Эффективность биологического метода очистки почв
Автор: Е. А. Абсеитов, А. У. Амралин, М. Е. Нуралина
Источник: Казахский Агротехнический университет им. С. Сейфуллина г. Астана, 2РГП Центральная лаборатория биоконтроля, сертификации и предклинических испытаний , КН МОН РК
Аннотация
Е. А. Абсеитов, А. У. Амралин, М. Е. Нуралина Эффективность биологического метода очистки почв. В статье рассмотрен один из методов очистки почв.
Содержание работы
В результате загрязнения почв утрачивается сельскохозяйственное значение угодий. В связи с этим необходимо разрабатывать новые и использовать экологически безопасные и экономически обоснованные методы, направленные на интенсификацию процессов очистки почв.
В настоящее время широко используются физические, химические и биологические методы очистки загрязненных почв. Широкое использование получили физические методы, основанные на использовании электрического тока. Это технологии электрохимической и электрокинетической очистки загрязненных почв.
Технологии, основанные на электрохимических методах используются для очистки почвы от хлорированных углеводородов, фенолов и нефтепродуктов и обеззараживания грунта и почвы. При пропускании электрического тока через грунты происходит электролиз воды в поровом пространстве, электрофлотация, электрокоагуляция и электрохимическое окисление. Эффективность окисления фенола — 70–92 %. Эффективность обеззараживания — 95–99 %.
Электрохимическая технология японской фирмы ОБАЯСИ обеспечивает высокую степень очистки от токсичных органических веществ до 25 наименований. Для очистки участка площадью 15 2 м требуется обработка постоянным током напряжением 50 В с общим расходом электроэнергии 5 кВт. Для удаления 90 % кадмия, цианидов, свинца, хрома, ртути и мышьяка требуется три месяца.
Электрокинетические технологии применяют для очистки глинистых и суглинистых почв и грунтов при полной или неполной водонасыщенности от тяжелых металлов, цианидов, хлорорганики, нефти и нефтепродуктов. Основную роль здесь играют процессы электроосмоса и электрофореза. Преимуществом электрокинетической технологии является высокая степень контроля и управления процессом очистки. Исходные концентрации экотоксикантов могут быть снижены с 10–50 мг/кг до 1–10 мг/кг, что вполне укладывается в существующие нормы. Параметры электрокинетического процесса: напряжение на электродах 4–200 В, напряженность поля 20–200 В/м, плотность тока 0,5–5,0 А, расстояние между электродами 2–10 м, глубина их заложения — 2–5,0 м. Эффективность очистки — 80–99 %. Добиться высокой очистки без применения химреагентов или растворов ПАВ невозможно. Применение специальных химических агентов снижает затраты электроэнергии и времени на очистку.
Очистка почв методом промывки осуществляется с использованием различных растворов. Загрязненные нефтью почвы промывают растворами ПАВ, в качестве которых применяют ОП-10 или оксиэтилированные жирные кислоты (ОЖК). При использовании 0,02 % раствора ОП-10 соотношение грунт: раствор равно 1:16, степень очистки — 99,2 %. При очистке дерновокарбонатных почв от нефтепродуктов раствором ОП-10 концентрацией 0,02 % при соотношении грунт: раствор 1:30 степень извлечения составляет 93,5 %. После очистки грунт или почва возвращаются и используются для рекультивации земель. Проблемой является большое количество полученной в процессе очистки воды, загрязненной нефтепродуктами и СПАВ, которую можно очистить на стационарных очистных сооружениях.
Для промывки используются также растворы, с высоким окислительным потенциалом (активный кислород, щелочная среда, активный хлор) с последующим сбором, очисткой дренажных стоков в электрохимическом комплексе. Для обезвреживания грунтов требуется от 12 до 48 месяцев. Нефтепродукты при этом частично вытесняются и извлекаются на очистных сооружениях. Метод очистки загрязненных почв фитоэкстракцией заключается в выращивании на загрязненных почвах растений. Наиболее эффективен этот метод для очистки почв от никеля, цинка и меди. Загрязняющие вещества аккумулируются в корневой системе и в надземной части растений. Для достижения гигиенических нормативов концентраций вредных веществ в почве необходимо несколько циклов роста культур. После сжигают, пепел складируется на полигоне опасных отходов, но объем золы значительно меньше объема загрязненной почвы. Некоторые растения могут аккумулировать в корневой системе и наземной массе значительные количества металлов: более 1000 мг/кг кобальта, меди, хрома, свинца, никеля или, или 10000 мг/кг марганца и цинка в сухом веществе, поэтому их можно использовать в качестве руды для получения металлов [1].
Эффективен биологический метод очистки почв, который заключается в направленной активизации почвенной микрофлоры, внесении микробных препаратов, разлагающих нефть, а также фиторемедиации — снижении загрязнения почвы, основанного на стимуляции естественного почвенного сообщества нефтеокисляющих микроорганизмов в результате их тесного взаимодействия с толерантными к нефти растениями. Фиторемедиация позволяет активно рекультивировать большие территории с относительно низкой, по сравнению с другими технологиями, стоимостью работ при слабом негативном воздействии на окружающую среду. Время восстановления земель сокращается в 3–4 раза. Биопрепараты стимулируют местный почвенный биоценоз и создают благоприятные условия для перехода нефтяных углеводородов в трудноокисляемое состояние. Образуются органические соединения гумусоподобного характера, положительно влияющие на почвенное плодородие. Создан целый ряд биопрепаратов, на основе активно разлагающих нефть микроорганизмов бактерий родов Rhodococcus, Bacillus, Arthrobacter, Acinetobacter, Azotobacter, Alkaligenes, нитевидных актиномицетов Streptomyces, грибов Aspergillus и Penicillium и др.
Разложение нефти в почве обусловлено не только непосредственным действием живых микроорганизмов, входящих в состав биопрепаратов, но и способностью последних влиять на аборигенное микробное сообщество почвы, повышая его способность утилизировать нефть. К таким препаратам относится Альбит, содержащий естественный природный микробный полимер полибета-гидроксимасляную кислоту из почвенных бактерий Bacillus megaterium и Pseudomonas aureofaciens, набор макро- и микроэлементов, хвойный экстракт и другие компоненты. Он стимулирует местный почвенный биоценоз и создает благоприятные условия для перехода нефтяных углеводородов в трудноокисляемое состояние. Образуются органические соединения гумусоподобного характера, положительно влияющие на плодородие почв.
Биопрепарат Альбит способен значительно снижать нефтяное загрязнение почв. Скорость разложения нефти в почве под действием Альбита увеличивается в среднем в 1,67–3,15 раза. В производственных опытах продемонстрировано, что Альбит совместно с высевом нефтетолерантных трав за один вегетационный сезон снижает нефтяное загрязнение почвы в 1,5–10,0 раза [2].
Результаты обследования почв должны учитываться при определении и прогнозе степени их опасности для здоровья и условий проживания населения, разработке мероприятий по их рекультивации, генерального плана и схем районной планировки, при решении очередности санационных мероприятий в рамках комплексных природоохранных программ, оценки эффективности экологического контроля за объектами негативного воздействия.
Источник
Самоочищение почвы: понятие, процессы, этапы, стадия очистки
Необходимые условия
Процесс самоочищения почвы зависит от:
- Структуры. Поскольку песчаные и суперпесчаные почвы имеют большой размер воздушных пор, они хорошо проницаемы для воздуха и воды, необходимых для очищения. Глинистые и торфяные структуры почв гораздо медленнее производят самоочистку.
- Вспахивания. Если земля вспахивается регулярно, то это поможет ускорению процесса и способствует аэрации.
- Бактериальной флоры. Если почва сильно загрязнена органическими веществами, то самоочищение будет крайне тяжелым.
- Природных условий, в которых находится почва.
- Химико-биологического состояния почвы и от степени ее загрязнения.
Процессы самоочищения
Органика, поступающая в почву, сначала переводится в неорганические соединения и минеральные элементы, которые затем используются для питания растений. Остальное постепенно переходит в гумус.
Минерализация
Это процесс перевода органических соединений в минеральные элементы. Первый этап заключается в распаде белков, углеводов и жиров до более простых соединений – соответственно, аммиака, углекислоты и воды, глицерина и жирных кислот.
Нитрификация
Аммиак переводится в нитриты и азотистую кислоту, после этого – в нитраты и азотную кислоту. Этот процесс – нитрификация – делает азот доступным для всех растений и микроорганизмов, которые используют его для питания и строительства клеток.
В почве происходит и обратный процесс – денитрификация, это результат деятельности бактерий, которые восстанавливают аммиак из нитратов. Денитрификация обедняет почву азотом, уменьшая его доступность растениям.
Гумификация
Это заключительная стадия процессов перестройки остатков органики в гумусовые вещества, процесс происходит в верхних слоях почвы. Гумификация – совокупность биохимических реакций, которые происходят с помощью почвенных микроорганизмов, в результате которых получаются специфические гуминовые кислоты, фульвокислоты и их соли, органические кислоты, жирные кислоты, углеводы и соединения углерода. Гуминовые кислоты, как высокополимерные соединения, разлагаются медленнее, чем другие органические соединения, поэтому остаются и накапливаются в почве, становятся основой гумуса. Чем больше его в грунте, тем он считается плодороднее.
Описание 7 типов почв, и какой из них самый плодородный для растенийЧитать
Образующийся под влиянием аэробных и анаэробных бактерий и грибов гумус имеет огромное агротехническое и санитарное значение. Гумус не гниет, не издает неприятный запах, не содержит инфекционных возбудителей.
Способы, от которых почва может очиститься
Для очищения почвы необходимо наличие следующих веществ в ее составе:
Чтобы помочь ускорению процесса, люди пользуются специальными методами, которые обогащают почву данными соединениями и веществами.
- Электрохимическая и электрокинетическая очистки применяется для вывода из земли нефти и фенолов, ртути, свинца и т.д.
- Метод промывки подразумевает дополнительное поверхностное нанесение тех веществ, которые способствуют самоочищению почвы.
- Фитоэкстрация помогает вырастить определенные виды растений на загрязненных участках. Избавляет от соединений тяжелых металлов.
- Фиторемедиация – способ для очищения почвы от нефтепродуктов.
Такие методы применяются для ликвидации последствий аварий и катастроф. Также их можно найти в областях промышленности, связанных с переработкой химических продуктов. Делается это с целью снизить риск экологического вреда.
Очищение почвы происходит как в анаэробных, как и в аэробных условиях.
Анаэробные протекают без использования кислорода обычно с целью обезвреживания и сбраживания осадков. Протекает процесс в две фазы: сперва происходит превращение органического вещества в кислоты и спирты, которые затем переходят в метан и двуокись. Образуются и промежуточные продукты в виде ацетона, метана, спирта и глицерина.
Российские химики придумали способ очистить почву от ядов с помощью растений
Химики из РХТУ имени Д. И. Менделеева и НИЦ «Курчатовский институт» разработали перспективный способ очистки почвы от тяжёлых металлов. Они создали специальные добавки, которые помогают растениям изымать эти токсичные элементы из почвы и при этом не погибать от них.
Известно, что некоторые растения накапливают в себе ядовитые тяжёлые металлы, присутствующие в почве. Это плохая новость, если мы собираемся съесть эти растения. И хорошая, если мы готовы использовать зелёных помощников, чтобы очистить почву. Ведь токсичную биомассу, аккумулировавшую в себе извлечённый из земли яд, можно сжечь, а золу утилизировать.
Такой метод очистки почвы называется фиторемедиацией. Он был изобретён ещё в прошлом веке, но до сих пор дорабатывается и улучшается специалистами. Учёные стремятся, во-первых, заставить растения более интенсивно извлекать из грунта ядовитые вещества. Во-вторых, необходимо компенсировать действие токсинов на сами очищающие растения. Ведь понятно, что если они не будут расти и накапливать биомассу, то никакой очистки не получится.
Этому и была посвящена работа российских химиков. Они изучали возможность очистки почвы от кадмия, никеля и меди с помощью клевера. Толчком к исследованию стал запрос от руководства одного из закрытых мусорных полигонов, в грунте которого накопились эти вредные вещества.
Клевер известен своей способностью накапливать тяжёлые металлы. Химики ещё усилили её с помощью специальной добавки – этилендиаминтетрауксусной кислоты (ЭДТА). Обычно она используется, чтобы помочь растениям извлекать из почвы полезные минеральные вещества, но оказалось, что это работает и с токсичными тяжёлыми металлами.
Однако у ЭДТА есть большой минус: она так плохо разлагается в почве, что в конце концов сама становится загрязнителем. Поэтому исследователи опробовали также другое соединение с не менее зубодробительным названием гидроксиэтилидендифосфоновая кислота (ОЭДФ). Это вещество легко разлагается в почве и полезно для растений.
Чтобы растение не слишком страдало от накопленных тяжёлых металлов, биологи использовали поддерживающие добавки: фитогормоны и соли железа.
Растение страдает от накапливаемых токсинов, но это можно компенсировать специальными добавками.
Фото Анна Макарова и др./РХТУ.
Для проверки работоспособности смеси экспериментаторы ввели в универсальный грунт тяжёлые металлы в количествах, наблюдаемых на мусорном полигоне. В этой почве в течение 31 дня выращивали клевер: одни растения с добавкой ЭДТА, другие – ОЭДФ, а третьи (контрольные) без добавок. Фитогормоны вводили с поливом, а солями железа опрыскивали листья.
Оказалось, что ЭДТА лучше стимулирует накопление металлов. Их содержание выросло по сравнению с контрольными образцами почти в шесть раз. Но от такого количества яда биомасса растения значительно снизилась.
С другой стороны, добавка ОЭДФ увеличивала концентрацию тяжёлых металлов в растении только в 2,6 раза. Зато и биомасса уменьшалась не так сильно, а с помощью фитогормонов и солей железа этот эффект был почти нейтрализован.
Впрочем, у ОЭДФ оказалось неожиданное и неприятное свойство. Почти все тяжёлые металлы, поглощённые растением, накапливались не в его побегах, а в корнях. В некоторых экспериментах содержание кадмия в «корешках» было в сто раз выше, чем в «вершках».
Это подрывает идею очистки почвы по схеме «засеяли клевером, скосили его и сожгли», ведь накопившие яд корни останутся в грунте. Зато, возможно, с помощью ОЭДФ можно будет выращивать злаки и другие съедобные растения на неблагополучных почвах: токсичные металлы останутся в корнях, которые никто и не собирался есть.
Описанные выше эксперименты – важный шаг на пути к схемам очистки почвы, эффективным не только в лаборатории, но и в реальных условиях.
Научная статья с результатами исследования опубликована в журнале Sustainability.
К слову, ранее мы рассказывали о том, как российские учёные спасают растения от загрязнённой почвы с помощью селена. Писали мы и о другой отечественной разработке: искусственной почве, которая заставляет сосны расти в два раза быстрее.
Больше новостей из мира науки вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».
Этапы самоочищения почвы
Самоочищение почвы осуществляется в пять этапов:
- Минерализация – распад органических веществ до неорганических. Углеводы расщепляются до воды и углекислого газа, белки проходят процесс аммонификации, сера превращается в сероводород, а жиры расщепляются на жирные кислоты и глицерин, а затем до воды.
- Гумификация – это процесс трансформации вещества в гумус под влиянием почвенных микроорганизмов. Гумус медленно разлагается на составные части, которые активно усваиваются растениями. На его образование в среднем уходит один или два года при условии соблюдения необходимых условий. В народе гумус называют перегноем, а также его часто используют приверженцы чистого и экологического выращивания растений, который отказались от химических удобрений.
- Нитрификация позволяет аммиаку расщепляться до азотистой кислоты и нитритов. Такая смесь является полезной для роста растений.
- Аэробный процесс гниения состоит из аэрации (поглощение кислорода), распада веществ до неорганических. Также при данном процессе выделяется тепло, способствующее размножению почвенных живых организмов: личинок, червей, водорослей, которые помогают самоочищению почвы.
- Брожение – анаэробный процесс, при котором идет процесс очищения с помощью поглощения энергии и образования зловонных газов.
Мероприятия по санитарной охране почвы
Особенности источников загрязнения почвы, их качественная и количественная характеристики определяют тактику санитарного врача при проведении мероприятий по санитарной охране почвы.
Санитарная охрана почвы — это комплекс мероприятий (организационных, законодательных, технологических, гигиенических или научных, санитарных, санитарно-технических, планировочных, землеустроительных, агротехнических), направленных на ограничение поступления в почву механических, химических и биологических загрязнителей до величин, которые не нарушают процессов самоочищения почвы, не приводят к накоплению в выращиваемых растениях вредных веществ в количествах, опасных для здоровья людей и животных, не приводят к загрязнению атмосферного воздуха, поверхностных и подземных водоемов, а также не ограничивают использование почвы в сельском хозяйстве.
Цель санитарной охраны почвы состоит в сохранении такого ее качества, при котором почва не являлась бы фактором передачи заразных для человека и животных заболеваний и не приводила бы к прямому или опосредованному при поступлении ЭХВ по экологическим цепочкам (почва — растение — человек; почва — растение — животное — человек; почва — атмосферный воздух — человек; почва — вода — человек и др.), острому или хроническому отравлению с возможными отдаленными последствиями.
Мероприятия по санитарной охране почвы можно подразделить на:
1) законодательные, организационные и административные;
2) технологические, направленные на создание безотходных и малоотходных технологических схем производства, уменьшающих или снижающих до минимума образование отходов, а также улучшающих технологию обезвреживания отходов;
3) санитарно-технические, предусматривающие сбор, удаление, обеззараживание и утилизацию отходов, загрязняющих почву (санитарная очистка населенных мест);
4) планировочные, сущность которых заключается в выборе земельных участков для строительства очистных сооружений, научного обоснования и соблюдения величины санитарно-защитных зон (СЗЗ) между очистными сооружениями и селитебной территорией населенного пункта, жилыми и общественными зданиями и местами водозабора, выборе схем движения спецавтотранспорта;
5) научные, направленные на разработку гигиенических нормативов для оценки санитарного состояния почвы при поступлении органических, биологических (патогенные и условно-патогенные вирусы, бактерии, простейшие, яйца гельминтов) и химических (пестициды, тяжелые металлы, бенз(а)пирен и др.) загрязнителей.
Источник