Меню

Бассейны узв для выращивания рыбы

Принцип устройства УЗВ (установок замкнутого водоснабжения)

Разведение рыбы в УЗВ — прибыльный бизнес, особенно в условиях необходимого импортозамещения. В статье мы рассмортим особенности использования данных установок.

Оборот воды в УЗВ

Под «установками замкнутого водоснабжения» понимают полную регенерацию и использование воды любое количество раз для водоснабжения бассейнов (рыбоводных емкостей).

Рисунок 1. Схема рыбоводческого хозяйства с установками замкнутого водоснабжения (УЗВ) для выращивания рыбы

При этом в УЗВ осуществляется:

  • очистка воды от загрязнений в процессе выращивания рыбы (органика);
  • поддержка надлежащего санитарного состояния воды на безопасном для выращиваемых рыб уровне;
  • восстановление как химического, так и газового режима воды;
  • обеспечивается температура для получения максимального эффекта от выращивания рыбы в УЗВ.

На фото осётр в УЗВ

В УЗВ потребность в свежей воде выявляется удаляемыми из УЗВ отходов — рыбоводного осадка, потерями воды на испарение в установке замкнутого водоснабжения, на протечки в оборудовании и на прочие цели, не связанные с качеством воды: заполнение емкостей для транспортировки рыбы и т.п.

На заметку. Обычная потребность УЗВ на пополнение потерь воды — 2-5 процентов за сутки от всего объема воды в системе.

Фото форель в установке замкнутого водоснабжения

Биологическая регенерация воды в УЗВ

При использовании УЗВ для разведения рыбы – осетров, клариевого сома, форели, судака, речного угря или теляпии — основным процессом биологической регенерации по химическому составу воды выступает освобождение воды, оборачиваемой в УЗВ, от основного компонента — соединений азота, который накапливается в системе замкнутого водоснабжения при жизнедеятельности разводимой рыбы в УЗВ.

При аэробной биологической очистке, осуществляется перевод азота органических соединений, содержащихся в УЗВ в не съеденных, растворенных кормах и в виде экскрементов в аммонийный азот, перевод аммонийного азота в неорганической форме, который появляется в процессе разложения загрязнений и выделяемого выращиваемой рыбой через почки, жабры и кожные покровы, в нитритную форму, а после в нитратную.

Этапы превращения азота производятся различными группами микробного населения биологической плёнки оборудования биологической очистки. Это финишный процесс аэробного превращения азотных соединений.

На заметку. Для получения икры в УЗВ целесообразно и лучше всего выращивать бестера, который быстрее созревает для дачи черной икры. Первый раз самка бестера даёт икры не более семи процентов от своего веса, далее выход икры возрастает до 20%! Обычный осётр даёт в два раза меньше черной икры.

Далее превращение нитратов в свободный азот (газ) осуществляется анаэробными бактериями при ограничении поступления кислорода. Этот процесс носит название денитрификация, и выполняется в денитрификаторах. При этом требуется поддержание энергетического питания бактерий подачей в систему этанола и мелассы. Газообразный азот выводится из УЗВ в окружающую атмосферу.

На фото кормление речного угря в УЗВ

Фото содержание маточного стада осетровых в УЗВ

Полносистемная установка замкнутого водоснабжения

Полносистемные УЗВ по выращиванию рыбы не получили распространения в промышленном производстве рыбы, т.к. при процессах денитрификации необходимо соблюдение условий для стабильного использования оборудования УЗВ.

Процессы денитрификации проходят по различным схемам, в подавляющем числе которых происходит образование имеющих резкий запах ядовитых конечных продуктов. Даже при небольшом отклонении от режима работы денитрификаторов в установках замкнутого водоснабжения, эти вещества обычно приводят к гибели всей разводимой рыбы.

Денитрификация сложна в управлении и не даёт полную гарантию по результату работы УЗВ.

Другие замкнутые системы по выращиванию рыбы, в которых отсутствует процесс конечной анаэробной денитрификации оборачиваемой воды, не могут называться УЗВ.

В них процесс переработки азотных соединений завершается на стадии нитратов. Уменьшение их содержания до уровня, безопасного для рыбы, осуществляется путём разбавления за счет поступления в УЗВ проточной воды.

При этом происходит удаление части оборотной воды, имеющей повышенное содержание нитратов.

На фото кормление тиляпии в установке замкнутого водоснабжения

Системы оборотного водоснабжения в УЗВ для выращивания рыбы

Тем не менее, системы оборотного водоснабжения с биологической очисткой воды, которые не имеют денитрификаторов, называют УЗВ.

Читайте также:  Грядки для капусты своими руками

Общепринято установками замкнутого водоснабжения называть системы, в которых пополнение свежей воды не превышает за сутки уровня в 30 процентов от объема оборотной воды. А связано это с тем, что термин способствует более легкому получению разрешительной документации вводимых проектов с органами власти.

Но нужно понимать принципиальную разницу – в УЗВ для разведения рыбы осуществляется регенерация всей оборотной воды по соединениям азота, а при подпитке устраняются только невозвратные механические потери. Подобные системы функционируютт в бессточном режиме.

В УЗВ по разведению рыбы только с аэробной биологической очисткой превращение азотных соединений заканчивается на стадии нитратов.

Нужно понимать, что в рекламных материалах по УЗВ показатели уровня замены воды на уровне в 5 – 10 процентов в сутки не совсем корректны. Уровень подпитки напрямую зависит от нагрузки установки по внесению кормов, и чем больше эта нагрузка (либо чем выше плотность содержания в УЗВ рыбы), тем нитраты быстрее накапливаются, и тем большая подпитка воды требуется.

Одна система УЗВ может работать как при 5, так и 20 процентов подпитки – всё зависит от нагрузки на неё.

Фото карпов кои, выращиваемых в УЗВ

Показатели продуктивности УЗВ

Продуктивность рыбы в УЗВ

При разведении в УЗВ сибирского (ленского) осётра, радужной форели от начальной массы в 3 грамма за 12 месяцев рыбы достигают массы в 1,5 кг. Для достижения подобного веса при прудовом разведении необходимо 2,5 – 3 года.

При выращивании клариевого (африканского) сома от его зарыбления в УЗВ (масса малька 3 гр) до достижения веса в 1,2 килограмма проходит 6 месяцев, в естественных условиях клариевый сом в нашей стране не растёт.

Речной (европейский) угорь, судак набирают вес в УЗВ от 1 грамма до 350 гр за 1 год.

Разводимая в установках замкнутого водоснабжения тиляпия за год набирает вес 700 грамм.

Виды рыб, которые с успехом выращивают в УЗВ

На заметку. В УЗВ возможно и выращивание такой рыбы, как карп. Из икры за 9 месяцев получают товарного карпа весом в полкило (в пруду карп набирает данную навеску только к 3-м годам).

В УЗВ возможно получать с квадратного метра используемой площади от одного центнера до 1,5 тонн рыбы в год.

Экономическую эффективность работы УЗВ, окупаемость вложений перед созданием рыбоводного предприятия целесообразно просчитать в бизнес-плане .

Типы бассейнов для УЗВ

Рисунок 2. Типы бассейнов для УЗВ: овальный, круглый и прямоугольный

Шкала оценок бассейнов УЗВ (по пятибальной шкале):

Источник

Пластиковая емкость для воды открытая круглая 1700 л

Объем, л: 1700
Диаметр, мм: 1600
Высота, мм: 890

Емкость, открытая объемом 1700 литров, изготовлена из полиэтилена устойчивого к воздействию ультрафиолетовых лучей, данный факт позволит использовать её на протяжении длительного времени. Материал не имеет собственного запаха и не впитывает посторонних, не оказывает вредного влияния на окружающую среду и её обитателей.

Широкий температурный диапазон от +40 до -40 градусов, позволит оставить бассейн на открытом воздухе не опасаясь за его целостность.

Форма и размеры хорошо подойдут для обустройства небольшого декоративного пруда или детского бассейна, а также в качестве небольшой купели.

Пластиковая емкость для воды открытая прямоугольная 600 л

Объем, л: 600
Высота, мм: 648
Длина, мм: 1295
Ширина, мм: 907
Толщина, мм: 5

Емкость пластиковая открытая объемом 600 литров, имеют форму ванны с размерами ДхШхВ = 1160х810х600 мм.

Емкость открытая 600 литров изготавливается из светостабилизированного полиэтилена – устойчивого к солнечным лучам, материал не имеет собственного запаха и не впитывает посторонних, не оказывает вредного влияния на окружающую среду и её обитателей. Такая ванна наибольшее применение нашла в рыбной и пищевой сфере. Не найти более удобной тары для передержки живой рыбы, раков, разведения мальков. Учитывая, что емкость из полиэтилена не изменяет своих свойств в агрессивной среде, не подвержена воздействию солевых растворов, она широко используется для засолки овощей, рыбы и других продуктов. Ее можно использовать многократно, достаточно только вымыть.

Читайте также:  Удобрения при осенняя обработка почвы

Рекомендуемая температура окружающей среды и жидкости от -40°С до +50°С.

Продукция сертифицирована. Заводская гарантия 1 год.

Пластиковая емкость для воды открытая прямоугольная 500 л

Объем, л: 500
Высота, мм: 300
Длина, мм: 1800
Ширина, мм: 1200
Толщина, мм: 5

Емкость пластиковая открытая объемом 500 литров, имеют форму ванны с размерами ДхШхВ = 1800х1200х300 мм.

Емкость открытая 500 литров изготавливается из светостабилизированного полиэтилена – устойчивого к солнечным лучам, материал не имеет собственного запаха и не впитывает посторонних, не оказывает вредного влияния на окружающую среду и её обитателей. Такая ванна была заказана цирком для содержания молодых морских котиков дрессировщика Запашного, дизайнеры используют для оформления декоративного пруда, а в производстве она вполне подойдет для гальванического цеха.

Рекомендуемая температура окружающей среды и жидкости от -40°С до +50°С.

Продукция сертифицирована. Заводская гарантия 1 год.

Сборно разборные бассейны Iaso (Испания)

Iaso (Испания)

Сборно-разборные бассейны IASO выполнены из анодированного алюминиевого профиля и высококачественной ткани полиэстер, покрытой ПВХ с обеих сторон.

Лайнер из полиэфирной ткани разработан специально для рыбной отрасли. Покрытие из ПВХ имеет предел прочности более 240 кг/см 2 и по составу безопасен для рыб. Тёмно-синий цвет покрытия создаёт для гидробионтов спокойную среду обитания.

Конструкция каркаса из качественного анодированного алюминия обеспечивает простой монтаж в течение 15 минут, без применения каких-либо инструментов. Материал каркаса выдерживает при необходимости высокие нагрузки.

Модельный ряд: смотрите в Подробнее.

Конструкция узла поступления воды в цилиндрический бассейн

Конструкция узла поступления воды в цилиндрический бассейн

В цилиндрическом бассейне вода поступает по касательной к его стенкам (по внешнему радиусу) так, чтобы угловая скорость воды создавала вращательный ток к центру. Однако в ряде работ (Burrows and Chenoweth, 1955; Larmoyeux et al., 1973; Wheaton, 1977; Skybakmoen, 1989; Tvinnereim and Skybakmoen, 1989; Paul et al., 1991; Goldsmith and Wang, 1993) отмечается, что прилипание, которое существуют между первичным потоком и дном, и стенками емкости приводит к образованию вторичного радиального потока, направленного от стенок к центру дна, и от центра дна к поверхности. Этот поток несет осаждаемые частицы к донному дренажу и, таким образом, порождает желаемый эффект самоочистки бассейна. К сожалению, в цилиндрической емкости с таким течением валиковидная область около центрального дренажа приобретает очень низкую скорость вращения и плохо перемешивается. Размеры этой «мертвой» зоны зависят от особенностей узла поступления воды (по касательной к стенкам), соотношения «диаметр: глубина» и общей скорости потока, покидающего центральный дренаж. Так как мертвая зона имеет низкую скорость движения воды и плохо перемешивается, она может снизить эффективность использования емкости культивирования за счет образования коротких замкнутых потоков, локальных градиентов с различными показателями воды (в особенности, концентрации растворенного кислорода) и неподвижных областей, где может скапливаться осадок.

В бассейне показано направление вторичного радиального течения, а также специфические области водной массы

Эффект самоочистки связан с общей скоростью потока, покидающего центральный дренаж. Кроме того, удаление осажденных частиц также зависит от способности рыбы взмучивать осадок. Это объясняет тот факт, что в бассейне с более высокой плотностью посадки рыб самоочистка проходит лучше, чем в емкости с низкой плотностью посадки. Так как осаждаемые частицы в рыбоводстве имеют специфическую плотность, которая относительно близка к плотности воды (1,05-1,2 против 1,0 у воды; Chen et al., 1993; Potter, 1997) наклон плоскости дна по направлению к центральному дренажу не улучшает способность к самоочистке. Наклонное дно удобно лишь в случаях осушения бассейна при его очистке.

Скоростью вращения можно управлять с помощью создания специфических узлов подвода воды. Это позволяет создавать адекватное для рыб течение (Klapsis and Burley, 1984; Skybakmoen, 1989; Tvinnereim and Skybakmoen, 1989). Твиннерайм и Скайбакмон (Tvinnereim and Skybakmoen, 1989) докладывали о том, что скорость течения в бассейне можно контролировать путем изменения импульса силы (Fi):

Читайте также:  Чем накрыть грядку с морковью

Fi = ρ • Q • (νorif — νrota), где ρ – плотность воды (кг/м3), Q – скорость входящего потока (м3/с), νorif – скорость через узел выхода воды в емкость (отверстия или щели) (м/с), νrota – скорость вращения в бассейне (м/с). Импульс на входе воды по большей части рассеивается, потому что создается турбулентность и вращение в зоне вращения. Импульс силы, и, соответственно, скорость вращения в емкости можно регулировать путем подстройки скорости входящего потока воды или размера/числа отверстий в узле поступления воды (Tvinnereim and Skybakmoen, 1989). В своей работе Пауль (Paul et al., 1991) отметил, что скорость вращения в емкости грубо пропорциональна скорости воды через отверстия узла её поступления, особенно, около стенок:

νrota ≈ α • νorif, где α – константа пропорциональности, в основном равная 0,15-0,20 (личные наблюдения A. Skybakmoen, AGA AB, Лидингё, Швеция), зависящая от конструкции узла поступления воды.

На характер потока влияют: 1. однородность скорости воды по всей емкости, 2. сила вторичного радиального потока вдоль дна емкости навстречу центральному дренажу (т.е. способность перемещать осадок в дренаж) и 3. однородность перемешивания воды. Скайбакмон (Skybakmoen, 1989) и Твиннерайм и Скайбакмон (Tvinnereim and Skybakmoen, 1989) сравнивали гидравлику в емкости, которая возникает при поступлении воды по касательной по внешнему радиусу бассейна с такими системами как:

1. традиционный открытый патрубок;

2. короткая, горизонтальная, погруженная под воду труба, ось которой направлена к центру бассейна. На удалении от конца трубы по всей её длине располагаются отверстия (на 60 см ниже поверхности воды);

3. вертикальная, погруженная в воду распределительная труба с отверстиями вдоль всей её длины;

4. труба, совмещающая в себе вертикальную и горизонтальную ветви. Труба для поступления воды, совмещающая в себе вертикальную и горизонтальную ветви

Авторы отметили, что труба с открытым концом создает неоднородную скорость по всей емкости (т.е. более высокая скорость у стенок); обеспечивает плохое перемешивание в мертвой зоне, что вызвано образованием коротких замкнутых потоков; на протяжении всей глубины бассейна происходит взмучивание осадка, который плохо смывается со дна. В отношении горизонтальной ориентации погруженной трубы они отметили хорошее перемешивание и обмен воды по всему объему, но слабое и менее стабильное течение на дне (для смывания осадка). Вертикальная ориентация погруженной трубы давало лучшее качество самоочистки, чем в случае открытого патрубка или горизонтальной ориентации, но образующееся сильное течение на дне (ответственное за удаление осадка) также приводило к плохому перемешиванию в мертвой зоне и малым круговоротам, которые ухудшали время полного водного обмена.

Авторы предложили организовать комбинированную конструкцию с горизонтальной и вертикальной погруженной трубами. Вертикальная ветвь располагается на некотором удалении от стенки так, чтобы рыба могла проходить между трубой и стенкой. Этот способ обеспечивает несколько преимуществ:

1. достигается однородное перемешивание;

2. предотвращается образование малых круговоротов воды;

3. создается одинаковая скорость на глубине и по периметру бассейна;

4. эффективно переносятся осаждаемые частицы со дна в центральный дренаж.

В крупных цилиндрических бассейнах, диаметром >6 метров, по периметру устанавливаются многочисленные распределительные трубы. Это позволяет улучшить удаление осадка, однородность скорости перемешивания и качества воды (Klapsis and Burley, 1985). Однако трубы для подвода воды затрудняют работу с рыбой. Данная проблема может быть решена включением отверстий в стенку бассейна как в случае емкостей с пересекающимися потоками (Watten and Johnson, 1990). К сожалению, с точки зрения экономических соображений это «элегантное» решение может оказаться нецелесообразным. Кроме того, подобная вставка отверстий и щелей предполагает создание потоков, параллельных стенке, и может не обеспечивать такого хорошего распределения потока, которое возможно при установке вертикальной трубы на удалении от стенки. Необходимо создать такую систему подачи воды, которая бы убиралась во время сбора рыбы или зарыбления, либо устройство для сбора должно работать в присутствии труб.

Источник

Adblock
detector