Сухие джунгли

Также известный как лес трофей, он характеризуется чередованием сезонов коротких дождей и сезонов без дождя. Это тропические леса засушливых районов.

Его удельное разнообразие на гектар ниже, чем в тропических лесах. Он имеет большее количество экземпляров на вид, поэтому обычно подвергается чрезмерной коммерческой эксплуатации..

-В зависимости от высоты

Базальные джунгли

Он расположен ниже 500 — 1000 м.кв. в зависимости от критериев разных авторов. Это также известно как простые или простые джунгли. Земля может быть или не быть затоплена или затоплена.

Читайте также:  Пдк почв по сульфатам

Горные джунгли

Это ограничивает высоту леса горной частью в верхней части и низким лесом в нижней части. Он отличается от горного леса тем, что последний имеет меньшую плотность и большую высоту. Это также известно как горный, облачный или высокий лес.

Галерея джунглей

Так называется лесная экосистема, окружающая реки равнин саванны, типичная для межтропической зоны.

Источник

Абиотические факторы леса температура освещенность влажность ph почвы

Абиотические факторы — это прямо или косвенно действующие на организм факторы неживой природы — свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Биологическое действие солнечного света обусловливается его спектральным составом [показать] ,

В спектральном составе солнечного света различают

  • инфракрасные лучи (длина волны более 0,75 мкм)
  • видимые лучи (0,40-0,75 мкм) и
  • ультрафиолетовые лучи (менее 0,40 мкм)

Разные участки солнечного спектра неравнозначны по биологическому действию.

Инфракрасные, или тепловые, лучи несут основное количество тепловой энергии. На их долю приходится около 49 % лучистой энергии, которая воспринимается живыми организмами. Тепловая радиация хорошо поглощается водой, количество которой в организмах довольно велико. Это приводит к нагреванию всего организма, что имеет особенное значение для холоднокровных животных (насекомых, рептилий и др.). У растений важнейшая функция инфракрасных лучей состоит в осуществлении транспирации, с помощью которой из листьев водяными парами отводится излишек тепла, а также в создании оптимальных условий для вхождения углекислого газа через устьица.

Видимый участок спектра составляют около 50 % лучистой энергии, поступающей на Землю. Данная энергия необходима растениям для фотосинтеза. Однако на это используется лишь 1 % ее, остальная же часть отражается или рассеивается в виде тепла. Этот участок спектра oбусловил появление у растительных и животных организмов многих важных приспособлений. У зеленых растений, кроме формирования светопоглотительного пигментного комплекса, с помощью которого осуществляется процесс фотосинтеза, возникла яркая окраска цветов, что способствует привлечению опылителей.

Для животных свет в основном играет информационную роль и участвует в регуляции многих физиолого-биохимческих процессов. Уже у простейших имеются светочувствительные органоиды (светочувствительный глазок у эвглены зеленой), а реакция на свет выражается в виде фототаксисов — перемещение в сторону наибольшей или наименьшей освещенности. Начиная с кишечнополостных, практически у всех животных развиваются различные по строению светочувствительные органы. Различают ночных и сумеречных животных (совы, летучие мыши и др.), а также животных, обитающих в постоянной темноте (медведка, аскарида, крот и др.).

Ультрафиолетовая часть характеризуется самой высокой энергией квантов и высокой фотохимической активностью. С помощью ультрафиолетовых лучей с длиной волны 0,29-0,40 мкм в организме животных осуществляется биосинтез витамина D, пигментов сетчатки глаза, кожи. Эти лучи лучше всего воспринимают органы зрения многих насекомых, у растений они оказывают формообразовательный эффект и способствуют синтезу некоторых биологически активных соединений (витаминов, пигментов). Лучи с длиной волны менее 0,29 мкм губительно действуют на живое.

У растений, жизнедеятельность которых всецело зависит от света, возникают различные морфоструктурные и функциональные адаптации к световому режиму местообитаний. По требовательности к условиям освещения растения распределены на следующие экологические группы:

    Светолюбивые (гелиофиты) растения открытых местообитаний, успешно произрастающие только в условиях полного солнечного освещения. Для них характерна высокая интенсивность фотосинтеза. Это ранневесенние растения степей и полупустынь (гусиный лук, тюльпаны), растения безлесных склонов (шалфей, мята, чабрец), хлебные злаки, подорожник, кувшинка, акация и др.

Теневыносливые растения характеризуются широкой экологической амплитудой к световому фактору. Лучше всего растут в условиях высокой освещенности, однако способны адаптироваться к условиям разного уровня затенения. Это древесные (береза, дуб, сосна) и травянистые (земляника лесная, фиалка, зверобой и др.) растения.

  • Тенелюбивые растения (сциофиты) не выносят сильного освещения, произрастают только в затененных местах (под пологом леса), а на открытых никогда не растут. На вырубках при сильном освещении у них происходит замедление роста, а иногда — гибель. К таким растениям относятся лесные травы — папоротники, мхи, кислица и др. Адаптация к затенению обычно сочетается с потребностью хорошего водоснабжения.
  • Суточная периодичность определяет процессы роста и развития растений и животных, которые зависят от длины светового дня.

    Фактор, который регулирует и управляет ритмикой суточной жизнедеятельности организмов, называется фотопериодизмом. Он является важнейшим сигнальным фактором позволяющим растениям и животным «измерять время» — соотношение между продолжительностью периода освещенности и темноты в течение суток, определять количественые параметры освещенности. Иными словами, фотопериодизм — это реакция организмов на смену дня и ночи, которая проявляется в колебании интенсивности физиологических процессов — роста и развития. Именно продолжительность дня и ночи очень точно и закономерно изменяется в течение года независимо от случайных факторов, неизменно повторяясь из года в год, поэтому организмы в процессе эволюции согласовали все этапы своего развития с ритмом этих временных интервалов.

    В умеренном поясе свойство фотопериодизма служит функциональным климатическим фактором, определяющим жизненный цикл большинства видов. У растений фотопериодический эффект проявляется в согласовании периода цветения и созревания плодов с периодом наиболее активного фотосинтеза, у животных — в совпадении времени размножения с периодом обилия пищи, у насекомых — в наступлении диапаузы и выходе из нее.

    К биологическим явлениям, вызываемым фотопериодизмом, относятся также сезонные миграции (перелеты) птиц, проявление их гнездовых инстинктов и размножения, смена меховых покровов у млекопитающих и т. п.

    По необходимой длительности светового периода растения разделяют на

    • длиннодневные, которым для нормального роста и развития необходимо больше 12 ч светового времени (лен, лук, морковь, овес, белена, дурман, молодило, картофель, белладонна и др.);
    • растения короткого дня — им нужно для зацветания не менее 12 ч беспрерывного темнового периода (георгины, капуста, хризантемы, амарант, табак, кукуруза, томаты и др.);
    • нейтральные растения, у которых развитие генеративных органов происходит как при длинном, так и при коротком дне (бархатцы, виноград, флоксы, сирень, гречиха, горох, спорыш и др.)

    Растения длинного дня происходят преимущественно из северных широт, короткого — из южных. В тропическом поясе, где продолжительность дня и ночи мало изменяются на протяжении года, фотопериод не может служить ориентирующим фактором периодичности биологических процессов. Его заменяет чередование сухого и влажного сезонов. Длиннодневные виды успевают дать урожай даже в условиях короткого северного лета. Образование большой массы органических веществ происходит летом в течение довольно длинного светового дня, который на широте Москвы может достигать 17 ч, а на широте Архангельска — более 20 ч в сутки.

    Продолжительность дня существенно сказывается и на поведении животных. С наступлением весенних дней, длительность которых прогрессивно увеличивается, у птиц появляются гнездовые инстинкты, они возвращаются из теплых краев (хотя температура воздуха еще может быть и неблагоприятной), приступают к кладке яиц; теплокровные животные линяют.

    Сокращение длительности дня осенью вызывает противоположные сезонные явления: отлет птиц, некоторые животные впадают в спячку, у других отрастает плотный шерстный покров, образуются зимующие стадии у насекомых (несмотря на еще благоприятную температуру и обилие корма). В этом случае уменьшение длительности дня сигнализирует живым организмам о близком наступлении зимнего периода, и они могут заранее подготовиться к нему.

    У животных, особенно у членистоногих, рост и развитие также зависят от длины светового дня. Например, капустная белянка, березовая пяденица нормально развиваются лишь при длинном световом дне, тогда как тутовый шелкопряд, различные виды саранчи, совок — при коротком. Фотопериодизм влияет и на время наступления и прекращения брачного периода у птиц, млекопитающих и других животных; на размножение, эмбриональное развитие земноводных, пресмыкающихся, птиц и млекопитающих;

    Благодаря этому появилась возможность искусственного регулирования развития животных и растений. Например, создание растениям в теплицах, оранжереях или парниках светового дня длительностью 12-15 ч позволяет даже зимой выращивать овощные культуры, декоративные растения, ускорять рост и развитие рассады. Наоборот, затенение растений летом ускоряет появление цветков или семян позднецветущих осенних растений.

    Продолжением дня за счет искусственного освещения зимой можно увеличить период яйценосности кур, гусей, уток, регулировать размножение пушных зверей на зверофермах. Огромную роль играет световой фактор и в других жизненных процессах животных. Прежде всего он является необходимым условием видения, их зрительной ориентации в пространстве в результате восприятия органами зрения прямых, рассеянных или отраженных от окружающих предметов световых лучей. Велика информативность для большинства животных поляризованного света, способности различать цвета, ориентироваться по астрономическим источникам света в осенних и весенних миграциях птиц, в навигационных способностях других животных.

    На основе фотопериодизма у растений и животных в процессе эволюции выработались специфические годичные циклы периодов роста, размножения, подготовки к зиме, которые получили название годичных или сезонных ритмов. Эти ритмы проявляются в изменении интенсивности характера биологических процессов и повторяются с годичной периодичностью. Совпадение периодов жизненного цикла с соответствующим временем года имеет огромное значение для существования вида. Сезонные ритмы обеспечивают растениям и животным наиболее благоприятные условия для роста и развития.

    Более того, физиологические процессы растений и животных находятся в строгой зависимости от суточной ритмичности, что выражается определенными биологическими ритмами. Следовательно, биологические ритмы — это периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. У растений биологические ритмы проявляются в суточном движении листьев, лепестков, изменении фотосинтеза, у животных — в колебании температуры, изменении секреции гормонов, скорости деления клеток и т. д. У человека также наблюдаются суточные колебания частоты дыхания, пульса, артериального давления, бодрствования и сна и др. Биологические ритмы являются наследственно закрепленными реакциями, поэтому познание их механизмов имеет важное значение при организации труда и отдыха человека.

    Верхним температурным пределом жизни на Земле, вероятно, является 50-60°С. При таких температурах происходит потеря активности ферментов и свертывание белка. Однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 1)

    Таблица 1. Температурный диапазон активной жизни на планете, °С

    Часть земной поверхности Температура Амплитуда
    минимальная максимальная
    Суша -70 55 125
    Морские воды -3.3 35.6 38.9
    Пресные воды 0 93 93

    Среди организмов, способных существовать при очень высоких температурах, известны термофильные водоросли, которые могут жить в горячих источниках при 70-80°С. Успешно переносят очень высокие температуры (65-80°С) накипные лишайники, семена и вегетативные органы пустынных растений (саксаул, верблюжья колючка, тюльпаны), находящиеся в верхнем слое раскаленной почвы.

    Существует немало видов животных и растений, выдерживающих большие значения минусовых температур. Деревья и кустарники в Якутии не вымерзают при минус 68°С. В Антарктиде при минус 70°С живут пингвины, а в Арктике — белые медведи, песцы, полярные совы. Полярные воды с температурой от 0 до -2°С населены разнообразными представителями растительного и животного мира — микроводорослями, беспозвоночными, рыбами, жизненный цикл которых постоянно происходит в таких температурных условиях.

    Читайте также:  Перепревший навоз класс опасности

    Способы приспособления

    • Миграция — переселение в более благоприятные условия. Регулярно в течение года мигрируют киты, многие виды птиц, рыб, насекомых и других животных.
    • Оцепенение — состояние полной неподвижности, резкое снижение жизнедеятельности, прекращение питания. Наблюдается у насекомых, рыб, земноводных, млекопитающих при понижении температуры среды осенью, зимой (зимняя спячка) или при повышении ее летом в пустынях (летняя спячка).
    • Анабиоз — состояние резкого угнетения жизненных процессов, когда видимые проявления жизни временно прекращаются. Это явление обратимое. Отмечается у микробов, растений, низших животных. Семена некоторых растений в анабиозе могут находиться до 50 лет. Микробы в состоянии анабиоза образуют споры, простейшие — цисты.

    Многие растения и животные при соответствующей подготовке успешно переносят в состоянии глубокого покоя или анабиоза предельно низкие температуры. В лабораторных экспериментах семена, пыльца, споры растений, нематоды, коловратки, цисты простейших и других организмов, сперматозоиды после обезвоживания или помещения в растворы специальных защитных веществ — криопротекторов — переносят температуры, близкие к абсолютному нулю.

    В настоящее время достигнуты успехи по практическому использованию веществ с криопротекторными свойствами (глицерин, полиэтиленоксид, диметилсульфоксид, сахароза, маннит и др.) в биологии, сельском хозяйстве, медицине. В растворах криопротекторов осуществляется длительное хранение консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, некоторых органов и тканей для трансплантации; защита растений от зимних морозов, ранневесенних заморозков и т. п. Оказанные проблемы относятся к компетенции криобиологии и криомедицины и решаются многими научными учреждениями.

    • Терморегуляция. У растений и животных в процессе эволюции выработались различные механизмы терморегуляции:
    1. у растений
      • физиологический — накопление в клетках сахара, за счет которого повышается концентрация клеточного сока и снижается обводненность клеток, что способствует морозоустойчивости растений. Например, у карликовой березы, можжевельника верхние ветви при чрезмерно низкой температуре омертвевают, а стелющиеся перезимовывают под снегом и не погибают.
      • физический
        1. устьичная транспирация — отведения избытка тепла и предотвращение ожогов путем выведения воды (испарения) из тела растения
        2. морфологический — направленный на предотвращение перегрева: густая опушенность листьев для рассеивания солнечных лучей, глянцевитая поверхность для их отражения, уменьшение поглощающей лучи поверхности — свертывание листовой пластинки в трубочку (ковыль, овсяница), расположение листа ребром к солнечным лучам (эвкалипт), редуцирование листвы (саксаул, кактус); направленный на предотвращение замерзания: особые формы роста — карликовость, образование стелющихся форм (зимовка под снегом), темная окраска (помогает лучше поглощать тепловые лучи и нагреваться под снегом)

      у животных

        холоднокровных (пойкилотермных, эктотермных) [беспозвоночные, рыбы, земноводные и пресмыкающиеся] — регуляция температуры тела осуществляется пассивно за счет усиления мышечной работы, особенностей структуры и цвета покровов, отыскивания мест, где возможно интенсивное поглощение солнечных лучей, и т.д., т.к. они не могут поддерживать температурный режим обменных процессов и их активность зависит главным образом, от тепла, поступающего извне, а температура тела — от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии).

      теплокровных (гомойотермных, эндотермных) [птицы и млекопитающие] — способны поддерживать постоянную температуру тела независимо от температуры среды. Это свойство дает возмоность многим видами животных жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвины). В процессе эволюции у них выработались два механизма терморегуляции, с помощью которых они поддерживают постоянную температуру тела: химический и физический [показать] .

      • Химический механизм терморегуляции обеспечивается скоростью и интенсивностью окислительно-восстановительных реакций и контролируется рефлекторно центральной нервной системой. Важную роль в повышении эффективности химического механизма терморегуляции сыграли такие ароморфозы, как появление четырехкамерного сердца, совершенствование органов дыхания у птиц и млекопитающих.
    2. Физический механизм терморегуляции обеспечивается появлением теплоизолирующих покровов (перья, мех, подкожно-жировая клетчатка), потовых желез, органов дыхания, а также развитием нервных механизмов регуляции кровообращения.
    3. Частным случаем гомойотермии является гетеротермия — разный уровень температуры тела в зависимости от функциональной активности организма. Гетеротермия свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение. При этом высокая температура их тела заметно снижается за счет замедленного обмена веществ (суслики, ежи, летучие мыши, птенцы стрижей и др.).

    Пределы выносливости больших значений температурного фактора различны как у пойкилотермных, так и у гомойотермных организмов.

    Эвритермные виды способны переносить колебания температуры в широких пределах.

    Стенотермные организмы живут в условиях узких пределов температуры, подразделяясь на теплолюбивые стенотермные виды (орхидеи, чайный куст, кофе, кораллы, медузы и др.) и на холодолюбивые (кедровый стланик, предледниковая и тундровая растительность, рыбы полярных бассейнов, животные абиссали — области наибольших океанических глубин и т. п.).

    Для каждого организма или группы особей существует, оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо. Выше этой зоны находится зона временного теплового оцепенения, еще выше — зона продолжительной бездеятельности или летней спячки, граничащая с зоной высокой летальной температуры. При понижении последней ниже оптимума находится зона холодового оцепенения, зимней спячки и летальной низкой температуры.

    Распределение особей в популяции в зависимости от изменения температурного фактора по территории подчиняется в целом такой же закономерности. Зоне оптимальных температур соответствует наибольшая плотность популяции, а по обе стороны от нее наблюдается снижение плотности вплоть до границы ареала, где она наименьшая.

    Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

      Тропическая зона. Минимальная среднегодовая температура превышает 16° C, в самые прохладные дни не опускается ниже 0° C. Колебания температуры во времени незначительны, амплитуда не превышает 5° C. Вегетация круглогодичная.

    Субтропическая зона. Средняя температура самого холодного месяца не ниже 4° C, а самого теплого — выше 20° C. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается 9-11 мес.

    Умеренная зона. Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.

  • Холодная зона. Среднегодовая темлература ниже О° C, заморозки возможны даже в течение короткого (2-3 мес) вегетационного периода. Очень велико годовое колебание температуры.
  • Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

    Влага — необходимое условие существования всех живых организмов на Земле. В водной среде зародилась жизнь. Обитатели суши и поныне зависимы от воды. Для многих видов животных и растений вода продолжает оставаться средой обитания. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, выступает важнейшим исходным, промежуточным и конечным продуктом биохимических превращений. Значимость воды определяется и ее количественным содержанием. Живые организмы состоят не менее чем на 3/4 из воды.

    По отношению к воде высшие растения делятся на

    • гидрофиты — водные растения (кувшинка, стрелолист, ряска);
    • гигрофиты — обитатели избыточно увлажненных мест (аир, вахта);
    • мезофиты — растения нормальных условий влажности (ландыш, валериана, люпин);
    • ксерофиты — растения, живущие в условиях постоянного или сезонного дефицита влаги (саксаул, верблюжья колючка, эфедра) и их разновидности суккуленты (кактусы, молочаи).
    Растения Животные
    • уменьшение размеров клеток
    • определенный химический состав цитоплазмы
    • увеличение количества устьиц на единицу поверхности листа
    • узкие жесткие листья, часто с толстой кутикулой
    • образование волоскового слоя
    • превращение листьев в колючки
    • развитие мощной и глубокой корневой системы у растений засушливых мест
    • очень короткая, но интенсивная вегетация, которая охватывает сравнительно влажный ранне-весенний период (тюльпаны, песчаная осока, маки, ковыль и пр.). Другую часть года они сохраняются в виде покоящихся луковиц или корневищ
    • поглощение парообразной влаги из воздуха наземными органами и частями растений [эпифиты (растения, которые произрастают на других растениях, но используют их лишь как опору для прикрепления, т.е. не являются паразитами), пустынные афильные растения (саксаул), суккуленты (кактусы), много мхов и лишайники] при помощи специальных приспособлений для лучшей конденсации влаги (волоски), поглощения конденсата (желобки, полости, ямочки), направления струек воды от листьев к корневой системе и т. п.
    • способность к быстрому и продолжительному бегу (кулан, антилопа, джейран, сайгак), что позволяет им совершать дальние миграции на водопой
    • всасывания воды через покровы тела из среды обитания в жидком или парообразном состоянии (амфибии, некоторые насекомые, клещи)
    • запасание воды, образующейся при окислительных реакциях. Особенно много такой воды дает окисление жира (107 г метаболической (эндогенной) воды из 100 г жира). Поэтому характерные для многих обитателей пустынь обильные жировые отложения служат своеобразным резервом воды в организме, например горб у верблюда, подкожные отложения жира у грызунов
    • слабая проницаемость наружных покровов тела, что сводит до минимума испарение воды
    • редкие дыхательные движения
    • глубоко расположенные органы дыхания
    • максимально обезвоженные продукты выделения
    • пониженное потоотделение и отдача воды со слизистых
    • обитание в нормах и переход к ночному образу жизни для избегания иссушающего действия низкой влажности воздуха и перегрева
    • летняя спячка с началом сухого и жаркого периодов. Это характерно для степных и пустынных грызунов, черепах, некоторых насекомых и других беспозвоночных.

    Важной особенностью основных климатических факторов (света, температуры, влажности) является их закономерная изменчивость в течение годичного цикла и даже суток, а также в зависимости от географической зональности. В связи с этим приспособления живых организмов также имеют закономерный и сезонный характер. Приспособление организмов к условиям среды может быть быстрым и обратимым или довольно медленным, что зависит от глубины воздействия фактора.

    В результате жизнедеятельности организмы способны изменять абиотические условия жизни. Например, растения низшего яруса оказываются в условиях меньшей освещенности; процессы распада органических веществ, которые происходят в водоемах, часто вызывают дефицит кислорода для других организмов. За счет деятельности водных организмов изменяется температурный и водный режимы, количество кислорода, углекислого газа, рН среды, спектральный состав света и др.

    Воздушная среда и ее газовый состав

    Освоение воздушной среды организмами началось после выхода их на сушу. Жизнь в воздушной среде потребовала специфических приспособлений и высокого уровня организации растений и животных. Низкая плотность и оводненность, высокое содержание кислорода, легкость перемещения воздушных масс, резкие перепады температуры и т. п. заметно сказались на процессе дыхания, водообмене и передвижении живых существ.

    Подавляющее большинство наземных животных в ходе эволюции приобрели способность к полету (75 % всех видов наземных животных). Для многих видов характерна ансмохория — расселение с помощью воздушных потоков (споры, семена, плоды, цисты простейших, насекомые, пауки и т. п.). Некоторые растения стали ветроопыляемыми.

    Для успешного существования организмов важны не только физические, но и химические свойства воздуха, содержание в нем нужных для жизни газовых компонентов.

    Кислород. Для абсолютного большинства живых организмов кислород жизненно необходим. В бескислородной среде могут развиваться только анаэробные бактерии. Кислород обеспечивает осуществление экзотермических реакций, в ходе которых освобождается необходимая для жизнедеятельности организмов энергия. Он является конечным акцептором электрона, который отщепляется от атома водорода в процессе энергетического обмена.

    В химически связанном состоянии кислород входит в состав многих очень важных органических и минеральных соединений живых организмов. Огромна его роль как окислителя в круговороте отдельных элементов биосферы.

    Единственными продуцентами свободного кислорода на Земле являются зеленые растения, которые образуют его в процессе фотосинтеза. Определенное количество кислорода образуется в результате фотолиза паров воды ультрафиолетовыми лучами за пределами озонового слоя. Поглощение организмами кислорода из внешней среды происходит всей поверхностью тела (простейшие, черви) или специальными органами дыхания: трахеями (насекомые), жабрами (рыбы), легкими (позвоночные).

    Кислород химически связывается и переносится по всему организму специальными пигментами крови: гемоглобином (позвоночные), гемоциапином (моллюски, ракообразные). У организмов, пребывающих в условиях постоянного недостатка кислорода, выработались соответствующие приспособления: повышенная кислородная емкость крови, более частые и глубокие дыхательные движения, большой объем легких (у жителей высокогорья, птиц) или уменьшение использования кислорода тканями благодаря повышению количества миоглобина — аккумулятора кислорода в тканях (у обитателей водной среды).

    Вследствие высокой растворимости СО2 и О2 в воде относительное их содержание здесь выше (в 2-3 раза), чем в воздушной среде (рис. 1). Это обстоятельство очень важно для гидробионюв, использующих либо растворенный кислород для дыхания, либо СО2 для фотосинтеза (водные фототрофы).

    Углекислый газ. Нормальное количество этого газа в воздухе невелико — 0,03 % (по объему) или 0,57 мг/л. Вследствие этого даже небольшие колебания в содержании СО2 существенно отражаются па непосредственно зависящем от него процессе фотосинтеза. Главные источники поступления СО2 в атмосферу — дыхание животных и растений, процессы горения, извержения вулканов, деятельность почвенных микроорганизмов и грибов, промышленные предприятия и транспорт.

    Обладая свойством поглощения в инфракрасной области спектра, углекислый газ влияет на оптические параметры и температурный режим атмосферы, обусловливая известный «парниковый эффект».

    Важным экологическим аспектом является повышение растворимости кислорода и углекислого газа в воде по мере уменьшения ее температуры. Именно поэтому фауна водных бассейнов полярных и приполярных широт очень обильна и разнообразна, главным образом за счет повышенной концентрации в холодной воде кислорода. Растворение кислорода в воде, как и любого другого газа, подчиняется закону Генри: оно обратно пропорционально температуре и прекращается при достижении точки кипения. В теплых водах тропических бассейнов пониженная концентрация растворенного кислорода ограничивает дыхание, а следовательно, и жизнедеятельность и численность водных животных.

    В последнее время наблюдается заметное ухудшение кислородного режима многих водоемов, вызванное увеличением количества органических загрязнителей, деструкция которых требует большого количества кислорода.

    Зональность распространения живых организмов

    Географическая (широтная) зональность

    В широтном направлении с севера на юг на территории РФ последовательно располагаются такие природные зоны: тундра, тайга, лиственный лес, степь, пустыня. Среди элементов климата, которые определяют зональность размещения и распространения организмов, ведущую роль играют абиотические факторы — температура, влажность, световой режим.

    Наиболее заметно зональные изменения проявляются в характере растительности — ведущем компоненте биоценоза. Это в свою очередь сопровождается изменениями состава животных — потребителей и деструкторов органических остатков звеньев цепей питания.

    Тундра — холодная, безлесная равнина северного полушария. Климатические условия ее мало пригодны для вегетации растений и разложения органических остатков (вечная мерзлота, относительно низкая температура даже летом, короткий период плюсовых температур). Тут сформировались своеобразные малочисленные по видовому составу (мхи, лишайники) биоценозы. Продуктивность биоценоза тундры в связи с этим малая: 5-15 ц/га органического вещества в год.

    Зона тайги характеризуется относительно благоприятными почвенно-климатическими условиями, особенно для хвойных пород. Тут сформировались богатые и высокопродуктивные биоценозы. Ежегодное образование органического вещества составляет 15-50 ц/га.

    Условия умеренной зоны привели к формированию сложных биоценозов лиственных лесов с самой высокой на территории РФ их биологической продуктивностью (до 60 ц/га в год). Разновидностями лиственных лесов являются дубравы, буково-кленовые, смешанные леса и др. Такие леса характеризуются хорошо развитым кустарниковым и травянистым подлесками, что способствует размещению разнообразной по видам и количеству фауны.

    Степи — природная зона умеренного пояса полушарий Земли, которая характеризуется недостаточным водообеспечением, поэтому тут преобладает травянистая, преимущественно злаковая растительность (ковыль, типчак и др.). Животный мир разнообразен и богат (лисица, заяц, хомяк, мыши, много птиц, особенно перелетных). В степной зоне размещены важнейшие районы производства зерна, технических, овощных культур и животноводства. Биологическая продуктивность этой природной зоны относительно велика (до 50 ц/га в год).

    Пустыни преобладают в Средней Азии. Вследствие незначительного количества осадков и высокой температуры летом растительность занимает менее половины территории этой зоны и имеет специфические приспособления к засушливым условиям. Животный мир разнообразен, его биологические особенности рассматривались раньше. Ежегодное образование органической массы в зоне пустынь не превышает 5 ц/га (рис. 107).

    Соленость водной среды характеризуется содержанием в ней растворимых солей. В пресной воде содержится 0,5-1,0 г/л, а в морской — 10-50 г/л солей.

    Соленость водной среды имеет важное значение для ее обитателей. Существуют животные, приспособленные к обитанию только в пресной воде (карпообразные) или только в морской (сельдеобразные). У некоторых же рыб отдельные стадии индивидуального развития проходят при различной солености воды, например угорь обыкновенный обитает в пресных водоемах, а на нерест мигрирует в Саргассово море. Таким водным обитателям необходима соответствующая регуляция солевого баланса в организме.

    Механизмы регуляции ионного состава организмов.

    Сухопутные животные вынуждены регулировать солевой состав своих жидких тканей для поддержания внутренней среды в постоянном или почти постоянном химически неизмененном ионном состоянии. Основной способ поддерживать солевой баланс у гидробионтов и сухопутных растений — избегать местообитаний с неподходящей соленостью.

    Особенно напряженно и безошибочно должны работать такие механизмы у мигрирующих рыб (лосося, кеты, горбуши, угря, осетра), которые периодически переходят из морской воды в пресную или наоборот.

    Проще всего происходит осмотическая регуляция в пресной воде. Известно, что в последней концентрация ионов значительно меньше, чем в жидких тканях. Согласно законам осмоса внешняя среда по концентрационному градиенту через полупроницаемые мембраны поступает внутрь клеток, происходит как бы «разведение» внутреннего содержимого. Если бы такой процесс не контролировался, организм мог бы разбухнуть и погибнуть. Однако пресноводные организмы имеют органы, которые выводят наружу лишнюю воду. Сохранению необходимых для жизнедеятельности ионов способствует то, что моча у таких организмов довольно разбавленная (рис. 2, а). Отделение такого разведенного раствора от внутренних жидкостей, вероятно, требует активной химической работы специализированных клеток или органов (почек) и потребления ими значительной доли общей энергии основного обмена.

    Наоборот, морские животные и рыбы пьют и усваивают только морскую воду, пополняя тем самым постоянный выход ее из организма во внешнюю среду, которая характеризуется высоким осмотическим потенциалом. При этом одновалентные ионы соленой воды активно выводятся наружу жабрами, а двухвалентные — почками (рис. 2, б). На откачку избыточной воды клетки затрачивают довольно много энергии, поэтому при возрастании солености и уменьшении воды в теле организмы обычно переходят к неактивному состоянию — солевому анабиозу. Это свойственно видам, обитающим в периодически пересыхающих лужах морской воды, лиманах, на литорали (коловратки, бо-коплавы, жгутиковые и др.)

    Соленость верхнего слоя земной коры определяется содержанием в ней ионов калия и натрия, и также, как и соленость водной среды, имеет важное значение для ее обитателей и, в первую очередь, растений, которые имеют к ней соответствующую приспособленность. Этот фактор для растений не случаен, он сопровождает их в течение эволюционного процесса. К почвам с высоким содержанием калия и натрия приурочена так называемая солончаковая растительность (солянка, солодка и др.).

    Верхний слой земной коры — это почва. Кроме солености почвы различают другие ее показатели: кислотность, гидротермический режим, аэрация почвы и т.п. В совокупности с рельефом эти свойства земной поверхности, получившие название эдафические факторы среды, оказывают экологическое воздействие на ее обитателей.

    Эдафические факторы среды

    — свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей.

    Тип почвы определяется ее составом и цветом.

    A — Тундровая почва имеет темную торфянистую поверхность.

    B — Пустынная почва светлая, крупнозерниста и бедна органическим веществом

    Каштановая почва (С) и чернозем (D) — богатые перегноем луговые почвы, типичные для степей Евразии и прерий Северной Америки.

    Красноватый выщелоченный латосол (Е)тропической саванны имеет очень тонкий, но богатый перегноем слой.

    Подзолистые почвы типичны для северных широт, где выпадает большое количество осад ков, а испарение очень мало. Они включают богатый органическими веществами коричневый лесной подзол (F), серо-коричневый подзол (Н) и серо-каменистый подзол (I), на котором произрастают как хвойные, так и лиственные деревья. Все они относительно кислые, и в отличие от них красно-желтый подзол (G) сосновых лесов достаточно сильно выщелочен.

    В зависимости от эдафических факторов можно выделить ряд экологических групп растений.

    По реакции на кислотность почвенного раствора различают:

    • ацидофильные виды, растущие при рН ниже 6,5 (растения торфяных болот, хвощ, сосна, пихта, папоротник);
    • нейтрофильные, предпочитающие почву с нейтральной реакцией (рН 7) (большинство культурных растений);
    • базифильные — растения, которые лучше всего растут на субстрате, имеющем щелочную реакцию (рН более 7) (ель, граб, туя)
    • и индифферентные — могут произрастать на почвах с разным значением рН.

    По отношению к химическому составу почвы растения делятся на

    • олиготрофные, малотребовательные к количеству питательных веществ;
    • мезотрофные, требующие умеренного количества минеральных веществ в почве (травянистые многолетники, ель),
    • мезотрофные, нуждающиеся в большом количестве доступных зольных элементов (дуб, плодовые).

    По отношению к отдельным элементам питания

    • виды, особенно требовательные к высокому содержанию азота в почве, называются — нитрофилами (крапива, растения скотных дворов);
    • требующие много кальция — кальцефилами (бук, лиственница, порезник, хлопчатник, маслина);
    • растения засоленных почв называются галофитами (солянка, сарсазан), излишек солей некоторые из галофитов способны выделять наружу, где эти соли после высыхания образуют твердые пленки или кристаллические скопления

    По отношению к механическому составу

    • растений сыпучих песков — псаммофиты (саксаул, акация песчаная)
    • растений каменистых осыпей, трещин и углублений скал и других подобных местообитаний — литофиты [петрофиты] (можжевельник, дуб скальный)

    Рельеф местности и характер грунта существенно влияют на специфику передвижения животных, на распределение видов, жизнедеятельность которых временно или постоянно связана с почвой. От гидротермического режима почв, их аэрации, механического и химического составов зависят характер корневой системы (глубинная, поверхностная), образ жизни почвенной фауны. Химический состав почвы и разнообразие обитателей влияют на ее плодородие. Наиболее плодородными являются черноземные почвы, богатые перегноем.

    Как абиотический фактор рельеф оказывает влияние на распределение климатических факторов и, таким образом, на формирование соответствующих флоры и фауны. Например, на южных склонах холмов или гор всегда более высокая температура, лучшая освещенность и соответственно меньшая влажность.

    Источник

    Adblock
    detector