Меню

Бактериальные удобрения это препараты

Бактериальные удобрения. Виды, свойства бактериальных удобрений

Бактериальные удобрения – это препараты высокоактивных микроорганизмов, улучшающих условия питания сельскохозяйственных культур. Ориентация растениеводства на экологическую и экономическую целесообразность предусматривает внедрение современных достижений биотехнологии, в том числе бактериальных удобрений, обеспечивающих использование биологических механизмов питания и защиты растений.

Важными аргументами в пользу бактериальных удобрений являются полная безопасность для человека и окружающей среды, экологическая безопасность и возможность снижения доз минеральных удобрений и ядохимикатов.

При применении бактериальных удобрений обеспечивается повышение урожайности и качества сельскохозяйственных культур за счет биологической азотфиксации атмосферного азота, микробной мобилизации основных элементов минерального питания, стимуляции роста, повышения устойчивости растений к корневым инфекциям.

Наиболее широкое распространение получили препараты, содержащие азотфиксирующие микроорганизмы. Биологический азот в почве накапливается в результате симбиотической, несимбиотической и ассоциативной азотфиксации. Симбиотическую азотфиксацию выполняют клубеньковые бактерии, живущие на корнях бобовых культур. В симбиозе с клубеньковыми бактериями бобовые способны удовлетворить до 60–90 % своей потребности в азоте за счет биологической азотфиксации.

По данным Института почвоведения и агрохимии НАН Беларуси, однолетние зернобобовые культуры (люпин, горох и др.) за сезон связывают на 1 га от 150–200 кг азота, примерно половина его остается в почве. Многолетние бобовые травы продуцируют значительно больше азота. Клевер за вегетацию усваивает 200–250 кг азота из атмосферы, в почве после себя оставляет 75–100 кг азота. Люцерна продуцирует в симбиозе с клубеньковыми бактериями и связывает 300–350 кг азота, оставляя после себя в почве 120–150 кг азота.

Бактериальные удобрения производят в США (20 млн/га порций ежегодно), Австрии (6–9 млн), Бразилии (4–6 млн), Индии (2–4 млн), Канаде (2,5 млн), Аргентине (2–3 млн), Уругвае (1–2 млн), России (0,3 млн).

Институтом микробиологии НАН Беларуси для бактеризации бобовых культур было разработано бактериальное удобрение Сапронит, которое применяется в республике в настоящее время. Инокуляция семян бобовых культур Сапронитом повышает эффективность бобоворизобактериального симбиоза, урожайность бобовых культур, улучшает качество продукции.

Основными условиями формирования полноценного симбиоза клубеньковыми бактериями являются оптимизация калийного и фосфорного питания, внесение микроудобрений (В, Мо, Со), регулирование почвенной кислотности, соблюдение необходимых агротехнических приемов и бактеризация семян бобовых культур специфичными штаммами клубеньковых бактерий.

Сапронит – препарат клубеньковых бактерий, субстратным носителем которого является органический сапропель. Изготавливается жидкий препарат для различных бобовых культур. Объем гектарной нормы 0,2 л. Предпосевная обработка 1 т семян зернобобовых культур проводится рабочей смесью: 1 л сапронита и 10 л воды (непосредственно перед использованием).

Соя Риз – сыпучая препаративная форма биоудобрения, получаемая путем иммобилизации на торфяном субстрате-носителе клеток эффективного питания клубеньковых бактерий. Улучшает азотное питание. Повышает урожайность семян сои от 5 до 135 %, зеленой массы до 30 %.

На основе азотобактера (свободноживущего азотфиксатора) методами генной инженерии создан бактериальный препарат Ризофил. По результатам испытаний Ризофил повышает урожайность томатов и огурцов в среднем на 25 %, заменяя 20 % азота минеральных удобрений биологически фиксированным.

Улучшить азотное питание небобовых культур способны ассоциативные азотфиксаторы. Размеры ассоциативной азотфиксации различны и, согласно литературным данным, в зависимости от вида растений и почвенно-климатической зоны колеблются от 3–50 кг азота за год в странах с умеренным климатом до 200–600 кг в странах с тропическим климатом.

Активными ассоциативными азотфиксаторами являются Azospirilla и Klebsiella planticola 5. По данным Института почвоведения и агрохимии НАН Беларуси, усвоение азота атмосферы зерновыми культурами за счет несимбиотической азотфиксации за вегетацию составляет 33–38 кг/га, многолетними злаковыми травами – 29–45 кг/га. Основные пути активизации природного потенциала ассоциативной азотфиксации – оптимизация минерального питания небобовых культур и применение бактериальных удобрений на основе активного питания диазотрофов. Эти микроорганизмы размещаются в верхних слоях растительной ткани корней и в благоприятных условиях могут обеспечивать до 40–50 % потребности растений в азоте.

В Беларуси на основе этих ассоциативных диазотрофных микроорганизмов разработаны бактериальные удобрения Азобактерин и Ризобактерин соответственно.

Азобактерин – бактериальное удобрение широкого спектра действия, разработанное в РУП «Институт почвоведения и агрохимии». Оно применяется для зерновых культур, многолетних трав и льнадолгунца.

Азобактерин изготавливается в жидкой форме. Объем гектарной нормы – 0,5 л/га – может быть использован как для обработки семян, так и для обработки посевов. Предпосевная обработка 1 т семян зерновых культур проводится рабочей смесью: 1 л азобактерина, 1–2 л раствора прилипателя и 3–4 л воды. Обработка посевов проводится смесью из расчета на 1 га: 0,5 л Азобактерина + 150–200 л воды.

Ризобактерин – бактериальное удобрение на основе ассоциативного диазотрофа Klebsiella planticola 5 для зерновых культур, обладающего множественным эффектом (фиксация атмосферного азота, биосинтез индолилуксусной кислоты, подавление жизнедеятельности корневых патогенов). Удобрение разработано в Институте микробиологии НАН Беларуси.

Применение Ризобактерина позволяет повысить урожайность зерна на 10–15 %, снизить химическую нагрузку на почву и дозы азотных удобрений на 20–30 %. По данным кафедры агрохимии УО БГСХА, урожайность зерна овса при инокуляции семян Ризобактерином увеличивалась на 5,2–8,7 ц/га, содержание сырого белка в зерне – на 0,9– 1,1 %. Урожайность зерна яровой пшеницы при применении Ризобактерина возрастала на 6,5 ц/га, озимой ржи – 6,2 ц/га.

Ризобактерин изготавливается в жидкой форме, объем гектарной дозы 0,2 л. Нормы расхода Ризобактерина для обработки 1 т семян яровой пшеницы составляют 1,1 л, для озимой ржи – 0,9 л, ячменя – 1,1 л. Непосредственно перед обработкой семян препарат разбавляют 10 л воды.

Разработана также усовершенствованная форма Ризобактерина с повышенным сроком хранения, прикрепляемостью и выживаемостью продуцента на корнях зерновых культур – Ризобактерин-С.

В условиях Беларуси фосфор второй по значимости элемент питания, играющий важную роль в формировании урожая и качества сельскохозяйственных культур.

Используя бактериальные удобрения на основе фосфатмобилизующих бактерий, можно повысить доступность труднорастворимых фосфатов для сельскохозяйственных культур. Из фосфатмобилизующих бактериальных удобрений в Беларуси наибольшее распространение получил фитостимофос.

Фитостимофос – фосфатмобилизующее бактериальное удобрение, действующим началом которого является живая культура и ростостимулирующие метаболиты микроорганизмов Agrobacterium radiobacter. Наряду со способностью трансформировать труднорастворимые фосфаты железа, алюминия и кальция в доступные для растений соединения фосфора, продуцент биопрепарата синтезирует биологически активные соединения (а-ИУК, рибофлавин, аминокислоты), а также хорошо приживается в ризосфере и колонизирует корни растений.

Фитостимофос эффективен при возделывании зерновых, зернобобовых и овощных культур, стимулирует прорастание семян, физиологические процессы в растениях. За счет повышения подвижности труднорастворимых фосфатов почвы позволяет компенсировать 15– 30 % применяемых фосфорных удобрений. Инокуляция семян сельскохозяйственных культур этим удобрением повышает урожайность, по обобщенным данным Института микробиологии НАН Беларуси, в среднем на 20 %.

Фитостимофос изготавливается в жидкой форме, объем гектарной нормы – 0,2 л. Норма расхода фитостимофоса, разбавленного в 10 л воды для обработки 1 т семян яровой пшеницы составляет 1,1 л, для кукурузы – 5,0 л, зернобобовых – 1,0 л, сои – 2,5 л.

В целом ряде стран сейчас успешно применяют совместную инокуляцию семян различных культур препаратами азотфиксирующих и фосфатмобилизующих бактерий, что позволяет одновременно улучшать азотное и фосфорное питание растений.

Ризобактерин + Фитостимофос – синергические препараты на основе диазотрофных и фосфатмобилизующих микробов-интродуцентов. Форма препарата жидкая.

Ризофос выпускается трех марок: для галеги, люцерны и клевера. Предназначен для усиления азотфиксирующей способности бобовых культур и фосфатмобилизации. Повышает урожайность семян галеги на 6,7 ц/га, люцерны – на 2,7, клевера – на 2,6 ц/га, зеленой массы – на 4,1, 16 и 8 % соответственно. Норма расхода – 200 мл/га.

Технология внесения бактериальных удобрений

Наиболее эффективно проведение предпосевной обработки семян бактериальными удобрениями в день посева в специальных помещениях или под навесом. Инокуляция семян бактериальными удобрениями осуществляется в машинах для протравливания семян ПС-10, КПС-10, ПС-10А, Мобитокс-Супер, Грамакс-В, Хеге-11, Ребер при условии предварительной очистки от химических препаратов, содержащих ртуть.

Предпосевная обработка семян бактериальными удобрениями может проводиться как с применением прилипателя, так и без него. В качестве прилипателя можно использовать 2%-ный водный раствор NаКМЦ. Для приготовления рабочего раствора прилипателя используются емкости, оснащенные перемешивающим устройством. Высушенный и измельченный NaКМЦ растворяют в воде при температуре 40–45 о С. Для обеспечения равномерного набухания в расчетное количество полимера при постоянном перемешивании добавляют 2/3 необходимого объема воды. Ориентировочная длительность перемешивания – 30– 40 мин. В случае неполного растворения полимера перемешивание продолжают.

Читайте также:  Древний бог славян урожая

При работе с бактериальными удобрениями работники должны быть обеспечены спецодеждой и индивидуальными средствами защиты: резиновыми перчатками, защитными очками, респираторами. При работе с бактериальными удобрениями не следует допускать попадания брызг на кожу и в глаза, что может вызвать раздражение. При попадании жидкости на покровы кожи и в глаза их следует тщательно промыть обильным количеством воды.

Бактериальные удобрения следует хранить в сухих помещениях, защищенных от попадания осадков и прямых солнечных лучей, оптимальная температура хранения от 0 до +4 о С. Срок годности зависит от вида и препаративной формы бактериальных удобрений.

Источник

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Home » Агрохимия » Микробиологические и бактериальные удобрения

Популярные статьи

Микробиологические и бактериальные удобрения

Микробиологические и бактериальные удобрения — препараты, содержащие высокоактивные микроорганизмы, улучшающие условия питания сельскохозяйственных культур.

Уровень потенциального и эффективного плодородия почвы обусловливается интенсивностью и направленностью микробиологических процессов, которые регулируются численностью микроорганизмов.

Микробиологические и бактериальные препараты содержат специфические штаммы микроорганизмов, под действием которых в почве активизируются процессы превращений соединений, содержащие питательные вещества.

Широкое распространение получили препараты, содержащие штаммы азотфиксирующих бактерий. Интерес к микробиологической фиксации атмосферного азота обусловлен ролью этого процесса в азотном балансе и его перспективностью как источника азота для обеспечения растущих нужд сельского хозяйства. При этом аргументами выступают его безвредность для человека и окружающей среды при относительно малых затратах энергии на активизацию азотфиксирующих микроорганизмов.

Согласно полевым исследования отечественных и зарубежных ученых, если сельскохозяйственные культуры 10-20% своей потребности в азоте будут покрывать за счет азотфиксации, то приём инокуляции внесет значительный вклад в азотный баланс.

Препаративные формы микробных удобрений бывают: жидкие, гранулированные, гелеобразные, сыпучие.

Страны производители бактериальных удобрений и объёмы производства:

  • США — 20 млн га/порций ежегодно;
  • Канада — 2,5 млн га/порций ежегодно;
  • Австрия — 6-9 млн га/порций ежегодно;
  • Бразилия — 4-6 млн га/порций ежегодно;
  • Индия — 2-4 млн га/порций ежегодно;
  • Аргентина — 2-3 млн га/порций ежегодно;
  • Уругвай — 1-2 млн га/порций ежегодно;
  • Россия — 0,3 млн га/порций ежегодно.

Предпосевная обработка семян бактериальными удобрениями может проводиться с применением прилипателя, так и без него. В качестве прилипателя используется 2,0%-й водный раствор NaKМЦ.

Бактериальные удобрения хранят в сухих помещениях, защищенных от осадков и прямых солнечных лучей, температура хранения от 0 до + 4 °С. Срок годности зависит от вида и формы бактериальных удобрений.

В мировой практике внимание уделяется роли почвенной биоты в улучшении фосфорного питания растений.

Источник

Привет студент

Бактериальные удобрения

Присутствующая в почве микрофлора оказывает непосредственное влияние на ее плодородие, и как следствие, на повышение урожайности сельскохозяйственных культур. Почвенные микроорганизмы в процессе роста и развития улучшают структуру почв, накапливают в них питательные вещества, минерализуя различные органические и неорганические соединения, например, азота и фосфора, превращая их в итоге в легкоусвояемые растением продукты питания.

С целью стимулирования деятельности почвенной микрофлоры применяют различные бактериальные удобрения, которые обогащают ризосферу растений полезными микроорганизмами.

Растения синтезируют ряд соединений, регулирующих их рост и развитие (фитогормоны, биорегуляторы). К их числу принадлежат ауксины, гиббереллины, цитокинины. Созревание плодов стимулирует этилен. Эти биорегуляторы находят применение в сельском хозяйстве. К числу новых, обнаруженных в последние годы биорегуляторов относят пептиды, имеются перспективы их применения в сельском хозяйстве.

Биологические (бактериальные) удобрения применяют для обогащения почвы связанным азотом. Большое распространение получили препараты нитрагин и азотобактерин — клетки клубеньковых бактерий и азотобактера, к которым добавляют стабилизаторы (мелассу, тиомочевину) и наполнитель (бентонит, почву). Азотобактерин обогащает почву не только азотом, но и витаминами и фитогормонами, гиббереллинами и гетероауксинами. Препарат фосфобактерин из Bacillusmegaterium превращает сложные органические соединения фосфора в простые, легко усвояемые растениями. Фосфобактерин также обогащает почву витаминами и улучшает азотное питание растений.

1 Бактериальные удобрения

Бактериальные удобрения — это препараты, способствующие улучшению питания растений. Питательных веществ они не содержат. Препараты, в которых содержатся полезные для сельскохозяйственных растений почвенные микроорганизмы. При внесении этих удобрений в почве усиливаются биохимические процессы и улучшается корневое питание растений.

Самыми распространенными бактериальными удобрениями являются:

✓ нитрагин — препарат, содержащий клубеньковые бактерии, которые поставляют к растениям азот. Используется только для бобовых растений, причем для каждого вида культуры разный тип бактерий;

✓ азотобактерин — препарат, содержащий азотобактерии, которые также поставляют азот. Однако эти существа универсальны и могут применяться на разных культурах;

✓ фосфобактерин — препарат, содержащий фосфобактерии, соответственно, переносят к корням растений фосфор;

✓ ЭМ-препарат (эффективные микроорганизмы) — содержит несколько видов микроорганизмов, которые вместе комплексно воздействуют на растения.

Все бактериальные удобрения вносятся в почву в очень малых количествах (несколько капель на 1 л дождевой воды).

Вносить такие удобрения следует, соблюдая ряд правил:

✓ почва должна быть влажной;

✓ раствор не должен попадать на побеги растений;

✓ микроорганизмы не любят много света, поэтому препараты лучше вносить поздно вечером или в пасмурную погоду;

✓ ослабленные по различным причинам растения (от вредителей, болезней) либо посаженные недавно не стоит удобрять таким образом, потому что они слишком слабы.

Так как бактериальные удобрения содержат живых существ, то хранение их должно быть особым: от заморозки и слишком высокой температуры бактерии погибнут. Данный вид удобрений не выдерживают длительного хранения, поэтому готовят их в количестве, необходимом лишь для одного сезона. Хранят в заводской таре в сухом помещении при температуре от 0 до 10 °C; нельзя хранить на складе, где находятся летучие ядохимикаты.

1.1 Получение фосфобактерина

Фосфобактерин — бактериальное удобрение, содержащее споры микроорганизма Bacillus megaterium var. phosphaticum. Представляет собой порошок светло-серого или желтоватого цвета.

Бактерии обладают способностью превращать сложные фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды и т.д.) и трудноусвояемые минеральные фосфаты в доступную для растений форму. Кроме этого бактерии вырабатывают биологически активные вещества (тиамин, пиридоксин, биотин, пантотеновую и никотиновую кислоты и др.), стимулирующие рост растения. Фосфобактерин относится к числу препаратов со стимулирующим эффектом.

Bacillus megaterium var. phosphaticum представляют собой мелкие, грамположительные аэробные спорообразующие палочки размером 2*6 мкм. Клетки содержат значительное количество соединений фосфора. В ранней стадии развития это подвижные одиночные палочки, при старении образуют эндоспоры, локализующиеся в одном из концов клетки. В силу вышеизложенного технология выращивания сводится к получению спор.

В целом производство фосфобактерина похоже на производство азотобактерина и препаратов клубеньковых бактерий. Состав питательной среды в процентах: кукурузный экстракт -1.8, меласса — 1.5, сульфат аммония — 0.1, мел — 1, остальное — вода. Культивирование ведется глубинным методом в строго асептических условиях при постоянном перемешивании и принудительной аэрации до стадии образования спор. Основные параметры проведения процесса: температура 28-30оС, рН 6.5-7.5, длительность культивирования 1.5-2 суток.

Полученную в ходе культивирования биомассу клеток отделяют центрифугированием и высушивают в распылительной сушилке при температуре 65-75оС до остаточной влажности 2-3%. Высушенные споры смешивают с наполнителем. Готовый препарат должен содержать не менее 8 млрд. клеток в 1 г. Расфасовывают препарат в полиэтиленовые пакеты по 50-500 г. В отличие от нитрагина и азотобактерина фосфобактерин обладает большей устойчивостью при хранении.

Фосфобактерин рекомендуют применять на черноземных почвах, которые содержат наиболее значительное количество фосфороорганических соединений. Необходим для повышения урожайности зерновых, картофеля, сахарной свеклы и др. сельскохозяйственных растений. Семена обрабатывают смесью сухого фосфобактерина с наполнителем (золой, почвой и др.) в соотношении 1:40. На 1 гектарную порцию требуется 5 г препарата и 200 г наполнителя. Клубни картофеля равномерно увлажняют суспензией спор, приготовленной из расчета 15 г препарата на 15 л воды. Урожай при этом повышается на 10%.перспективы их применения в сельском хозяйстве.

1.2 Получение азотобактерина

Азотобактерин — бактериальное удобрение, содержащее свободноживущий почвенный микроорганизм Azotobacter chroococcum, способный фиксировать до 20 мг атмосферного азота на 1 г использованного сахара. Внесенные в качестве удобрения в почву бактерии также выделяют биологически активные вещества (никотиновую и пантотеновую кислоты, пиридоксин, биотин, гетероауксин, гиббереллин и др.). Эти вещества стимулируют рост растений. Кроме того, продуцируемые Azotobacter фунгицидные вещества из группы анисомицина угнетают развитие некоторых нежелательных микроскопических грибов в ризосфере растения.

Все виды Azotobacter строгие аэробы. Чувствительны к содержанию в среде фосфора и развиваются лишь при высоком его содержании в питательной среде. Азотфиксирующая способность культуры подавляется аммиаком (вообще содержание в среде связанного азота угнетает азотфиксацию). Стимулируют процесс фиксации азота соединения молибдена.

Читайте также:  Лайфхак для садоводов парник

Установлено, что при фиксации азота процесс его восстановления протекает на одном и том же синтезируемом азотобактером ферментном комплексе и лишь конечный продукт (аммиак) отделяется от фермента. Нитрогеназная азотфиксирующая система представляет собой мультиферментный комплекс, содержащий не связанное с геном железо, молибден и SH-группы.

Микробиологическая промышленность выпускает несколько видов азотобактерина: сухой, почвенный и торфяной. Технология получения сухого азотобактерина имеет много общего с технологией производства сухого нитрагина. Сухой азотобактерин — активная культура высушенных клеток азотобактера с наполнителем. В 1 г препарата содержится не менее 0.5 млрд. жизнеспособных клеток. Культуру микроорганизма выращивают методом глубинного культивирования на среде, содержащей те же компоненты, что и при культивировании клеток Rhizobium. Дополнительно вводят только сульфаты железа и марганца, а также сложную соль молибденовой кислоты, рН 5.7-6.5.

Процесс ферментации проводят до стационарной фазы развития культуры, так как в этой фазе биологически активные вещества выделяются из клетки и остаются в культуральной жидкости. Биологически активные вещества могут также полностью или частично теряться при высушивании, однако жизнеспособные клетки быстро восстанавливают способность их продуцировать. Высушенную культуру стандартизируют, фасуют в полиэтиленовые пакеты по 0.4-2 кг и хранят при температуре 15оС не более 3 месяцев.

Почвенный и торфяной азотобактерин представляют собой активную культуру азотобактера, размноженную на твердой питательной среде, и содержат в 1 г не менее 50 млн. жизнеспособных клеток. Для их приготовления берут плодородную почву или разлагающийся торф с нейтральной реакцией среды. К просеянному субстрату добавляют 2% извести и 0.1% суперфосфата. По 500 г полученной смеси переносят в бутыли емкостью по 0.5 л, увлажняют на 40-60% по объему водой, закрывают ватными пробками и стерилизуют. Посевной материал готовят на агаровых средах, содержащих 2% сахарозы и минеральные соли. Когда агар полностью покрывается слизистой массой коричневого цвета, полученный материал стерильно смывается дистиллированной водой и переносится на приготовленный субстрат. Содержимое бутылок тщательно перемешивают и термостатируют при 25-27оС. Культивирование продолжают до тех пор, пока бактерии не размножатся до необходимого количества. Полученный препарат сохраняет свою активность в течение 2-3 месяцев.

Использовать азотобактерин рекомендуется только на почвах, содержащих фосфор и микроэлементы. Азотобактерин применяют для бактеризации семян, рассады, компостов. При этом урожайность увеличивается на 10-15%. Семена зерновых опудривают сухим азотобактерином из расчета 100 млрд. клеток на 1 гектарную порцию семян. Картофель и корневую систему рассады равномерно смачивают водной суспензией бактерий. Для получения суспензии 1 гектарную норму (300 млрд. клеток) разводят в 15 литрах воды. При обработке почвенным или торфяным азотобактерином семена перемешивают с увлажненным препаратом и для равномерного высева подсушивают. Корневую систему рассады смачивают приготовленной суспензией.

1.3 Производство бактериальных удобрений на основе клубеньковых бактерий

Микрофлора почвы оказывает непосредственное влияние на её плодородие и, как следствие, на урожайность растений. Почвенные микроорганизмы в процессе роста и развития улучшают структуру почвы, накапливают в ней питательные вещества, минерализуют различные органические соединения, превращая их в легко усвояемые растением компоненты питания. Для стимуляции этих процессов применяют различные бактериальные удобрения, обогащающие ризосферу растений полезными микроорганизмами. Микроорганизмы, используемые для производства бактериальных препаратов, способствуют снабжению растений не только элементами минерального питания, но и физиологически активными веществами (фитогормонами, витаминами и др.).

В настоящее время выпускают такие бактериальные удобрения, как нитрагин, ризоторфин, азотобактерин, фосфобактерин, экстрасол. Отечественная промышленность выпускает два вида препаратов клубеньковых бактерий: нитрагин и ризоторфин. Оба препарата производятся на основе активных жизнеспособных клубеньковых бактерий из рода Rhizobium. Эти бактерии в симбиозе с бобовыми культурами способны фиксировать свободный азот атмосферы, превращая его в соединения, легкоусвояемые растением.

Бактерии рода Rhizobium — строгие аэробы. Среди них различают активные, малоактивные и неактивные культуры. Критерием активности клубеньковых бактерий служит их способность в симбиозе с бобовым растением фиксировать атмосферный азот и использовать его в виде соединений для корневого питания растений.

Фиксация атмосферного азота возможна только в клубеньках, образующихся на корнях растений. Возникают они при инфицировании корневой системы бактериями из рода Rhizobium. Заражение корневой системы происходит через молодые корневые волоски. После внедрения бактерии прорастают внутри них до самого основания в виде инфекционной нити. Выросшие нити проникают сквозь стенки эпидермиса в кору корня, разветвляются и распределяются по клетками коры. При этом индуцируется деление клеток хозяина и разрастание тканей. В месте локализации бактерий на корне растения-хозяина образуются клубеньки, в которых бактерии быстро размножаются и располагаются по отдельности или группами в цитоплазме растительных клеток. Сами бактериальные клетки увеличиваются в несколько раз и меняют окраску. Если клубеньки имеют красноватую или розовую окраску, обусловленную наличием пигмента леггемоглобина — аналог гемоглобина крови животных, то они способны фиксировать молекулярный азот. Неокрашенные («пустые») или имеющие зеленоватую окраску клубеньки не фиксируют азот.

Бактерии, находящиеся в клубеньках, синтезируют ферментную систему с нитрогеназной активностью, восстанавливающую молекулярный азот до аммиака. Ассимиляция аммиака происходит, в основном, путем вовлечения его в ряд ферментативных превращений, приводящих к образованию глутамина и глутаминовой кислоты, идущих в дальнейшем на биосинтез белка.

Помимо критерия активности в характеристике клубеньковых бактерий используют критерий вирулентности. Он характеризует способность микроорганизма вступать в симбиоз с бобовым растением, то есть проникать через корневые волоски внутрь корня и вызывать образование клубеньков. Большое значение имеет скорость такого проникновения. В симбиотическом комплексе растение — Rhizobium бактерии обеспечиваются питательными веществами, а сами снабжают растение азотистым питанием. С вирулентностью связана и видовая избирательность, которая характеризует способность данного вида бактерий к симбиозу с определенным видом бобового растения. Классификация различных видов Rhizobium учитывает растение-хозяина, например: Rhizobium phaseoli — для фасоли, Rhizobium lupini — для люпина, сараделлы и т.д. Вирулентность и видоспецифичность взаимосвязаны и не являются постоянными свойствами штамма.

Задачей производства бактериальных удобрения является максимальное накопление жизнеспособных клеток, сохранение их жизнеспособности на всех стадиях технологического процесса, приготовление на их основе готовых форм препарата с сохранением активности в течение гарантийного срока хранения.

Отечественная промышленность выпускает два вида нитрагина: почвенный и сухой. Впервые культура клубеньковых бактерий на почвенном субстрате была приготовлена в 1911 году на бактериально-агрономической станции в Москве. В настоящее время его производство имеет ограниченное значение, так как технология довольно сложна и трудоёмка при выполнении отдельных операций. Более перспективна технология производства сухого нитрагина.

Сухой нитрагин — порошок светло-серого цвета, содержащий в 1 г не менее 9 млрд. жизнеспособных бактерий в смеси с наполнителем. Влажность не превышает 5-7%. Промышленное производство имеет типичную схему. Необходимо отметить, что важно подбирать штаммы, устойчивые к высушиванию. Для производства посевного материала исходную культуру клубеньковых бактерий выращивают на агаризованной среде, содержащей отвар бобовых семян, 2% агара и 1% сахарозы, затем культуру размножают в колбах на жидкой питательной среде в течение 1-2 суток при 28-30оС и рН 6.5-7.5. На всех этапах промышленного культивирования применяют питательную среду, включающую такие компоненты, как меласса, кукурузный экстракт, минеральные соли в виде сульфатов аммония и магния, мел, хлорид натрия и двузамещенный фосфат калия. Основная ферментация идет при тех же условиях в течение 2-3 суток. Готовую культуральную жидкость сепарируют, получается биомасса в виде пасты с влажностью 70-80%. Пасту смешивают с защитной средой, содержащей тиомочевину и мелассу (1:20) и направляют на высушивание. Сушат путем сублимации ( в вакуум-сушильных шкафах). Высушенную биомассу размалывают. Производительнее высушивание в распылительных сушках, но при этом 75% клеток теряют жизнеспособность. Препараты сухого нитрагина фасуют и герметизируют в полиэтиленовые пакеты по 0.2 — 1 кг, хранят при температуре 15оС не более 6 месяцев. Семена опудривают перед посевом. Внесение нитрагина повышает урожайность в среднем на 15-25%.

Препарат клубеньковых бактерий может выпускаться и в виде ризоторфина. Впервые торфяной препарат клубеньковых бактерий был приготовлен в 30-х годах, но технология была создана в 1973-77 гг. Для приготовления ризоторфина торф сушат при температуре не выше 100оС и размалывают в порошок. Наиболее эффективным способом стерилизации является облучение его гамма-лучами. Перед стерилизацией размолотый, нейтрализованный мелом и увлажненный до 30-40% торф расфасовывают в полиэтиленовые пакеты. Затем его облучают и заражают клубеньковыми бактериями, используя шприц, с помощью которого впрыскивается питательная среда, содержащая клубеньковые бактерии. Прокол после внесения бактерий заклеивается липкой лентой. Каждый грамм ризоторфина должен содержать не менее 2.5 млрд. жизнеспособных клеток с высокой конкурентоспособностью и интенсивной азотфиксацией. Препарат хранят при температуре 5-6оС и влажности воздуха 40-55%. Пакеты могут быть весом от 0.2 до 1.0 кг. Доза препарата составляет 200 г на га. Заражение семян производят следующем образом: ризоторфин разбавляют водой и процеживают через двойной слой марли. Полученной суспензией обрабатывают семена. Семена высевают в день обработки или на следующий день.

Читайте также:  Выращивание сладкого перца дома зимой

1.4 Эффективные микроорганизмы — EM (effective microorganisms)

Линия биопрепаратов серии ЭМ — это живое сообщество 86 тщательно подобранных полезных почвенных микроорганизмов, известных в мире как «ЕМ» (effective microorganisms). Препараты серии «ЭМ» были созданы в конце 80-х годов японским учёным Teruo Higa и стали широко применяться во всём мире с середины 90-х годов. Сфера применения препаратов этой серии весьма широка: от возрождения плодородия почвы и утилизации органических отходов до снижения падежа молодняка на животноводческих фермах.

Вот неполный перечень результатов использования ЭМ-технологии:

1. Повышает урожайность практически всех культур в 2 раза, огурцов – в три, томатов в 4,5 – 5 раз.

2. Ускоряет сроки созревания на 10-15 дней;

3. Повышает содержание витаминов и каротина в плодах;

4. Снижает содержание нитратов в плодах;

5. Ускоряет образование гумуса;

6. Переводит почвенные микро- и макроэлементы в легкоусвояемые формы;

7. Преобразует органические отходы за две недели в эффективные удобрения в виде компоста;

8. Устраняет неприятные запахи, возникающие при гниении органики;

9. При использовании безотвальной технологии обработки почвы обеспечивает естественную пористость и проницаемость плодородного слоя до глубины 60-80 см;

10. При использовании в качестве биодобавки в корм животных и птицы уменьшает падёж молодняка в 2,5-3 раза за счёт нормализации кишечной микрофлоры. По этой же причине на 35-40% возрастает усвояемость кормов и суточные привесы.

Спецификой применения ЭМ препаратов в России следует признать их особую эффективность. Чем меньше вносилось в почву химических удобрений, тем быстрее ЭМ восстанавливают естественное плодородие почвы и тем выше, соответственно, урожай. Количество требуемых для внесения органических удобрений сокращается в 5-7 раз.

Чем меньше в рацион животных добавлялось гормонов и антибиотиков, тем меньше отход молодняка после начала применения ЭМ, так как этот препарат является сильным иммуномодулятором. Другими словами, если у животных сохранился какой-то иммунитет, он быстро усилится с помощью ЭМ-препарата. Если корма не хватает и он невысокого качества, а привесы малы или их почти нет, то, после начала применения ЭМ, нормализованная микрофлора кишечника поможет животному усваивать вместо 30-40% корма 70% при таком же рационе.

Одним из главных достоинств ЭМ-технологии является дешевизна её внедрения в существующие технологические циклы. Сочетание простоты использования, умеренной стоимости препаратов и большого экономического эффекта от применения ЭМ-технологий определяют причину её быстрого распространения по миру. Бедные и богатые страны находят свою выгоду в её применении: кто в увеличении привесов и сокращении падежа молодняка, кто в решении экологических проблем загрязнения окружающей среды крупными животноводческими комплексами и устранении социальных конфликтов из-за распространяющихся на многие километры от них трудно переносимых запахов.

Для российского аграрного сектора в его нынешнем тяжелом состоянии применение ЭМ-технологии является хорошим шансом поправить свои дела достаточно быстро и малыми средствами.

Выпуск этих препаратов под торговыми марками «Байкал ЭМ1» и «Тамир» уже налажен в России.

2 Процесс приготовления бактериального удобрения

Рассмотрим процесс приготовления бактериального удобрения более подробно. Весь цикл состоит из 5 этапов, каждый из которых, в свою очередь, подразделяется на несколько шагов.

Схема процесса производства бактериальных удобрений в общем виде

I) Приготовление инокулята:

1) Подбор штамма бактерий, обладающего требуемыми свойствами (достаточная скорость роста, обязательно устойчивость к сухим условиям, и ряд свойств, необходимых для конечного продукта)

2) Засев на твердую питательную среду. Производится в лабораторных условиях при соблюдении стерильности. Требуется для первоначального наращивания биомассы.

3) Пересев на жидкую питательную среду. Также проводится в лабораторных условиях. Необходим для получения количества биомассы, достаточного для помещения в ферментер большого объема.

II) Приготовление среды:

Этот процесс идет параллельно с приготовлением инокулята, питательная среда также используется для предварительного наращивания биомассы бактерий. Состав среды подбирается индивидуально для каждого вида бактерий. Для увеличения эффективности процесса ферментации зачастую требуется достаточно трудоемкий предварительный этап подбора оптимального состава питательной среды.

1) Подбор оптимального состава питательной среды, если требуется (при модернизации производства, при использовании нового штамма бактерий и т.д.).

2) Приготовление требуемого количества среды.

3) Стерилизация среды.

Процесс ферментации проводится, как правило, глубинными методами в таре, предназначенной для конечного продукта, в помещениях, обеспеченных оптимальными для процесса условиями; реже — в ферментерах. Условия культивирования строго асептические, температурный режим как правило 26-30 °С, pH среды нейтральная (6,5 — 7,5). Продолжительность культивирования зависит от требуемого количества биомассы, вида микроорганизма и других условий, в общем подбирается экспериментальным путем.

Существует несколько методов сушки, применяемых в производстве бактериальных удобрений — сублимационная сушка, применение распылительных, ленточных и др. сушилок. Выбор метода сушки и условий процесса (температурный режим, требуемая остаточная влажность) определяются, исходя из эксплуатационных требований получаемого удобрения и того, какие микроорганизмы взяты для производства.

V) Фасовка и выпуск продукта:

Зачастую, стадия фасовки готового удобрения мало выделяется среди предшествующих стадий производства. Это связано с тем, что во многих случаях культивирование микроорганизмов производится непосредственно в товарной упаковке (например, ризоторфин — в ПЭ пакетах (предварительно в них расфасована подготовленная среда — торф), азотобактерин — в стеклянных бутылях и т.д.). Во многом это связано с тем, что срок хранения готового продукта очень недолог, поэтому экономически наиболее приемлема скорейшая его реализация. В других случаях производится сортировка, отбор, фасовка и упаковка готового продукта, для чего может потребоваться введение отдельной производственной линии.

В заключение рассмотрим более подробно экономическую целесообразность и обоснованность внедрения производства бактериальных удобрений. По результатам их работы было установлено, что при применении азотфиксирующих бактериальных препаратов рост продуктивности картофеля за 2 года составил от 7% до 43% в зависимости от разведения препарата и сочетания его с другими бакудобрениями (конкретно были исследования силикатные бактерии). Кроме того, была обнаружена зависимость эффективности препарата от типа почвы, в которую он был внесен и глубины заделки саженцев. Немаловажным экономическим фактором так же является и то, что наибольшую эффективность препарат продемонстрировал при среднем разведении (эксперимент проводился при разведениях от 1:200 до 1:1000, при этом наивысший результат был достигнут при разведении 1:400, далее происходило снижение эффективности). Судя по всему, это связано со значительным накоплением в почве продуктов жизнедеятельности бактерий, которые нейтрализуют положительный эффект от их применения.

Из описанных результатов работы можно сделать вывод о том, что при соблюдении ряда условий, либо путем подбора более эффективных биопрепаратов, применение бактериальных удобрений в общем позволяет получать плоды, обладающие большей массой, экологичностью, безвредностью для человека и животных, и содержащие больше витаминов по сравнению с аналогами, выращенными без применения таких удобрений. Все это в итоге повышает экономичность и эффективность сельского хозяйства в целом.

В заключение рассмотрим достоинства и недостатки бактериальных удобрений как таковых. К их плюсам можно отнести следующее:

— Представляют собой 100% экологически чистые препараты

— Относительно простой производственный цикл

— Доступные штаммы микроорганизмов

— Существенная эффективность использования по сравнению с минеральными удобрениями

К недостаткам биопрепаратов можно отнести:

— Зависимость эффективности их действия от состава и свойств почвы, и ряда других факторов

— Расчет товарной упаковки на применение на больших площадях, затруднено использование на малых садовых участках

— Малый срок хранения, некоторая «сезонность» производства

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Источник

Adblock
detector