Меню

Биогеохимическое районирование почвы основано

БИОГЕОХИМИЧЕСКИЕ ЗОНЫ И ПРОВИНЦИИ

Как показал В.И. Вернадский, содержание, миграция и аккумуляция химических элементов обусловлены всем комплексом природных факторов. Позже, разрабатывая идеи биогеохимического районирования, В.В. Ковальский рассматривал в единстве как геохимическую среду (породы, природные воды, почвы), так и физиологические и биохимические особенности организмов. При таком анализе выявляются связи между недостатком или избытком микроэлементов, их количественными соотношениями и состоянием живых организмов вплоть до появления эндемических (местных) заболеваний, а результаты исследований служат основанием для биогеохимического районирования. В основу такого районирования В.В. Ковальский положил биогеохимические зоны и биогеохимические провинции, выполненная им схематическая карта для бывшего СССР показана на . Всего он выделил четыре зоны на территории бывшего СССР, которые характеризуются единством зональности почвообразования, климата, миграции элементов и типом биологических реакций организмов на геохимические факторы среды.

Таежно-лесная нечерноземная зона. Реакции организмов в целом обусловлены недостатком кальция, фосфора, кобальта (73% всех почв), меди (70%), иода (80%), молибдена (53%), бора (50%), цинка (49%), оптимумом содержания марганца (72%), относительным избытком, особенно в поймах рек, стронция (15%).

Лесостепная и степная черноземная зона. В этой зоне характерно оптимальное содержание в почве кальция и кобальта (96% для серых лесных и 77% для черноземных почв), меди (72-75%), марганца (71-75%), иод, цинк и молибден сбалансированы с другими элементами. Иногда только наблюдается недостаток подвижного марганца.

Сухостепная, пустынная, полупустынная зона. На живые организмы влияют повышенные уровни содержания сульфатов, бора (88%), цинка (76%), часто стронция (47%), молибдена (40%), низкое содержание меди (40%), иногда кобальта (52%).

Горные зоны. В горных почвах соотношение и концентрации микроэлементов изменяются в широких пределах, поэтому возможны различные реакции организмов, но часто проявляется недостаток иода, кобальта, меди, цинка, хотя возможны и варианты избытка меди, цинка, кобальта, молибдена, стронция и других элементов. В пределах зон выделены провинции, которые показаны на карте условными значками, сущность которых определена в легенде. Значение тех или иных провинций можно раскрыть на нескольких примерах. Так, в провинциях с недостатком кобальта ослабляется синтез витамина В12 . Последнее характерно для нечерноземной зоны, где нередко развивается гипо- или авитаминоз В12 . При избытке молибдена и нарушении его соотношения с медью усиливается синтез фермента ксантиноксидазы, у животных развивается молибденовый токсикоз, а у человека — эндемическая молибденовая подагра.

Реакция животных на недостаток меди проявляется как вследствие ее низкого содержания в кормах, так и при избытке молибдена и сульфатов. В результате тормозится синтез некоторых окислительных ферментов. У овец и крупного рогатого скота возникает своеобразная болезнь, называемая эндемической атаксией.

Если в почвах и кормах много бора, то понижается активность пищеварительных ферментов, что вызывает эндемический борный энтерит. При недостатке иода нарушается функция щитовидной железы, она увеличивается, возникает эндемический зоб. При избытке селена происходят деформация копыт, облысение овец.

Чтобы устранить эти негативные явления, прибегают к внесению в почвы различных микроэлементов, применяют специальные подкормки для животных. Приведенные примеры еще раз показывают необходимость для живых организмов практически всех элементов Периодической системы Д.И. Менделеева. Это позволяет еще раз говорить о том, что нет токсичных элементов, а есть их токсические концентрации.

Источник

Биогеохимическое районирование.

В.В. Ковальский рассматривал в единстве и геохимическую среду и физиологические, и биохимические особенности организмов. С этих позиций выявляются корреляционные связи между избытком и недостатком элементов и состоянием живых организмов, вплоть до выделения эндемических (местных) заболеваний.

Это проявляется в результате биогеохимического районирования, с выделением биогеохимических зон и провинций. На территории СНГ выделены 4 зоны, характеризующиеся единством зональности почвообразования, климата, миграции элементов и типов биологических реакций организмов на геохимические факторы среды (рис. 12.2).

Таежно-лесная нечерноземная зона определяется недостатком Ca, P, Co (73% всех почв), Cu (70%), Mo (70%), В (50%), Zn (49%), оптимумом содержания Mn (72%), относительным избытком Sr (15%).

Лесная и степная черноземная зона характеризуется оптимумом Ca и Co (96% для серых лесных и 77% для черноземных почв), Cu (72-75%), Mn (71-75%); I, Zn и Mo сбалансированы; иногда отмечен недостаток подвижного Mn.

Степная, пустынная и полупустынная зоны имеют повышенные уровни содержания сульфатов, В (88%), Zn (76%), часто Sr (47%), Mo (40%), низкое Cu (40%), иногда Co (52%).

В горных зонах диапазон концентраций изменчив, но часто отмечается недостаток I, Co, Cu, Zn, хотя возможны и варианты избытка Cu, Zn, Co, Mo, Sr и других.

Биогеохимические провинции. Медицинская география.

А.П. Виноградов к биогеохимическим провинциям относил территории, где флора, фауна, а в ряде случаев и люди резко реагируют на содержание в атмосфере, почвах, водах, продуктах питания определенных химических элементов.

Эти провинции с резкой недостаточностью или избыточностью какого-то химического элемента играли важную роль в геологическом прошлом, подвергаясь биологической изменчивости при прохождении через биогеохимические барьеры.

С позиций геохимии ландшафта, по А.И. Перельману, систематика биогеохимических провинций должна быть основана на строгих геохимических критериях, к которым, в первую очередь, относятся типоморфные элементы и геохимия природных вод. Ведь почвенные растворы, поверхностные и подземные воды служат тем источником, откуда большинство элементов поступают в растения, а затем в организм животных и человека.

А.И. Перельман выделил следующие типы и классы биогеохимических провинций

1. типа S и, в частности, класса S1, формируются на участках присутствия сульфидов, с образованием серной кислоты, при рН до 2-3, а то и до 0, что резко увеличивает подвижность ряда металлов. Выделяются цинковые, медные и другие виды биогеохимических провинций. Для других провинций характерны биогеохимические эндемии — болезни флоры, фауны, людей, связанные преимущественно с избытком элементов.

2. типа W приурочены к гумидному климату. Характерно кислое выщелачивание. Здесь резкий дефицит многих биологически важных элементов. Имеет место минеральное голодание фауны, низкое содержание в организме кальция. Отмечены малые размеры животных, пониженная яйценосность птиц, тонкая скорлупа яиц. Из флоры распространены кислые злаки. К «алюминиевым» растениям относятся плауны, чай.

3. типа V отвечают лесостепям, степям и пустыням. В аридном климате идет слабая миграция кальция. Видообразование в этих условиях оптимально — дефицитных элементов мало.

4. типа F отличаются развитием солонцов, с рН выше 8,5, иногда до 11. Известны содовые солонцы, солончаки, озера, болота, реки. Содержание Ca и Mg низко. Отмечается дефицит многих элементов. Благоприятны условия для миграции и накопления Na, Li, B, Zn, Cu.

К близким выводам подошла и медицинская география. В частности было предложено комплексное эпидемиолого-географическое районирование мира. Выявлены основные закономерности эпидемиологии: пространственная неравномерность эпидемического процесса; рассеяние и концентрация в пространстве эпидемиологических явлений; цикличность в динамике эпидемиологического процесса. Выделено 18 крупных эпидемиолого-географических регионов в мире: Австралийский, Юго-Восточной Азии, Северо-Восточной Азии, Индийский, Юго-Западной Азии, Восточноафриканский, Южноафриканский, Западноафриканский, Центральноафриканский, Средиземноморский, Европейский, Канадско-Гренландский, Североамериканский, Центральноамериканский, Восточно-Американский, Западноамериканский, Южноамериканский, Океанический.

Читайте также:  Изготовление оцинкованных грядок своими руками

Химическая экотоксикология. Экологическая характеристика химических элементов.

Толчком к развитию науки экотоксикология явилось появление в 1962 г. книги Рэчел Карлсон «Молчаливая весна». Три дисциплины — химия, экология и токсикология (учение о токсичности) — были объединены в единую научную дисциплину. Позднее сюда же привлекались знания биохимии, физиологии, популяционной генетики.

Экотоксикантами называются токсичные и устойчивые в условиях окружающей среды вещества, способные накапливаться в организмах до опасных уровней концентраций. Чужеродные вещества, не входящие в естественный биотический круговорот, называют ксенобиотиками. Экологическая магнификация — так называется процесс увеличения концентрации химиката в организмах при переходе от низших трофических уровней к высоким.

Исследованием воздействия химических веществ на организм на различных уровнях занимается экотоксикология, так как при подобных исследованиях выявляются изменения состояния и возникают предположения о возможности прямого или косвенного вредного воздействия. Под вредным воздействием понимают явные изменения обычных колебаний численности популяции и долгосрочные или необратимые изменения состояния экосистемы.

К важнейшим задачам относятся выявление вредного воздействия, разработка лечебных мероприятий, выявление изменений видового состава, функциональные нарушения в экосистеме, проблемы сохранения и восстановления экосистем.В живом организме присутствуют многие химические элементы и каждый из них выполняет свою биологическую роль. Из организма человека 60% приходится на воду, 34% — это органические вещества, 6% — неорганические. Основные компоненты органики — C, H, O, а также N, P и S. Из неорганических веществ постоянно присутствует 22 химических элемента: Ca, P, O, Na, Mg, S, B и другие. Гидротированные атомы Na, K, Mg и Ca участвуют в процессах осмоса и передачи нервных сигналов, а также обуславливают прочность костной ткани скелета.

Значение концентраций микроэлементов в органике.

Микроэлементы нужны в биотических дозах и их недостаток или избыток в поступлении в организм сказываются на изменении обменных процессов и др. Минеральные вещества играют огромную физиологическую роль в организме человека и животных, входят в состав всех клеток и соков, обусловливают структуру клеток и тканей; в организме они необходимы для обеспечения всех жизненных процессов дыхания, роста, обмена веществ, образования крови, кровообращении, деятельности центральной нервной системы и оказывают влияние на коллоиды тканей и ферментативные процессы.

Так, недостаток Fe приводит к анемии (малокровию), так как оно входит в состав гема — составной части гемоглобина крови. Избыток Fe вреден: с ним связан сидероз глаз и легких. Главный регулятор Fe в крови — печень.

Цинк входит в структуру активного центра важнейшего гормона инсулина, регулирующего уровень сахара в крови.

Недостаток меди ведет к деструкции кровеносных сосудов, паталогическому росту костей, дефектам в соединительных тканях. Возможно, дефицит меди служит одной из причин рака. Но и избыток ведет к нарушению психики и параличу органов (болезнь Вильсона). В малых дозах Cu используют в медицине для задерживания роста и размножения бактерий (бактериостазное средство). Сульфат Cu(II) применяют для лечения конъюктивитов, прижигания при трахоме в виде глазных карандашей. При ожегах кожи фосфором проводят ее обильное смачивание 5%-ным раствором сульфата меди (II).

Источник

Биогеохимические провинции.

В природе часто возникают ситуации, когда в почве значительно больше каких либо химических элементов (одного или нескольких), чем требуется растению и наоборот.

Химический элемент, находящийся в недостаточном количестве для нормального развития растения, называется дефицитным. Добавление подвижных форм дефицитных элементов в среду увеличивает продукцию живого вещества. В разных условиях к дефицитным элементам чаще всего принадлежат азот, фосфор, калий, фтор, бор, йод, медь и многие другие микроэлементы. Чаще всего в дефиците – именно подвижные формы элемента, хотя валовое содержание элемента в почве может быть достаточно высоким. Это обусловлено влиянием внешних факторов геохимической среды: ее кислотностью (щелочностью), величиной окислительно-восстановительного потенциала, присутствием других элементов.

Избыток элементов в геохимической среде также может сдерживать развитие растений и снижать их урожайность. Элементы, удаление которых из среды увеличивает продукцию живого вещества, называются избыточными. Чаще всего это хлор, сера, натрий, медь, никель, железо, фтор, алюминий и др.

Таким образом, один и тот же элемент может быть дефицитным в одних условиях и избыточным в других.

Резкий дефицит или избыток элементов в среде может приводить к серьезным заболеваниям растений, животных и человека. Такие болезни А.П. Виноградов назвал биогеохимическими эндемиями, а районы их распространения – биогеохимическими провинциями.

Многие тяжелые металлы очень токсичны. Но хорошо известно, что марганец, медь, цинк, кобальт, никель, молибден и другие тяжелые металлы в малых концентрациях необходимы растениям.

Диапазон содержаний тяжелых металлов в природе очень велик. Например по данным В.В. Ковальского, в почвоообазующих породах содержание меди может различаться в 30-60 раз, цинка в 25-170 раз, кобальта – в 2000 раз, марганца – в 20 раз, стронция – в 200 раз, молибдена в 5 раз. При среднем содержании меди в почвах, равном 2,5х10-3%, ее количество в различных почвах может отличаться в 1500 раз! Если же принять во внимание и почвы, подверженные техногенному загрязнению, — то даже в несколько тысяч раз. Содержание цинка может меняться в почвах в 1000 раз.

Как считал В.В. Ковальский эти примеры свидетельствуют о геохимической неоднородности (мозаичности) биосферы. При этом живые организмы поглощают из среды все доступные химические элементы, образующие растворимые соединения, или активно превращают нерастворимые соединения в доступные формы.

Отсюда вытекает необходимость биогеохимического районирования биосферы. Термин «биогеохимическая провинция» был введен в науку в 1938 году А.П. Виноградовым.

Биогеохимическая провинция – это область на поверхности Земли, отличающаяся содержанием химических элементов в почвах, водах и других средах.

Следует иметь в виду, что содержание химических элементов в пределах каждой биогеохимической провинции может быть как выше, так и ниже биологического оптимума.

В настоящее время, когда природные и техногенные миграционные потоки веществ образуют единый техно-биогеохимичекий поток, многие ученые объединяют биогеохимические, техногенные и геохимические аномалии в техно-биогеохимические провинции.

На территории СНГ существуют биогеохимические провинции с дефицитом йода в почвах и кормах; дефицитом и избытком фтора в питьевой воде; избытком и дефицитом меди в почвах; дефицитом кобальта, бора, избытком стронция и т.д.

Таким образом, биогеохимические провинции с пониженным содержанием отдельных элементов связаны с особенностями состава почвообразующих пород. Биогеохимические провинции с повышенным содержанием элементов обычно формируются в районах рудных месторождений. Кроме того, повышенные концентрации некоторых элементов могут быть обусловлены выбросами промышленных предприятий и автотранспорта.

Ранее мы отмечали, что биогеохимические эндемии обусловлены избытком или недостатком тех или иных химических элементов. Давайте кратко рассмотрим влияние концентраций некоторых элементов на живые организмы.

Медь. В концентрациях свыше 60х10-4% токсична для живых организмов. Но есть культуры, нуждающиеся в повышенных количествах этого элемента. Например, чай, который может накапливать меди до 15 мг/кг сухого вещества.

Читайте также:  Удобрение для травы газонной осень

При резком недостатке меди (менее 6-15х10-4%) нарушаются процессы метаболизма растений, они заболевают: засыхают листья, задерживается развитие корневой системы, проявляется хлороз, у злаков не формируются колосья, у фруктовых деревьев – желтеют листья. У животных наблюдаются анемии, заболевания костной системы. Но и при избыточных количествах меди также наблюдаются анемии, возможны поражения печени. На переизбыток меди растения также реагируют хлорозом, как и на недостаток.

Цинк. В больших количествах (более 7х10-3%) токсичен для растений, так как наблюдается угнетение процессов окисления. Недостаток цинка (3х10-3%) приводит к задержке или прекращению роста большинства растений. Заболевают паракератозом свиньи.

Марганец. У многих растений при недостатке марганца (менее 4х10-2%) снижается усвояемость йода,. Большинство растений при дефиците марганца накапливает железо. У животных и человека развиваются заболевания костной системы, возможно развитие зобной болезни.

Избыток марганца, особенно в кислых почвах, (более 30х10-2%) приводит к уменьшению содержаний железа в растениях и вызывает у них хлороз, проявляющийся в пятнистости листьев.

Бор. Недостаток бора оказывает влияние только на растения, так как животным этот элемент не нужен. При содержании бора в почвах менее 6х10-4% растения, как правило, погибают. Заболевание начинается с гибели точки роста, отмирания корней, у свеклы недостаток бора вызывает гниль сердечка.

Избыток бора ( более 30х10-4%) вызывает заболевания животных и человека (борные энтериты).

Кобальт. Недостаток кобальта в почве (менее 7х10-4%) приводит к развитию у растений заболевания – безлепестковая анемона. Систематический недостаток кобальта в пище животных и человека также приводит к тяжелым нарушениям и даже вызывает тяжелые заболевания, обусловленные недостатком витамина В12. Эти заболевания выражаются в разрушении волосяного покрова, нарушении функции печени, приводящем к развитию анемии и малокровия.

Молибден. Остро реагирует на недостаток молибдена (до 1,5х10-4%) клевер. Животные, питающиеся растениями, выросшими на почвах с недостатком молибдена, болеют анемией, так как в их организме наблюдается накопление меди.

Наоборот, избыток молибдена в кормах является причиной недостатка меди в организме животных и приводит к развитию молибденоза. При недостатке кальция в пище животных высокое содержание молибдена приводит к развитию заболевания –эндемическая атаксия (поражается желудочно-кишечный тракт) и человек страдает эндемической подагрой – заболеванием суставов.

Свинец. Содержится в почвах в небольших количествах (Кларк – 1,6х10-3%). Повышенное количество свинца обнаруживается в почвах промышленных зон, особенно вдоль автомагистралей. Повышенное содержание свинца в почвах приводит к накоплению его в растениях. Повышение концентрации свинца в пищевых продуктах свыше 10-4% вызывает токсические явления. Поражаются все органы, но наиболее сильно – нервная система. Для человека токсичной считается суточная доза более 0,35 мг. Нейтрализовать свинец в организме человека можно высокими дозами аскорбиновой кислоты, а предотвратить поступление свинца в растения – внесением ме6ди в почву.

Йод. Недостаток этого элемента в пище вызывает заболевание эндемичным зобом. Обусловлено это тем, что йод необходим для синтеза гормонов щитовидной железы. Хотя бы один раз в 30-50 дней организм должен получать новые порции йода в количестве 10-15 мг на каждые 70 кг массы тела. Если йод поступает в организм в меньших количествах, щитовидная железа начинает увеличиваться в размерах и образуется зоб. Это заболевание может сопровождаться резким ухудшением умственных способностей. Причем болезнь может поразить человека в любом возрасте. Если же йода не хватает в пище грудного ребенка, то это может вызвать развитие слабоумия, причем кретинизм сопровождается ухудшением деятельности сердца, теряется слух, зрение, слабеют мышцы, наступает стадия идиотии. В настоящее время многие территории Земли относятся к эндемическим по йоду. В России дефицит йода проявляется в Центральноевропейском регионе, Восточной Сибири, на Урале, Северном Кавказе и Крайнем Севере.

Для предотвращения этих заболеваний в районах с недостатком йода в почвах необходимо вводить в пищу небольшие порции этого элемента. Однако, здесь необходимо проявлять осторожность, т.к. избыток йода также может привести к заболеванию – базедовой болезни (увеличение щитовидки, пучеглазие, сердцебиение).

Следует иметь в виду, что во время хранения йодированной соли потери йода составляют 15-20% в месяц.

Фтор. Недостаток фтора приводит к развитию кариеса, т.к. постепенно разрушается эмаль (в которую входит 0,02% фтора). У некоторых организмов наблюдается деформация костей, их повышенная хрупкость и переломы.

Повышение содержаний фтора может привести к нарушению функций щитовидной железы. При избытке фтора в пище и воде также возникают заболевания зубов – флюороз (разрушение эмали). У животных наблюдаются явления, усиливающие выделение из организма йода, при этом тормозится активность некоторых ферментов.

Установлено, что оптимальной суточной дозой для взрослых людей является 0,6-1,5 мг фтора. Для некоторых животных эта доза может быть выше (до 20 мг на 1 кг массы). Сверх этих норм фтор и его соединения токсичны.

Вдыхание воздуха, содержащего более 0,5 мг/л действует на людей отравляюще, а 0,8 мг/л – смертельно. Средство первой помощи при отравлении фторидами -2% раствор хлорида кальция.

39. очистка населенных местсистемы очистки, сравнительн. Характеристика. Очистка населённых мест — комплекс организационных и технических мероприятий по сбору, транспортировке и обезвреживанию отбросов, образующихся на территории населённых мест. Включает также летнюю и зимнюю уборку улиц, площадей и дворовых территорий. Отбросы загрязняют и заражают среду, окружающую человека: почву, воздух, водоёмы, жилые и общественные здания. Обычно различают твёрдые и жидкие отбросы и атмосферные образования. К твёрдым отбросам относятся: домовый (бытовой) мусор, состоящий из пищевых отходов, квартирного сора и утиля; шлак и зола, удаляемые из центральных котельных; уличный смёт; листья, трава, сучья деревьев в парках и скверах; строительный мусор, образующийся при ремонте, строительстве и сносе зданий; отбросы предприятий общественного питания, торговых и промышленных предприятий. Жидкие отбросы: нечистоты, помои (жидкие хозяйственно-бытовые отбросы неканализованных зданий); жидкие промышленные отходы, спуск которых в канализацию недопустим (отходы нефтепереработки, масла, растворители и прочие). Атмосферные образования: дождевая вода, снег, ледяной скол. Отбросы и атмосферные образования вывозят на специальные сооружения для обезвреживания и утилизации и сплавляют по трубам и каналам городской канализации (См. Канализация).

Большое санитарно-гигиеническое значение имеют рационально организованные сбор и удаление домового мусора. Сбор мусора в зданиях может производиться в один общий сборник (унитарный способ) или в несколько сборников (раздельный способ). В большинстве городов СССР осуществляется общий сбор мусора. В крупных городах пищевые отходы собирают в отдельные сборники и затем используют для откорма свиней.

Мусор из зданий может удаляться по Мусоропроводам, а также гидравлическим и пневматическим способами. В небольших населённых местах и районах городов с малоэтажной застройкой распространён вывозной способ удаления мусора, при котором жители собирают его в квартирные сборники и выносят в дворовые переносные мусоросборники ёмкостью до 100 л или в контейнеры ёмкостью 750 л. В зданиях высотой 5 этажей и более устраивают мусоропроводы. В дальнейшем мусор вывозят мусоровозами (по системе планово-регулярной очистки, с интервалом 1—2 сут). Потребность в мусоровозах обычно составляет 12—15 машин на 100 тыс. жителей. При значительных расстояниях мусор доставляют на мусороперегрузочные станции для перегрузки в большегрузные мусоровозы (вмещающие 30—50 м3 мусора) или используют ж.-д. и водный транспорт. Вывозная система имеет ряд недостатков: загрязнение дворов, применение ручного труда, движение мусоровозов по городу. Гидравлический способ удаления мусора (измельчением в дробилках и спуском в канализационную сеть) не получил значительного распространения. Более совершенным в санитарном и техническом отношениях является мусороудаление с помощью пневматического транспорта. Мусор через мусоропроводы засасывается в систему отводящих уличных труб (диаметром 500—600 мм) вследствие создаваемого в них разрежения и движется в воздушном потоке со скоростью 30 м/сек к месту обезвреживания или перегрузки. Пневматическое удаление мусора, применяемое в некоторых городах за рубежом.

Читайте также:  Рисование для детей осенний урожай

Жидкие отбросы из неканализованных зданий вывозят ассенизационными машинами (автоцистернами ёмкостью 880—3400 л) на сливные станции для последующего отвода в канализационную сеть или на поля ассенизации (земельные участки, используемые для выращивания с.-х. культур).

Обезвреживание мусора в системе О. н. м. осуществляется различными методами с использованием усовершенствованных свалок, мусороперерабатывающих и мусоросжигательных заводов. Распространён метод захоронения мусора (твёрдых отбросов) на усовершенствованных свалках (полигонах) с послойным уплотнением и засыпкой изолирующими слоями земли (0,3 м) через каждые 2 м уплотнённых отбросов. Требуемая площадь 0,3 га на 100 тыс. чел. в год. Утилизация мусора не производится, участки заполненных свалок используют под зелёные насаждения. Мусор, представляющий опасность в эпидемиологическом отношении, сжигается на мусоросжигательных заводах, оборудованных установками для очистки отходящих газов. Один из наиболее эффективных методов обезвреживания мусора — его компостирование и механизированная биотермическая переработка в удобрение и биотопливо на мусороперерабатывающих заводах.

40. Канализация населенных мест. Система очистки. Канализация – комплекс сооружений, оборудования и санитарных мероприятий, обеспечивающих приём сточных вод в месте образования и подачу их к очистным сооружениям.Система трубопроводов для отвода сточных вод называется канализационной сетью.Различают общесплавную и раздельную системы канализации населенных пунктов. При использовании общесплавной системы канализации отводятся и очищаются все виды сточных вод вместе с дождевой водой, при использовании раздельной системы канализации дождевая вода отводится отдельно через систему ливневой канализации.Устройство системы канализации организаций должно соответствовать требованиям действующих строительных норм предъявляемых к канализации, наружным сетям и сооружениям внутреннему водопроводу и канализации зданий, а также требованиям действующих санитарных правил для предприятий общественного питания.Отведение производственных и хозяйственно-бытовых сточных вод осуществляется через наружную канализационную сеть в общую систему централизованных канализационных очистных сооружений, или при отсутствии – по санитарно-эпидемиологическому заключению органов и учреждений госсанэпидслужбы в систему локальных очистных сооружений канализации.Отводимые сточные воды предприятия подразделяют на производственные и бытовые.Предприятия общественного питания оборудуются двумя самостоятельными внутренними системами канализации. Канализационные сети производственных и хозяйственно-бытовых сточных вод должны быть раздельными с самостоятельными выпусками во внутриплощадочную сеть канализации. Это требование обусловлено опасностью попадания во время засора бытовых сточных вод в моечные ванны и технологическое оборудование, что может привести к опасной эпидемиологической ситуации.Сети бытовой и производственной канализации предприятий питания, размещенных в жилых домах и зданиях иного назначения, не объединяются с хозяйственно-фекальной канализацией этих зданий.Предприятия общественного питания при необходимости оборудуются сооружениями для очистки производственных сточных вод открупных взвешенных частиц, от веществ, откладывающихся на стенках труб и затрудняющих работу канализационных сетей. К таким сооружениям относятся песколовки, грязеотстойники, мезгоуловители, чешуеуловители, жироуловители.Горизонтальные отводы канализации от всех производственных помещений должны иметь устройства для прочистки труб и «дыхательные» стояки для исключения засасывающего эффекта при залповых сбросах сточных вод из оборудования.Канализационные стояки не прокладывают в обеденных залах, производственных и складских помещениях.

Системы очистки сточных вод эффективно используются за пределами населенных пунктов, где канализация не может осуществляться с помощью городских инженерных систем. Для решения этой проблемы необходима установка индивидуальных очистных сооружений — комплекса инженерных систем для сбора и переработки сточных вод, поступающих с населённого пункта или промышленного предприятия, предназначенного для очистки стоков от содержащихся в них загрязнений.
Очистные сооружения можно разделить в зависимости от назначения на:
• индивидуальные очистные сооружения,
• локальные очистные сооружения,
• очистные сооружения населенных пунктов,
• промышленные очистные сооружения.
Индивидуальными очистными сооружениями называются сооружения, рассчитанные на одно или несколько строений расположенных в рамках одного земельного участка для частной застройки, и принадлежащего одному владельцу. Локальными очистными сооружениями называются сооружения, обслуживающие группу частных строений или одно здание общественного назначения, расположенные в рамках локальной территории. Очистные сооружения населенных пунктов и промышленные очистные сооружения обслуживают соответственно канализационные сети населенных пунктов и промышленных предприятий различной величины.
Бытовые стоки легко попадают в колодцы, загрязняя питьевую воду. Грунтовые воды и места для купания также необходимо защищать от попадания в них неочищенных стоков.
Системы очистки сточных вод ТОПАС — лучшее на российском рынке оборудование для очистки сточных вод. ТОПАС применим для переработки стоков поступающих с домов, дач, коттеджей, коттеджных поселков, кафе, мотелей, гостиниц и других объектов удаленных от центральной канализации. В основе установки ТОПАС лежит простое и дешевое решение проблемы сточных вод. ТОПАС — это саморегулируемая канализационная система, которая осуществляет полную биологическую переработку стоков при помощи аэрации, отстаивания и удаления избыточного активного ила.
Такая канализационная очистная установка монтируется на собственном участке. Она герметична, отсутствуют зловонные запахи, и это ее преимущество перед канализацией.
В том случаи если установка герметична, стоки не попадают за ее пределы и не отравляют водные горизонты, не протекают в колодцы, не угрожают жизни людей, животных и растений, не загрязняют поверхностные и грунтовые воды, места для купания. Установка биологической очистки ТОПАС — абсолютно герметична. Благодаря современным технологиям, эффективность очистки в установке достигает 98%. В результате пользователь получает абсолютно прозрачную и без запаха техническую воду, пригодную для дальнейшего использования и активный ил типа сапропель — отличное удобрение.
Все вышеперечисленные достоинства имеют место при условии правильного монтажа систем канализации. Если же по каким-то причинам допущены ошибки, то последствия могут быть очень плачевные и пострадают, в первую, очередь владельцы участков ближайших к месту загрязнения.
Некоторые из преимуществ установок глубокой биологической очистки ТОПАС:
— минимальные эксплуатационные расходы и занимаемая площадь;
— простота системы и бесшумная работа;
— автоматическая работа с минимальными требованиями по обслуживанию;
— герметичность.

Источник

Adblock
detector