Суточный и годовой ход температуры почвы и водоемов.
Температура на поверхности почвы имеет отчетливо выраженный суточный ход. Кривая суточного хода на графике время – температура имеет вид синусоиды (рис.6.3). Минимум ее наблюдается примерно через полчаса после восхода солнца, когда радиационный баланс становится положительным и отдача тепла из верхнего слоя почвы эффективным излучением перекрывается потоком суммарной радиации. Максимум температуры почвы наступает от 13 до 14 часов, при максимуме радиационного баланса. После этого происходит падение температуры до минимума. Понижение температуры в послеполуденное время при положительном радиационном балансе связано с возросшими расходами тепла не только за счет эффективного изучения, но и путем теплопроводности и увеличившегося испарения воды. Происходит отдача тепла и вглубь почвы. Эти потери оказываются большими, чем радиационный приток, и температура после полудня начинает понижаться до утреннего минимума. Следует отметить, что утренние минимумы температуры на поверхности почвы бывают ниже, чем в воздухе, что и объясняет заморозки на почве в переходные сезоны в умеренных широтах.
Кривая суточного хода температуры в отдельные сутки может существенно отклоняться от правильной синусоиды в зависимости от изменений облачности, осадков, или адвективных изменений температуры воздуха.
Разница между минимальной и максимальной суточными температурами называется суточной амплитудой температуры.
Рис. 6.2. Средний суточный ход температуры на поверхности почвы (П) и в воздухе на высоте 2 м (В).
В Московской области суточные амплитуды летом составляют 10-20 0 С, зимние 5-10°С. Суточные амплитуды температуры почвы зависят от ряда факторов:
· облачности (в безоблачную погоду наблюдается большой дневной приход солнечной радиации и большое эффективное излучение ночью);
· экспозиции склонов (склоны южной экспозиции, обращенные к солнцу, получают больше радиации, чем склоны северной экспозиции, а ночное излучение не зависит от экспозиции).
· характера почвенного покрова (растительный покров, в общем, охлаждает почву, препятствуя ее радиационному нагреву, и снижает суточные амплитуды). Снежный покров предохраняет почву зимой от чрезмерной потери тепла, суточная амплитуда почвы под снегом также уменьшается. В умеренных широтах при высоте снежного покрова в 40-50 см температура поверхности почвы под ним на 6-7° выше, чем температура обнаженной почвы. Совместное действие растительного покрова летом и снежного покрова зимой уменьшает годовую амплитуду температуры на поверхности почвы примерно на 10° по сравнению с амплитудой температуры обнаженной почвы.
Годовая амплитуда температуры почвы, т.е. разность многолетних средних температур самого теплого и самого холодного месяца, в значительной степени зависит от географической широты. В северном полушарии на широте 10° она составляет около 3°С, на широте 30° — около 10°С, на широте 50° — в среднем около 25°С.
Суточные и годовые колебания температуры наблюдаются и по профилю почвы (рис. 6.4, 6.5). Наблюдениями установлено, что период колебаний температуры не изменяется с глубиной, происходит лишь уменьшение амплитуды.
Рис. 6.4. Годовой ход температуры в почве на разных глубинах от 3 до 753 см .
Экспериментальные данные свидетельствуют, что изменения температуры с глубиной в почвах достаточно близко описываются законами теории молекулярной теплопроводности, предложенной Фурье и получившими название законов Фурье.
Рис. 6.5. Суточный ход температуры в почве на разных глубинах от 1 до 80 см.
Первый закон Фурье — период колебаний температуры не изменяется с глубиной. Это значит, что на любой глубине (до слоя постоянных температур) в почвах сохраняется суточный и годовой ход температуры.
Второй закон Фурье — возрастание глубины в арифметической прогрессии приводит к уменьшению амплитуды в прогрессии геометрической.
Убывание амплитуды с глубиной приводит к тому, что на некоторой глубине (меньшей для суточных и большей для годовых амплитуд) колебания температуры практически прекращаются. Это слой суточной или годовой постоянной температуры. В зависимости от конкретных условий (типа почвы, ее влажности) слой постоянной суточной температуры располагается на глубине 70-100 см. Слой постоянной годовой температуры располагается на глубинах около 30 м в полярных широтах, 15-20 м — в средних широтах и около 10 м — в тропиках.
Третий закон Фурье гласит, что сроки наступления максимальных и минимальных температур, как в суточном, так и в годовом ходе запаздывают с глубиной пропорционально увеличению глубины.
Суточные экстремумы запаздывают на 2.5-3.5 часа, а годовые — на 20-30 дней. В соответствии с этим законом распределение температуры в почве по вертикали в разные сезоны меняется. Летом температура от поверхности почвы в глубину падает (режим инсоляции), зимой растет (режим излучения), весной она сначала растет, потом падает (промежуточный весенний), осенью, наоборот, сначала убывает, потом растет (промежуточный осенний).
Согласно четвертому закону Фурье глубины слоев постоянной суточной (1 день) и годовой (365 дней) температур соотносятся между собой как корни квадратные из периодов колебаний, т.е. как 1:19.
В водоемах нагревание и охлаждение распространяется на более толстый слой, чем в почвах, но амплитуды колебаний температуры (и суточные, и годовые) значительно меньше. Суточные амплитуды температуры составляют 0,1° — 0,2° в умеренных широтах и около 0,5° в тропиках. Годовые амплитуды колебаний температуры на поверхности океана значительно больше суточных, но меньше, чем на поверхности почв. В тропиках она составляет 2-3 0 , под 40° с.ш. — 10°, а под 40° ю.ш. — 5°. Суточные колебания температуры обнаруживаются до глубин 15-20 м, годовые — до 150-400 м.
Источник
Суточный и годовой ход температуры поверхности почвы
Изменение температуры поверхности почвы в течение суток называется суточным ходом. Суточный ход поверхности почвы в среднем за много дней представляет собой периодические колебания с одним максимумом и одним минимумом.
Минимум наблюдается перед восходом солнца, когда радиационный баланс отрицателен, а нерадиационный обмен теплом между поверхностью и прилегающими к ней слоями почвы и воздуха незначителен.
С восходом солнца температура поверхности почвы растет и достигает максимума около 13 часов. Затем начинается ее понижение, хотя радиационный баланс еще остается положительным. Объясняется это тем, что после 13 часов возрастает отдача тепла поверхностью почвы в воздух путем турбулентности и за счет испарения.
Разность между максимальной и минимальной температурой почвы за сутки называется амплитудой суточного хода. На нее влияет ряд факторов:
1.Время года. Летом амплитуда наибольшая, а зимой наименьшая;
2.Широта места. Поскольку амплитуда связана с высотой солнца, то она уменьшается с увеличением широты места;
3. Облачность. В пасмурную погоду амплитуда меньше;
4. Теплоемкость и теплопроводность почвы. Амплитуда находится в обратной зависимости от теплоемкости почвы. Например, гранитная скала обладает хорошей теплопроводностью и в ней нагревание хорошо передается вглубь. В результате амплитуда суточных колебаний поверхности гранита невелика. Песчаная почва обладает меньшей теплопроводностью, чем гранит, поэтому амплитуда хода температуры песчаной поверхности примерно в 1,5 раза больше, чем гранитной;
5. Цвет почвы. Амплитуда темных почв значительно больше, чем светлых, так как способность поглощения и излучения у темных почв больше;
6. Растительный и снежный покров. Растительный покров уменьшает амплитуду, так как он препятствует нагреванию почвы солнечными лучами. Не очень большая амплитуда и при снежном покрове, так как из-за большого альбедо поверхность снега нагревается мало;
7. Экспозиция склонов. Южные склоны холмов нагреваются сильнее, чем северные, а западных больше, чем восточных, отсюда и амплитуда южных и западных поверхностей холмов значительнее.
Годовой ход температуры поверхности почвы
Годовой ход, как и суточный, связан с приходом и расходом тепла и определяется главным образом радиационными факторами. Удобнее всего проследить за данным ходом по среднемесячным значениям температуры почвы.
В северном полушарии максимальные среднемесячные температуры поверхности почвы наблюдаются в июле-августе, а минимальные – в январе-феврале.
Разность между наибольшей и наименьшей среднемесячными температурами за год называется амплитудой годового хода температуры почвы. Она в наибольшей степени зависит от широты места: в полярных широтах амплитуда наибольшая.
Суточные и годовые колебания температуры поверхности почвы постепенно распространяются в более глубокие ее слои. Слой почвы или воды, температура которого испытывает суточные и годовые колебания, называется активным.
Распространение температурных колебаний в глубь почвы описывается тремя законами Фурье:
Первый из них гласит, что период колебаний с глубиной не изменяется;
Второй говорит о том, что амплитуда колебаний температуры почвы с глубиной уменьшается в геометрической прогрессии;
Третий закон Фурье устанавливает, что максимальные и минимальные температуры на глубинах наступают позднее, чем на поверхности почвы, причем запаздывание прямо пропорционально глубине.
Слой почвы, в котором температура остается неизменной в течение суток называется слоем постоянной суточной температуры (ниже 70 — 100 см). Слой почвы, в котором температура почвы остается неизменной в течение года, называется слоем постоянной годовой температуры. Этот слой начинается с глубины 15-30 м.
В высоких и умеренных широтах встречаются обширные области, где слои почвы остаются мерзлыми в течение многих лет, не оттаивая летом. Эти слои называются вечной мерзлотой.
Вечная мерзлота может залегать как непрерывным слоем, так и в виде отдельных слоев, перемежаясь талой почвой. Мощность слоя вечной мерзлоты колеблется от 1-2 м до нескольких сотен м. Например, в Якутии мощность вечной мерзлоты составляет 145 м, в Забайкалье – около 70 м.
Нагревание и охлаждение водоемов
Поверхностный слой воды, как и почвы, хорошо поглощает инфракрасную радиацию: условия ее поглощения и отражения водой и почвой отличаются мало. Другое дело – коротковолновая радиация.
Вода, в отличие от почвы, представляет для нее прозрачное тело. Поэтому радиационное нагревание воды происходит в ее толще.
Существенные различия теплового режима воды и почвы вызываются следующими причинами:
Теплоемкость воды в 3-4 раза больше теплопроводности почвы. При одинаковом приходе или расходе тепла температура воды изменяется меньше;
Частицы воды обладают большей подвижностью, поэтому в водоемах передача тепла внутрь происходит не путем молекулярной теплопроводности, а за счет турбулентности. Охлаждение воды ночью и в холодное время года происходит быстрее, чем нагревание ее днем и летом, и амплитуды суточных колебаний температуры воды, также как и годовые, малы.
Глубина проникновения годовых колебаний в водоемы составляет 200 — 400 м.
Источник
Амплитуда суточного хода температуры поверхности почвы темных почв меньше чем светлых
ТЕМПЕРАТУРНЫЙ РЕЖИМ ПОЧВЫ
Лучистая энергия в деятельном слое преобразуется в тепловую. При положительном радиационном балансе (днем, летом) часть этого тепла затрачивается на нагревание деятельного слоя, часть — на нагревание приземного воздуха, растений, а часть — на испарение воды с почвы и растений. Когда радиационный баланс отрицательный (ночью, зимой), затраты тепла, связанные с эффективным излучением деятельной поверхности, компенсируются приходом тепла из деятельного слоя, от воздуха, часть тепла выделяется при конденсации (сублимации) водяного пара на деятельной поверхности. Этот приход и расход энергии на деятельной поверхности выражаются уравнением теплового баланса:
где В — радиационный баланс деятельной поверхности; А — поток тепла между деятельной поверхностью и нижележащими слоями; Р — поток тепла между поверхностью и приземным слоем воздуха; LЕ — поток тепла, связанный с фазовыми преобразованиями воды (испарение — конденсация).
Другие составляющие теплового баланса земной поверхности (потоки тепла от энергии ветра, приливов, от выпадающих осадков, расход энергии на фотосинтез и др.) значительно меньше указанных ранее членов баланса, поэтому их можно не принимать во внимание.
Смысл уравнения заключается в уравновешивании радиационного баланса земной поверхности нерадиационной передачей тепла.
Суточный и годовой ход температуры поверхности почвы
Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Когда передача тепла направлена вниз (+А), то значительная часть тепла, приходящая к поверхности сверху, остается в деятельном слое. Температура этого слоя, а следовательно, и деятельной поверхности при этом возрастают. Напротив, при передаче тепла через земную поверхность снизу вверх (-А) тепло в атмосферу уходит прежде всего из деятельного слоя, вследствие чего температура поверхности понижается.
Дневное нагревание и ночное охлаждение поверхности почвы вызывают суточные колебания ее температуры. Суточный ход температуры имеет обычно по одному максимуму и минимуму. Минимум температуры поверхности почвы при ясной погоде наблюдается перед восходом Солнца, когда радиационный баланс еще отрицателен, а обмен теплом между воздухом и почвой незначителен. С восходом Солнца, по мере увеличения радиационного баланса, температура поверхности почвы возрастает. Максимум температуры наблюдается около 13 ч, затем температура начинает понижаться.
В отдельные дни указанный суточный ход температуры почвы нарушается под влиянием облачности, осадков и других факторов. При этом максимум и минимум могут смещаться на другое время.
Разность между максимумом и минимумом в суточном или годовом ходе называется амплитудой хода температуры.
На амплитуду суточного хода температуры поверхности почвы влияют следующие факторы:
время года : летом амплитуда наибольшая, зимой — наименьшая;
географическая широта : амплитуда связана с полуденной высотой Солнца, которая возрастает в направлении от полюса к экватору, поэтому в полярных районах амплитуда незначительна, а в тропических пустынях, где к тому же велико эффективное излучение, она достигает 50. 60 0С;
рельеф местности : по сравнению с равниной южные склоны нагреваются сильнее, северные — слабее, а западные — несколько сильнее восточных, соответственно изменяется и амплитуда;
растительный и снежный покров : амплитуда суточного хода под этими покровами меньше, чем при их отсутствии, так как они уменьшают нагрев и охлаждение поверхности почвы;
цвет почвы : амплитуда суточного хода температуры поверхности темных почв больше, чем светлых, поскольку поглощение и излучение радиации у первых больше, чем у вторых;
состояние поверхности : рыхлые почвы имеют большую амплитуду, чем плотные; в плотных почвах поглощенное тепло распространяется вглубь, а в рыхлых остается в верхнем слое, поэтому последние больше нагреваются;
влажность почвы : на поверхности влажных почв амплитуда меньше, чем на поверхности сухих; во влажных почвах поглощенное тепло, как и в плотных почвах, распространяется вглубь, а часть тепла затрачивается на испарение, вследствие этого они меньше нагреваются, чем сухие;
облачность : в пасмурную погоду амплитуда значительно меньше, чем в ясную, так как облачность уменьшает дневной прогрев и ночное охлаждение деятельной поверхности.
Годовой ход температуры поверхности почвы определяется различным приходом солнечной радиации в течение года.
Наименьшие температуры на поверхности почвы обычно наблюдаются в январе — феврале, наибольшие — в июле или августе.
На амплитуду годового хода температуры поверхности почвы влияют те же факторы, что и на амплитуду суточного хода, за исключением широты места. Амплитуда годового хода в отличие от суточного возрастает с увеличением широты.
Теплофизические характеристики почвы
Между поверхностью почвы и ее нижележащими слоями происходит непрерывный обмен теплом. Передача тепла в почву осуществляется главным образом за счет молекулярной теплопроводности.
Нагревание и охлаждение почвы в основном зависят от ее теплофизических характеристик: теплоемкости и теплопроводности.
Теплоемкость — количество тепла, необходимое для повышения температуры почвы на 1 °С. Различают удельную и объемную теплоемкость.
Удельной теплоемкостью (С уд ) называют количество тепла, необходимое для нагревания 1 кг почвы на 1 °С.
Объемной теплоемкостью (С об ) называют количество тепла, необходимое для нагревания 1 м3 почвы на 1° С.
Способность почвы передавать тепло от слоя к слою называют теплопроводностью .
Мерой теплопроводности почвы служит коэффициент теплопроводности , который численно равен количеству тепла, Дж, проходящего за 1 с через основание столба почвы сечением 1 м² и высотой 1 м.
Коэффициент теплопроводности почвы зависит главным образом от соотношения содержания в ней воздуха и воды .
Теплофизические характеристики почвы также зависят от её плотности . С уменьшением плотности теплоемкость и теплопроводность сухих почв снижаются. Поэтому разрыхленные почвы в пахотном слое днем теплее, чем плотные, а ночью холоднее. Кроме того, разрыхленная почва имеет большую удельную поверхность, чем плотная, и поэтому днем поглощает больше радиации, а ночью интенсивнее излучает тепло.
Измерение температуры и глубины промерзания почвы
Для измерения температуры почвы применяют жидкостные (ртутные, спиртовые, толуоловые), термоэлектрические, электротермометры сопротивления и деформационные термометры.
Срочный термометр ТМ-3, ртутный, используют для измерения температуры поверхности почвы в данный момент (срок).
Максимальный термометр ТМ-1, ртутный, служит для измерения наивысшей температуры поверхности за период между сроками наблюдений.
Максимальный термометр отличается от срочного тем, что в канал капилляра непосредственно около резервуара входит тонкий штифтик, впаянный в дно резервуара. В результате этого в месте сужения происходит разрыв ртути, и таким образом фиксируется максимальное значение температуры за данный промежуток времени.
Минимальный термометр ТМ-2, спиртовой, применяют для измерения самой низкой температуры поверхности почвы за период между сроками наблюдений. Особенность устройства этого термометра заключается в том, что внутрь капилляра закладывается маленький из темного стекла штифтик. При понижении температуры поверхностная пленка мениска движется в сторону резервуара и перемещает за собой штифтик. При повышении температуры спирт, расширяясь, свободно обтекает штифтик. Последний остается на месте, указывая удаленным от резервуара концом минимальную температуру между сроками наблюдений.
Коленчатые термометры (Савинова) ТМ-5, ртутные, предназначены для измерения температуры почвы в теплый период на глубинах 5, 10, 15 и 20 см.
Термометр-щуп АМ-6, толуоловый, используют для походных измерений температуры почвы на глубинах 3. 40 см.
Транзисторный электротермометр ТЭТ-2 применяют для измерения температуры пахотного слоя в теплый период. Им можно измерять и температуру в буртах корнеплодов, картофеля, в зерновой массе в засеках.
Трость агронома ПИТТ-1 предназначена для измерения температуры пахотного слоя и замера глубины вспашки. Принцип его действия основан на измерении омического сопротивления в зависимости от температуры.
Вытяжные термометры ТПВ-50, ртутные, предназначены для измерений температуры почвы на глубинах 20. 320 см в течение года. Их можно также использовать в хозяйствах для измерения температуры в буртах, силосных ямах и т. п.
В последнее время получили развитие методы бесконтактного определения температуры поверхности почвы со спутников, самолетов и вертолетов, позволяющие получать осредненные значения температуры для значительных участков земной поверхности.
Мерзлотомер АМ-21 применяют для измерения глубины промерзания почвы. Этот прибор состоит из эбонитовой трубки, на верхней части которой нанесены деления в сантиметрах для определения высоты снежного покрова. В эту трубку помещают резиновую трубку с делениями через 1 см, заполненную дистиллированной водой.
Температуру по Международной практической шкале измеряют в градусах Цельсия (°С). Градус по этой шкале составляет 1/100 интервала между точками таяния льда (0 °С) и кипения воды (100 °С).
Значение температуры почвы для растений
Одним из важнейших факторов жизни растения является температура почвы. Прорастание семян, развитие корневой системы, жизнедеятельность почвенной микрофлоры, усвоение корнями продуктов минерального питания и др. в большой степени зависят от температуры почвы. С повышением температуры почвы все эти процессы активизируются. Значительное понижение температуры почвы приводит к гибели посевов озимых зерновых культур, многолетних трав и плодовых деревьев.
Семена большинства сельскохозяйственных культур в средней полосе прорастают при температуре 3. 5 °С, а такие, как рис, хлопчатник и др., требуют значительно более высоких температур — 13. 15 °С.
С повышением температуры почвы до оптимальной скорость прорастания семян возрастает, что обусловливает сокращение продолжительности периода от посева до появления всходов.
Температурный режим почвы непосредственно влияет на скорость роста корневой системы. При пониженных и повышенных температурах показатели роста ухудшаются.
После появления всходов температура почвы не теряет своего значения для растений. Они лучше растут и развиваются, если их корни находятся в среде с несколько пониженной (на 5. 10 °С) температурой по сравнению с надземными органами.
Температура почвы оказывает большое влияние на жизнедеятельность микроорганизмов и, следовательно, на обеспеченность растений элементами минерального питания, скорость разложения органического вещества, синтез гуминовых веществ и т. д.
Температурный режим определяет накопление подвижных питательных веществ в почве. Воздействуя на скорость движения воды и растворимых солей, температура влияет на темпы поступления питательных веществ в растения из почвы и внесенных удобрений. При невысоких температурах (8. 10 °С) снижается, например, поступление в корни и передвижение из корней в надземные органы азота, ослабляется его расход на образование органических азотных соединений. При более низких температурах (5. 6 °С и ниже) поглощение корнями азота и фосфора резко уменьшается. Снижается при этом и поглощение калия.
Тесно связаны с температурным режимом почвы также распространение и вредоносность болезней и вредителей сельскохозяйственных растений. У ряда теплолюбивых культур (кукуруза, хлопчатник) болезни проростков и повреждение семян плесенью проявляются при низких температурах (в холодные вёсны), когда термические условия неблагоприятны для растений.
Вредители растений, личинки которых находятся в почве, в зависимости от температуры могут принести больший или меньший вред.
Источник