Меню

Азотфиксирующие бактерии как удобрение

Виды бактериальных удобрений

В настоящее время известны следующие бактериальные удобрения:

· препараты на основе симбиотических азотфиксирующих бактерий (нитрагин, ризоторфин)

· препараты на основе несимбиотических азотфиксирующих бактерий (флавобактерин, ризоэнтерин, агрофил, ризоагрин, азотобактерин, ризобактерин, экстрасол и др.)

· биологически активный грунт АМБ

Нитрагин и ризоторфин производятся на основе активных жизнеспособных бактерий из рода Rhizobium. Они усваивают азот атмосферы и переводят его и связанную форму, которая доступна для питания растений. Растения снабжают бактерии энергией, которая необходима для фиксации азота. Таким образом, возникает симбиоз бактерий и бобовых культур. Это обеспечивает благоприятные условия азотного питания и повышение урожайности. Фиксация атмосферного азота возможна только в клубеньках, которые образуются на корнях растений.

Выпускается два вида нитрагина – почвенный и сухой.

Почвенный нитрагин впервые был получен в 1911 году на бактериально-агрономической станции в Москве. В настоящее время его производство ограничено из-за сложной и трудоемкой технологии.

Более перспективен сухой нитрагин. Это высушенная биомасса жизнеспособных бактерий в смеси с наполнителем (тиомочевина и меласса).

При использовании нитрагина повышается урожайность бобовых растений – на 15-20%, в растениях увеличивается содержание белка – на 3-5%.

В 1973-1977 г.г. была создана технология торфяного препарата клубеньковых бактерий – ризоторфина. При этом торф сушат, размалывают в порошок, нейтрализуют мелом, стерилизуют облучением гамма-лучами, увлажняют до 30-40% и расфасовывают в полиэтиленовые пакеты. Затем его облучают и заражают клубеньковыми бактериями с помощью шприца. Ризоторфином обрабатывают семена бобовых культур (гороха, люпина, сои, люцерны, клевера и др. при посеве).

Флавобактерин и ризоэнтерин усиливают поглотительную способность корней, что улучшает минеральный и водный обмен растений, стимулирует рост растений, являются антагонистами микроорганизмов-фитопатогенов. Повышают в продукции содержание сырого белка – на 1,5-2%, аскорбионовой кислоты – на 15-20%.

Азотобактерин – бактериальное удобрение, содержащее свободно-живущий почвенный микроорганизм азотобактер – Azotobacter chroococcum. Азотобактер способен усваивать до 10-15 кг атмосферного азота в год на 1 га пахотного слоя земли. Большое количество белкового азота появляется в почве при отмирании бактерий.

Эти бактерии выделяют биологически активные вещества (никотиновую и пантотеновую кислоты, пиридоксин, биотин, гетероауксин, гиббереллин и др.), которые стимулируют рост растений; фунгицидные вещества, которые угнетают развитие некоторых нежелательных микроскопических грибов в ризосфере растения.

Азотобактер способствует поступлению в растения соединений фосфора; стимулирует развитие почвенной микрофлоры, которая необходима для корневого питания; он использует корневые выделения, продукты распада растительных остатков и соединений образующихся в результате минерализации перегноя в качестве дополнительного источника углерода и энергии.

Выпускается несколько видов азотобактерина: сухой, почвенный и торфяной.

Сухой азотобактерин – это активная культура высушенных клеток азотобактера с наполнителем. В 1 г препарата содержится не менее 0,5 млрд. жизнеспособных клеток.

Почвенный и торфяной азотобактерин представляют собой активную культуру азотобактера, размноженную на твердой питательной среде. В 1 г содержится не менее 50 млн. жизнеспособных клеток.

Азотобактерин применяют для обработки семян, рассады, компостов. При этом урожайность увеличивается на 10-15%.

Ризобактерин – создан на основе штамма Klebsiella planticola S. Он обладает высокой азотфиксирующей активностью, продуцирует β-индолилуксусную кислоту и подавляет развитие корневых фитопатогенов Ризобактерин повышает урожайность зерновых культур в среднем на 23%.

Экстрасол – содержит индивидуальные штаммы или несколько видов ризосферных азотофиксирующих бактерий и их метаболиты, которые предназначены для данного вида или сорта растений, что определяется экспериментальным путем. Представляет собой сухую или увлажненную массу или бактериальную суспензию. В 1 г содержится не менее 100 млн. бактериальных клеток.

Читайте также:  Кто занимается выращивание клубники

Экстрасол улучшает поступление элементов питания в растения, увеличивает энергию прорастания семян, ускоряет развитие растений, снижает поражаемость растений фитопатогенными микроорганизмами.

Несимбиотическую азотфиксацию можно усилить внесением в почву ассоциативных азотфиксирующих бактерий и микоризных грибов; цианобактерий и водного папоротника.

Фосфоробактерин – порошок светло-серого или желтоватого цвета, содержит споры капустной палочки Bacillus megaterium var. phosphaticum.

Эти бактерии превращают сложные фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды и т.д.) и трудноусвояемые минеральные фосфаты в доступную для растений форму; вырабатывают биологически активные вещества (тиамин, пиридоксин, биотин, пантотеновую и никотиновую кислоты и др.), стимулирующие рост растения.

Фосфоробактерин эффективен на богатых органикой почвах и благоприятно действует на корневую систему, его рекомендуют для улучшения роста кустарников и древесных растений.

Биологически активный грунт АМБ (автохронная микрофлора «Б») используется при создании грунта в теплицах и парниках для выращивания овощных культур и рассады, а также для активации биохимических процессов северных почв (автохронная микрофлора «Б»). В АМБ входят бактерии разлагающие белки и белково-подобные соединения, фосфорсодержащие органические соединения, целлюлозолитические, азотфиксирующие, нитрифицирующие бактерии и др.

Технология удобрения АМБ сложная и громоздкая. При этом в кислый торф вносят известковый материал, минеральные добавки и маточную культуру АМБ из расчета 1-2 кг/т, затем идет созревание грунта на местах его использования. Расход АМБ – до 500 кг/т.

Грибы-микоризообразователи улучшают водообеспечение и минеральное питание растений, продуцируют биологически активные вещества (витамины, фитогормоны, антибиотики), противостоят фитопатогенным микроорганизмам. Так, полевые культуры образуют нормальную микоризу самостоятельно. Микоризация используется при инокуляции семян и саженцев древесных пород. Грибы-микоризообразователи трудно культивировать искусственно, поэтому для микоризации чаще применяют лесную почву, которая содержит споры и мицелий таких грибов.

Источник

Способ культивирования азотофиксирующих бактерий

Изобретение относится к области сельского хозяйства, растениеводства, касается вопросов производства, применения и хранения бактериальных удобрений и может быть использовано при возделывании бобовых трав и других сельскохозяйственных растений. Способ включает выращивание маточной культуры бактерий на питательной среде и изготовление рабочей культуры на соответствующей питательной среде. В питательную среду для выращивания маточной культуры или в питательную среду для культивирования рабочей культуры вносят водный раствор селената натрия с тем, чтобы конечная концентрация селената натрия составила 110 -4 г/л жидкой питательной среды. Способ обеспечивает повышение жизнеспособности и активности бактериальной составляющей удобрений, расширение ассортимента стимуляторов при снижении материальных затрат. 1 табл.

Изобретение относится к области сельского хозяйства, растениеводства и касается вопросов производства, применения и хранения бактериальных удобрений, и может быть использовано при возделывании бобовых трав и других сельскохозяйственных растений.

Нерешенными проблемами производства и практического применения бактериальных препаратов в полевых условиях являются относительно низкая скорость размножения клубеньковых бактерий и их невысокая жизнестойкость при хранении и использовании. Содержащиеся в основном известном носителе — торфе вещества фенольной природы оказывают неблагоприятное воздействие на клубеньковые бактерии, в результате чего процесс азотофиксации оказывается ослабленным.

Известны способы стимуляции азотофиксации путем выведения новых технологически выгодных штаммов бактерий с повышенной экологической валентностью, используемых при производстве бактериальных удобрений [Патент РФ №2061666, 6 С 05 F 11/08, 1996. Наумывакин Л.В., Пирузян Э.С., Соловьев В.П., Чернин Л.С., Тильба В.А. Штамм бактерий Rhizobium fredii для приготовления бактериального удобрения; Патент РФ №2074159, 6 С 05 F 11/08, 1997. Ожиганова Г.У., Ланских Г.П., Чернов И.А. Штамм бактерий Azotobacter chroococcum, используемый для получения бактериального удобрения под зеленые культуры].

Читайте также:  Чем подкормить клубнику весной золой

Известно применение торфо-навозного компоста в качестве органического носителя, причем полученную смесь, инокулированную бактериальной составляющей, инкубируют при перемешивании в течение 3-5 суток [Патент РФ №2084431, 6 С 05 F 11/08, 1997. Юдкин Л.Ю., Ковалев Н.Г., Хотянович А.В., Темнова О.В. Способ получения бактериального удобрения]. Недостатками указанных способов являются соответственно узость применения и, в последнем случае, высокая трудоемкость и затраты энергии.

Существует способ внесения раствора бактериального препарата в пределах 0,5-5,0 10 12 бак/га внекорневым способом на вегетирующие растения [Патент РФ №2193837, А 01 С 21/00, С 05 F 11/08, 2001. Киров Е.И., Майстренко Г.Г., Макаров В.И., Куценогий К.П. Способ внесения в почву азотфиксирующих бактерий]. Однако этот способ предусматривает дополнительные, отдаленные от момента посева мероприятия, связанные с дополнительными затратами материалов и энергии, а также является зависимым от метеоусловий.

Известен способ стимулирования азотофиксирующих бактерий бобовых трав [Патент РФ №2111636, А 01 В 79/02, А 01 С 21/00, 1998. Бекузарова С.А., Абаев А.А., Фарниев А.Т. Способ стимулирования азотофиксирующих бактерий бобовых трав]. В качестве стимулятора в этом случае используют экстракт — отход крахмало — паточного производства, который в количестве 90-100 кг/га в виде водного раствора вносят в виде подкормки через 13-15 дней после появления всходов. Недостатком способа является его относительная дороговизна и малодоступность экстракта, а также тот факт, что даже незначительное превышение указанной дозы существенно подкисляет смесь и отрицательно сказывается на микрофлоре почвы.

Существует способ стимулирования азотофиксирующих бактерий бобовых культур путем интенсивного применения макро- и микроэлементов [Посыпанов Г.С. Влияние интенсивного возделывания бобовых трав на их симбиотическую активность, сбор белка и повышение плодородия почвы — Вестник с.х. науки, №9, 1987. С.62-64]. После внесения биоудобрения в почву производят внесение минеральных удобрений для стимулирования жизнедеятельности азотофиксаторов. В указанном способе неизбежны значительные затраты материальных средств на внесение минеральных удобрений под травы, что на современном этапе может позволить себе лишь небольшое число хозяйств. Другим слабым местом способа является риск передозировки и снижения качества продукции.

Наиболее близким по технологической сущности является метод культивирования азотофиксирующих бактерий, предусматривающий выращивание маточной культуры бактерий на среде следующего состава: горох (отвар) — 100,0 мл; глюкоза — 10,0 г; (NH4)2SO4 — 1,0 г; КН2РO4 Н2О — 0,5 г; К2НРO4 — 0,5 г; MgSO4 2О — 0,3 г; Са СО3 — 1,0 г., затем изготовление рабочей культуры на среде, содержащей (г/л): глюкоза — 20,0; кукурузный экстракт — 10,0; дрожжевой экстракт — 0,25; КН2РO4 Н2О — 0,5; К2НРO4 — 0,5; MgSO4 7H2O — 0,3; Са СО3 — 1,0, после чего осуществление инокуляции подготовленного торфа — массированное внесение жидкой культуры в торф [Хотянович А.В. Методы культивирования азотфиксирующих бактерий, способы получения и применения препаратов на их основе (Методические рекомендации) Ленинград, 1991]. Недостатками данного метода являются риск угнетения культуры при использовании солей K, Mg, Са, нарушениях в системе аэрации, даже при незначительном изменении реакции среды, а также узкий диапазон температур хранения культур.

Предлагаемый способ обеспечивает повышение титра бактерий в культуральной жидкости, жизнеспособности и активности бактериальной составляющей удобрений, расширение ассортимента стимуляторов при снижении материальных затрат. Это достигается тем, что в способе культивирования азотфиксирующих бактерий, включающем выращивание маточной культуры, затем изготовление рабочей культуры, после чего осуществление инокуляции подготовленного торфа — массированное внесение жидкой культуры в торф, согласно изобретению в питательную среду для маточной или для рабочей культуры вносят водный раствор селената натрия с тем, чтобы конечная концентрация селената натрия составила 1-10 -4 г/л жидкой питательной среды.

Читайте также:  Удобрения для корнеплодов свекла

Содержащийся в веществе микроэлемент селен способен увеличивать активность практически всех звеньев антиоксидантной системы микроорганизмов, лимитирующей их рост и развитие без негативного воздействия на ферментативный аппарат. Это позволяет не только повысить жизнеспособность и активность азотофиксаторов, но и значительно сократить сроки и увеличить диапазон температур культивирования азотфиксирующих бактерий.

Другим признаком, выгодно отличающим предлагаемый способ от известных, является то, что использование сверхнизких доз селеновой соли не требует значительных экономических затрат, так как используемое количество вносимого вещества (селенат натрия) очень мало.

Для решения задачи в жидкую питательную среду, следующего состава:

Горох (отвар) 100,0 мл

КН2РO4 Н2O 0,5 г

MgSO4 7H2O 0,3 г

объемом 200 мл, разлитую в колбы емкостью 750 мл и предназначенную для культивирования бактерий, вносят раствор селената натрия (Na2SeO4), с тем расчетом, чтобы его конечная концентрация в питательной среде составляла 1 10 -4 г/л. Питательная среда подвергается стерилизации при обычном режиме. После автоклавирования смывы с пробирок со штаммом определенных видов бактерий помещаются в жидкую питательную среду. Колбы помещаются в качалку на двое суток до достижения в них определенного титра бактериальных клеток (титр индивидуален для разных штаммов). Температура питательной среды 25-28 С. Культуральная жидкость из колб помещается в рабочие бутыли емкостью 5-10 л, которые помещаются на двое суток на качалку. Тем самым получается концентрированная суспензия бактериальных клеток, которая затем используется для приготовления готовых препаратов.

Жидкую питательную среду, следующего состава:

Кукурузный экстракт 10,0

Дрожжевой экстракт 0,25

КН2РO4 Н2O 0,5

разлитую в бутыли емкостью 5-10 л и предназначенную для культивирования бактерий, стерилизуют, инокулируют маточными культурами определенных видов бактерий и добавляют стерильный раствор селената натрия, с тем, чтобы конечная концентрация составила 1 10 -4 г/л вещества. Колбы помещаются в качалку на двое суток до накопления в них определенного титра бактериальных клеток. Температура в качалке 25-28 С. Тем самым получается концентрированная суспензия бактериальных клеток, которая затем используется для приготовления готовых препаратов.

Во всех случаях титр бактерий в препарате значительно превышает контрольные показатели. Так при обогащении селеном жидкой питательной среды в колбах (пример 1) конечный титр превысил контрольный на 32% (ризоторфин) и 33,5% (агрофил).

При внесении селената натрия в бутыли для создания рабочей культуры в условиях качалки (пример 2) конечный титр бактерий превысил контрольные показатели на 31,7% и 34% для ризоторфина и агрофила соответственно.

Результаты исследований внесения селената натрия различными способами приведены в таблице.

Способ культивирования азотофиксирующих бактерий, включающий выращивание маточной культуры бактерий на питательной среде и изготовление рабочей культуры на соответствующей питательной среде, отличающийся тем, что в питательную среду для выращивания маточной культуры или в питательную среду для культивирования рабочей культуры вносят водный раствор селената натрия с тем, чтобы конечная концентрация селената натрия составила 110 -4 г/л жидкой питательной среды.

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.08.2010

Источник

Adblock
detector