На нашем сайте вы найдете полезные советы о том, как повысить плодородие почвы на вашем участке.
Меню
Агрохимические методы исследования почвы
Агрохимический анализ. Обоснование и интерпретация
Агрохимический анализ почв проводят для того, чтобы [2]:
Определить, достаточно ли в почве доступных питательных веществ для растений;
Следить за изменением свойств почвы, которые так или иначе влияют на рост и развитие растений;
Оценить характер и определить особенности взаимодействия почвы с применяемыми удобрениями и поступающими из атмосферы веществами;
Рассчитать количество удобрений, которое необходимо внести в почву.
Что мы делаем при анализе и почему именно это?
Мы определяем основные свойства почвы, которые тем или иным образом могут сказаться на росте и развитии растений. Одним из важнейших показателей, определяемых при агрохимическом анализе, является реакция среды (рН). Почему важно контролировать рН?
В основном наибольшие урожаи сельскохозяйственных растений получают при слабокислой или нейтральной реакции среды, но очень часто почва становится более кислой и это препятствует получению высоких урожаев. [12]
Реакция среды воздействует на способность растений поглощать из почвы питательные элементы. При более низких рН она уменьшается, а иногда даже приводит к потере питательных элементов из корней растений [12];
рН сказывается на миграции и аккумуляции веществ в почве [3], в том числе токсичных [6];
Микробиологическая активность почвы тоже зависит от реакции среды [3];
Помимо этого, рН влияет на катионообменную ёмкость почв [4] – максимальное количество катионов, которое может быть удержано почвой в обменном состоянии при заданных условиях [1] и потенциально доступно растениям.
Поэтому при агрохимическом анализе мы определяем рН водной вытяжки из почвы. Но он позволяет судить только о степени кислотности или щёлочности и не даёт количественного представления о содержании кислот и оснований из-за высокой буферности почв. Однако, например, содержание кислотных компонентов может увеличиваться, а рН оставаться практически неизменным. В связи с этим помимо рН водной вытяжки мы определяем потенциальную кислотность — рН солевой вытяжки [8].
Кроме реакции среды важны так же и сами питательные элементы. Растения больше всего нуждаются в следующих из них:
Азот — один из наиболее распространённых элементов в природе, тем не менее растениям часто не хватает азота, так как растения могут усваивать только определённые формы соединений азота (в основном аммонийную и нитратную формы) [3]. В то же время азот является незаменимым элементом в растении, входя в состав белков, ДНК, многих жизненно важных органических веществ. При недостатке азота нарушается процесс фотосинтеза из-за разрушения хлорофилла, возможно высыхание и отмирание частей растений, поэтому обеспечение азотом — одна из важнейших проблем при выращивании сельскохозяйственных культур. В связи с этим для оценки доступного для растений азота мы определяем содержание аммонийного и нитратного азота в почве.
Фосфор тоже жизненно необходим растениям и также входит в состав многих органических соединений. Кроме того, он участвует в энергетическом обмене клеток. Но подвижные формы фосфора во многих почвах находятся в дефиците [4], что приводит к снижению активности ферментов, контролирующих клеточный метаболизм, и веществ, участвующих в синтезе РНК, белков и делении клеток. Соответственно, при недостатке фосфора рост растений замедляется, что, естественно, не может не сказаться на урожае [10]. Поэтому очень важно определять содержание подвижных форм фосфора в почве.
Калий является важнейшим элементом питания растений, он входит в состав цитоплазмы клетки, в значительной степени определяет её свойства и поэтому влияет практически на все процессы в клетке. Калий участвует в поглощении и транспорте воды, открывании и закрывании устьиц. Также при калийном голодании нарушается структура митохондрий и хлоропластов, что в свою очередь оказывает влияние на фотосинтез и дыхание [10]. Поэтому достаточное содержание калия в почве повышает устойчивость растений к воздействию низких и высоких температур, сопротивляемость растений болезням, а также сокращает сроки созревания растений [12]. Растениям доступны только подвижные формы калия, поэтому именно их мы и определяем.
Органическое вещество почвы является важным показателем её плодородия. Оно состоит из ещё не успевших разложиться органических остатков и уже претерпевших изменения органических веществ, называемых гумусом. Гумус способствует накоплению и удержанию питательных для растений веществ, которые при его разложении переходят в почвенный раствор и могут потребляться растениями [3]. Количество гумуса в почве определяют через количество органического углерода в почве.
Как должно быть в идеале и в каких диапазонах могут колебаться указанные параметры?
Данные показатели могут различаться для разных типов почв, и для разных сельскохозяйственных культур могут быть оптимальными разные диапазоны значений, тем не менее в среднем плодородие почвы можно оценить следующим образом:
Таблица 1. Оценка потенциального плодородия почв по содержанию гумуса и доступных для растений фосфора, калия и азота.
Уровень содержания
Подвижный фосфор Р2O5, млн -1 *
Обменный калий К2O, млн -1 *
Нитратный азот N — NO3, млн -1 **
Аммонийный азот N-NH3+, N-NH4, млн -1 **
Содержание гумуса (С орг*1,724), % от массы почвы***
Очень высокий
Более 250
Более 250
–
–
Более 10
Высокий
250–150
250–170
Более 20
Более 40
6–10
Повышенный
150–100
170–120
–
–
–
Средний
100–50
120–80
15–20
20–40
4–6
Низкий
50–25
80–40
10–15
10–20
2–4
Очень низкий
Менее 25
Менее 7
Менее 10
Менее 10
Менее 2
* — по Г. В. Мотузовой и О.С. Безугловой, 2007 (по методу Кирсанова);
** — по Г. П. Гамзикову, 1981;
*** — по Л. А. Гришиной и Д. С. Орлову, 1978.
Таблица 2. Градация кислотности (щёлочности) почв по величине рН водной и солевой вытяжек [11].
Характеристика почвы
рНН2О
Характеристика почвы
рНKCl
Сильнокислые
3,0–4,5
Сильнокислые
5,6
Слабощелочные
7,0–7,5
Щелочные
7,5–8,0
Сильнощелочные
>8,5
Что делать, если что-то не в норме?
Одним из основных приёмов повышения плодородия почв является внесение удобрений. В таблице 3 представлены некоторые из них.
Таблица 3. Вещества, добавляемые в почву для улучшения её свойств [7].
Навоз, торф, различные растительные компосты, сапропель, зелёное удобрение (сидераты)
При недостатке в почве азота, фосфора и калия применяют комплексные удобрения, содержащие в своём составе сразу несколько питательных элементов. Например, это аммонизированный суперфосфат, аммофос, диаммофос, калийная селитра, нитрофос и нитроаммофос, нитрофоска и нитроаммофоска, карбоаммофос и карбоаммофоска, жидкие комплексные удобрения. Преимущество их заключается в том, что при внесении удобрений в крупных масштабах снижаются затраты на транспортировку смешивание, хранение и внесение удобрений. Из недостатков комплексных удобрений выделяют то, что соотношение элементов питания в них изменяется слабо и при внесении их в почву может получиться так, что одних элементов попадёт в почву больше, чем нужно, тогда как других окажется недостаточно [7].
Существуют также бактериальные удобрения, содержащие специальные бактерии, которые улучшают питание растений. Их применяют только при выращивании бобовых растений и для каждого вида подбирают разные штаммы бактерий [7].
Какое же удобрение лучше?
Таблица 4. Сравнение органических, минеральных и биологических удобрений [7].
Органическое
Минеральное
Биологическое
Содержание питательных элементов
Все необходимые элементы
Некоторые элементы, определяемые типом удобрения
Нет
Форма элементов питания
Недоступна для растений, но при разложении органического вещества постепенно выделяются доступные питательные вещества
Доступная для растений
Не содержит элементов питания, но способствует усвоению растениями питательных веществ
Скорость действия
Медленно (3–4 года)
Быстро
Медленно (3–5 лет)
Наличие микроорганизмов
Да
Нет
Да
Повышение качества почвы
Да
Нет
Да
Специфичность для определённого вида растения
Нет
Да
Да
Внося удобрение надо помнить, что его избыток так же плохо сказывается на растениях, как и недостаток. Необходимо рассчитывать количество вносимого удобрения исходя из свойств почвы и произрастающих сельскохозяйственных культур. Для того, чтобы правильно подобрать удобрение и рассчитать его дозу, нужно обратиться в аккредитованную лабораторию, где специалисты проведут анализ почвы согласно установленным ГОСТам и определят указанные выше параметры (рН, аммонийный и нитратный азот, подвижный фосфор, обменный калий и углерод органического вещества).
Список литературы:
ГОСТ 27593-88. Почвы. Термины и определения // Охрана природы. Почвы / Сборник. Государственные стандарты. М: ИПК Изд-во стандартов, 1998.
Е. П. Дурынина, В. С. Егоров Агрохимический анализ почв, растений, удобрений. М: Изд-во МГУ, 1998г., 113 с
Кауричев И.С., Гречин И.П., Почвоведение. Москва: Колос, 1969, 543 с.
Ковда В.А., Розанов Б.Г. Почвоведение. Часть 1. Почва и почвообразование. М.: Высшая школа, 1988. 400 с.
Мотузова Г.В., Безуглова О.С. Экологический мониторинг почв: учебник/ Г.В.Мотузова, О.С.Безуглова. М.: Академический Проект: Гаудеамус, 2007, 237 с.
Мотузова Г. В., Карпова Е. А., Химическое загрязнение биосферы и его экологические последствия. М: МГУ, 2013, 304 с.
Никляев В. С. Основы технологии сельскохозяйственного производства. Земледелие и растениеводство. М.: Былина, 2000, 555 с.
Орлов Д. С., Садовникова Л. К., Лозановская И. Н., Экология и охрана биосферы при химическом загрязнении. М.: Высш. шк., 2002, 334 с.
Орлов Д.С., Бирюкова О.Н., Розанова М.С. Дополнительные показатели гумусного состояния почв и их генетических горизонтов // Почвоведение. 2004. № 8. С. 918-926)
Полевой В. В. Физиология растений. М: Высшая школа, 1989, 464 с.
Прожорина Т. И, Затулей Е. Д, Химический анализ почв. Часть 2. Издтельско-полиграфический центр ВГУ, 30 с.
Соколова Т. А. Калийное состояние почв, методы его оценки и пути оптимизации. М: МГУ. 1987, 47 с.
Источник
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Home » Агрохимия » Предмет и методы агрохимии
Популярные статьи
Предмет и методы агрохимии
Агрохимия, или агрономическая химия, — наука о взаимодействии растений, почвы и удобрений при возделывании сельскохозяйственных культур, о круговороте химических веществ в земледелии и использовании удобрений с целью увеличения урожая, улучшения его качества и повышения плодородия почвы с учетом биоклиматического потенциала.
В процессе развития агрохимии значение понятия постоянно совершенствовалось в силу задач и формирования новых её функций, что отражает сложную взаимосвязь растений, почвы, климата и агрохимических средств. Главная задача агрохимии заключается в изучении этой взаимосвязи.
Предмет агрохимии
Д.Н. Прянишников называл задачей агрохимии — изучение круговорота веществ в земледелии и выявление способов воздействия на химические процессы, протекающие в почве и растениях, оказывающие влияние на урожай и его качество.
Удобрения создают оптимальный питательный режим, направленно регулируют обмен органических и минеральных соединений, позволяя тем самым реализовать потенциальную продуктивность растений. В свою очередь, удобрения подвергаются воздействию растений, например, труднорастворимые формы растения могут переводить в доступные, а избирательная поглотительная способность по отношению к отдельным элементам, создают физиологическую кислотность или щелочность минеральных удобрений.
Агрохимические средства влияют на химические и физические свойства почвы, на активность и направленность микробиологических процессов, одновременно сами изменяются под влиянием свойств почвы. Обменные реакции, протекающие в почве между катионами солей минеральных удобрений и почвенным поглощающим комплексом могут приводить к негативным или позитивным результатам. Так, вытеснение алюминия из поглощающего комплекса калием при внесении хлорида калия приводит к дополнительному подкислению почвенного раствора, а обменные реакции между кальцием от вносимых удобрений и натрием поглощающего комплекса щелочных почв улучшают их физико-химические свойства, повышают биологическую активность. На этом основана химическая мелиорация солонцовых почв — гипсование.
Д.Н. Прянишников показал взаимосвязь между тремя взаимодействующими факторами: почвой, растением и удобрением в простой схеме, отражающей сущность агрохимии. Задача агрохимии состоит в создать оптимальные условия с помощью удобрений для питания растений. Такой же подход должен быть и в отношении почвы. Удовлетворяя биологические требования растений, возможно реализовать потенциальную продуктивность растений.
К.К. Гедройц отмечал, что урожайность определяется тремя факторами: климатом, почвой и самим растением. Климат трудно поддается изменению, однако возможно смягчить его действие улучшением свойств почвы. Изменяя свойства почвы, земледелец может в определенной степени регулировать воздействие климатических условий на растения. Воздействие удобрений К.К. Гедройц рассматривал опосредованно через изменение свойств почвы.
Схема взаимоотношений между растениями, почвой и удобрениями, как сущность предмета агрохимии (по Д.Н. Прянишникову)
Развитие теоретических положений количественного и качественного формирования продукции культурных растений вызвал необходимость введения биоклиматического потенциала в понятие агрохимии. Разработана и успешно применяется теория получения программированных урожаев, созданы и совершенствуются статические модели плодородия почвы по агрохимическим и агрофизическим показателям с учетом уровня урожая отдельных культур и продуктивности в целом специализированных севооборотов. Ведутся работы по моделированию продукционных процессов для некоторых сельскохозяйственных культур, реализация которых позволит достичь максимально высокой урожайности.
Многочисленные опыты с удобрениями в различных климатических зонах страны позволяют в определенной степени учесть климат, как один из факторов в системе климат — растения.
В государственном стандарте 1983 г. климат был учтен в определении понятия «агрохимия»: «Агрохимия — наука о взаимодействии удобрений, почвы, растений и климата, круговороте веществ в земледелии и рациональном применении удобрений» (Постановление Государственного комитета СССР по стандартам от 13 июля 1983 г. № 3110).
Недооценка климатических особенностей применительно к конкретному земледельческому району способна привести к погрешностям в определении значения минеральных удобрений.
Диалектическая взаимосвязь системы почва — климат — удобрения — растения в современном представлении сущности предмета агрохимии
Задачи агрохимии
На современном этапе развития агрохимия решает задачу изучения свойств различных видов органических и минеральных удобрений и их влияние на:
круговорот и баланс питательных веществ в земледелии;
свойства почвы и воспроизводство плодородия;
питание растений и обмен органических и минеральных веществ при вегетации;
биологическую активность почвы и ее биоразнообразие;
формирование урожая и качества продукции;
агроэкологические функции агрохимии в системе почва — растение;
В последние годы отмечает возрастание значимости экономической и экологической задач агрохимии, оценки эффективности применения удобрений.
Объекты изучения агрохимии
Задача современного агрохимика сводится к определению точных параметров круговорота биогенных элементов с учетом конкретных агроклиматических условий и специфики сельскохозяйственных растений, их сортов при заданных уровнях продуктивности.
Цель агрохимии
Цель агрохимии — создание оптимальных условий питания растений с учетом свойств видов и форм удобрений, особенностей их взаимодействия с почвой, определение эффективных форм, способов, сроков использования удобрений.
Методы агрохимии
Лабораторные методы
Среди методов агрохимии особое значение имеют лабораторные: химические, физико-химические методы анализа растений, почв и удобрений. Создание современных высокоточных приборов для различных методов аналитической химии позволили значительно расширить спектр возможностей в агрохимии.
Среди методов аналитической химии в агрохимии широко используются:
фотометрия,
хроматография,
спектроскопия,
атомно-абсорбционная спектрофотометрия,
рентгенофлуоресценция,
нейтронно-активационный метод,
масс-спектрометрия.
Основные методы агрохимии
Для исследований обмена веществ в растениях используются методы стабильных и радиоактивных изотопов. Высокопроизводительная современная аналитическая техника и компьютеры позволяют обрабатывать большой объем поточных результатов анализов. Портативные средства измерения позволяют проводить экспресс-анализы непосредственно в поле, быстро определять содержание химических веществ в растениях или почве, свойства почвы, например, кислотность, оперативно вносить коррективы нормы внесения удобрений.
В последние десятилетия стала применяться комплексная почвенно-растительная диагностика питания растений и применения удобрений, заключающейся в лабораторном анализе почвы для определения оптимальных норм внесения основного удобрения и последующей корректировкой доз в подкормке в процессе вегетации после анализа растений в поле.
Физиолого-агрохимические методы
Физиолого-агрохимические методы включают вегетационные и лизиметрические методы. При вегетационных методах эксперименты проводятся в специальных сосудах, размещаемых в павильонах-домиках или теплицах. В лизиметрических методах исследования выполняют в больших сосудах, например, объемом от 1 м 3 , с изолированными по вертикали стенками для создания условий, близких к естественным.
Лизиметрический метод нашел широкое применение в научно-исследовательских учреждениях мира. С его помощью исследуются процессы миграции, трансформации питательных веществ, изменения свойств почвы в динамике, проводятся балансовые эксперименты, а также обмена веществ в растениях и формирования качества продукции.
На практике вегетационный и лизиметрический методы часто используются в сочетании друг с другом. К физиолого-агрохимическим методам относятся эксперименты в фитотронах, в которых контролируются и регулируются все показатели продукционного процесса растений: водообеспечение, корневое питание, интенсивность и качество света, температурный режим, фотосинтез, газовый обмен и т.д. Эти исследования проводятся при полной автоматизации процессов с регистрацией параметров роста и развития растений. Данные методы являются наиболее точными и позволяют вскрыть процесс обмена веществ с участием всех факторов жизни растений, определить потенциальную продуктивность растений и способы ее реализации для конкретного генотипа, создать динамическую модель продукционного процесса. Фитотроны используются и в селекционно-генетических исследованиях. Фитотроны применяются, как правило, в крупных научно-исследовательских учреждениях и высших учебных заведениях.
Полевые опыты
Полевой опыт — это эксперимент, проводимый в полевых условиях для определения эффективности удобрений на урожай сельскохозяйственных культур, его качество и на плодородие почвы.
Мелкоделяночные опыты выполняются для глубоких, чаще поисковых, экспериментов. Они, как правило, сочетают вегетационные и лизиметрические опыты, но в условиях, идентичных или близких к естественным. В мелкоделяночных опытах могут использоваться методы меченых атомов, создаются и проверяются модели почв высокого плодородия, испытываются виды и формы удобрений и их сочетания, в том числе с другими химическими средствами или микробиологическими препаратами. Мелкоделяночные опыты проводятся на делянках площадью до 10 м 2 .
В краткосрочных полевых опытах действие удобрений на урожайность и качество продукции изучается в течение не менее трех лет в определенных почвенных условиях. Данные Географической сети опытов в России широко используются для определения потребности в разных видах и формах минеральных удобрений в зональном аспекте, а также для определения потребностей страны в минеральных удобрениях.
Мелкоделяночные и краткосрочные полевые опыты используются также для совершенствования методов комплексной почвенной и растительной диагностики питания растений и применения удобрений.
Стационарный опыт — это полевой опыт с систематическим внесением удобрений, который проводится на одном участке, в севообороте, в звене севооборота или при бессменной культуре.
Длительный полевой опыт — стационарный опыт, проводимый в течение нескольких ротаций севооборота. Длительные стационарные опыты позволяют получить информацию по оценке эффективности различных систем удобрений в севооборотах; уровня насыщенности севооборотов удобрениями; оптимального распределения органических и минеральных удобрений по культурам севооборота и форм удобрений. Эти опыты являются базой для разработки статических моделей плодородия почв, изучения закономерностей изменения плодородия и качества продукции при длительном использовании удобрений, проведения балансовых исследований, миграции питательных элементов по профилю почвы и накопления балластных токсических элементов, в том числе тяжелых металлов и агрохимических средств, то есть для решения экологических проблем агрохимии. Опыты ставятся в условиях приближенных к производственным.
Производственные опыты с удобрениями проводятся в производственных условиях для проверки рекомендованных доз внесения и экономической оценки удобрений. Они носят краткий характер и предназначены для испытания и доработки научных рекомендаций в производственных и конкретных почвенно-климатических условиях. Результаты этих опытов имеют большое значение при внедрении и обосновании эффективности комплекса приемов химизации земледелия.
Связь агрохимии с другими науками
Содержание агрохимии как науки можно представить тремя разделами:
химия растений,
химия почвы,
химия удобрений.
Химия растений является разделом физиологии растений, химия почвы — разделом почвоведения, и при этом они является неотъемлемой частью агрохимии. Химия удобрений полностью входит в состав агрохимии. Научные исследования по этому разделу проводятся сочетании с химией почв, физиологией растений и земледелием.
Агрохимию нельзя рассматривать отдельно от почвоведения, физиологии растений, земледелия, микробиологии почв.
Агрохимия выделилась в самостоятельную дисциплину вследствие теоретической и практической целесообразности.
Круг агрохимических исследований очень широк. Он включает изучение превращения питательных веществ в почве и метаболизма в растении, оптимизации питания растений, воспроизводства плодородия почв, применения удобрений на планируемый урожай и регулирования качества продукции.
Связь агрохимии с другими фундаментальными и прикладными науками
Связь с фундаментальными науками
Связь агрохимии с почвоведением заключается в том, что эффективность удобрений в определяется химическими, физическими, физико-химическими свойствами почвы, ее биологической активностью, которые в свою очередь связаны с содержанием и подвижностью питательных веществ в почве. Взаимосвязь свойств почв и удобрений проявляется в процессах мобилизации, иммобилизации, трансформации, миграции питательных веществ, на что оказывают влияние растения агроценоза.
Эффективность и окупаемость удобрений зависят от окультуренности почв, содержания гумуса, поглотительной способности, буферности и реакции среды. Поэтому задачей агрохимии является изучение свойств и плодородия почвы, баланса питательных веществ в агроценозе, способов регулирования и воспроизводства плодородия почв.
Связь агрохимии с почвоведением заключается в том, что эффективность удобрений в определяется химическими, физическими, физико-химическими свойствами почвы, ее биологической активностью, которые в свою очередь связаны с содержанием и подвижностью питательных веществ в почве. Взаимосвязь свойств почв и удобрений проявляется в процессах мобилизации, иммобилизации, трансформации, миграции питательных веществ, на что оказывают влияние растения агроценоза.
Связь агрохимии с фундаментальными науками
Эффективность и окупаемость удобрений зависят от окультуренности почв, содержания гумуса, поглотительной способности, буферности и реакции среды. Поэтому задачей агрохимии является изучение свойств и плодородия почвы, баланса питательных веществ в агроценозе, способов регулирования и воспроизводства плодородия почв.
Связь агрохимии с физиологией растений проявляется во влиянии питательных веществу на все жизненные процессы растения, что обеспечивает формирование показателей качества продукции. Такие агрохимические приемы, как корневые и некорневые подкормки, позволяют регулировать питание растений, направленно оптимизируя условия активного роста и развития, формирования большего урожая лучшего качества. На знании закономерностей питания растений в процессе вегетации разработаны методы растительной диагностики обеспеченности культуры питательными веществами.
Многие разделы агрохимии связаны с биологией и микробиологией почвы. Так, состояние и регулирование азотного режима в агроценозах — задача агрохимии, успешное решение которой возможно при правильной оценке биологических источников азота в системе почва — растения: симбиотической и ассоциативной азотфиксации или свободно живущими микроорганизмами. Активность этих процессов определяется правильной системой удобрения. То же относится к процессам гумификации и минерализации гумуса, фосфорного питания растений.
Возрастающая роль экологических аспектов земледелия связывает агрохимию с экологией. Например, техногенное загрязнение агроценозов тяжелыми металлами, радионуклидами и агрохимикатами вызывает необходимость разработки комплекса агрохимических средств и приемов, направленных на снижение поступления загрязняющих веществ в растения и трофические цепи.
Особенно необходима экологическая оценка при применении нетрадиционных видов удобрений — отходов промышленности, коммунального хозяйства, при использовании местных органических и минеральных сырьевых ресурсов в качестве удобрений.
Экологические функции агрохимии:
поддержание биологического круговорота веществ,
сохранение биоразнообразия и улучшение микробоценоза почвы,
иммобилизация токсических веществ,
сохранение биологической активности почвы,
активизация азотфиксирующей способности почвы,
предотвращение эвтрофирования природных вод.
Создание оптимальных культурных агроландшафтов в разных природных зонах возможно с помощью агрохимических средств. Применяя удобрения в комплексе агроландшафтного земледелия, человек создает культурный агроландшафт с оптимальным геохимическим режимом, который является наилучшим в гигиеническом отношении и отвечает условиям жизни человека.
Экологическая функция в агроландшафтных системах земледелия характеризует связь агрохимии с геохимией. В.А. Ковда (1984) отмечал, что поведение удобрений в ландшафте следует изучать с привлечением биогеохимических методов — агрогеохимия. Он считал, что изучение трансформации удобрений во всех компонентах ландшафта позволяет получать наибольшую отдачу от удобрений с наименьшими отрицательными экологическими последствиями.
Связь агрохимии с географией проявляется в географических закономерностях действия удобрений, которые в свою очередь определяются почвенными, биологическими и климатическими условиями зон.
Связь агрохимии с метеорологией определяется зависимостью эффективности удобрений и агрохимических средств от погодно-климатических условий.