Меню

Биологическая очистка почв растениями

Очистка почвы от загрязнений

Может случиться, что земля на загородном участке будет сильно загрязнена прорвавшимися из септика сточными водами, удобрениями, смытыми весной с полей, дизтопливом и т.д. Неочищенная почва на долгое время станет источником постоянного токсического заражения всего, что с ней соприкасается. Первое, что страдает от загрязнений в грунте — садовые и декоративные растения, а также неглубокие источники воды, которыми Вы пользуетесь. Иногда такое заражение ничем себя внешне не проявляет и действует незаметно. Некоторые вредные вещества способны накапливаться в организме и лишь по прошествии времени оказывают негативное воздействие на здоровье.

Если существуют сомнения в химической и бактериологической чистоте загородного участка, надо сделать лабораторный анализ почвы, овощей и фруктов, собираемых с дачных плантаций, и воды. Воду необходимо проверить, если она попадает в дом из мелких и средних по глубине источников — колодцев, песчаных скважин. Чрезмерное количество некоторых химических соединений или уровень кислотности почвы может отрицательно влиять на сохранность бетонных, металлических и прочих подземных конструкций.

Конечно, почва как часть биосферы стремиться естественным образом нейтрализовать чужеродные для нее вещества и соединения. Но этот процесс занимает очень много времени. При слишком высокой концентрации загрязнений механизм естественного природного очищения и восстановления может не работать.

экспресс-анализ почвы на загрязнения

Существуют эффективные технологии по очистке хозяйственно-бытовых стоков. Но как вернуть верхнему слою почвы его плодородные свойства и экологическую чистоту? Рассмотрим современные методы восстановления естественных природных качеств грунта.

Способы очистки почвы от загрязнений

По принципу действия методы очистки почвы делятся на три типа:

  • химические
  • физические
  • биологические

Не все из перечисленных способов из-за своей радикальности подходят для восстановления экологии загородного участка и применяются для решения масштабных промышленных задач. Но возможны ситуации, когда лишь таким способом можно очистить землю от посторонних веществ — например, случайно пролили бочку солярки для котла отопления — и затем вернуть ее к жизни с помощью рекультивации. Часть методов производят сложное воздействие на почву и могут быть отнесены сразу к двум типам. Химический метод очистки почвыхимическая очистка почвы При химической очистке почвы от загрязнений используется метод промывки. Делаются специальные растворы из поверхностно-активных веществ или растворы, содержащие сильные окислители — активный кислород, хлорсодержащие соединения, а также щелочные растворы. Выщелачивание осуществляется с помощью 2%-ого раствора соляной кислоты. При выщелачивании содержание тяжелых металлов (цинк, свинец, кадмий, никель, медь, мышьяк) снижается на 85-95%. Так как при промывке растворы попадает в почву, непосредственно проникая во все поры между частицами, эффективность данного метода очень высокая. После очистки промывкой следует сделать рекультивацию почвы. Недостатки метода: нужна очистка почвы от соединений хлора. Метод не подходит для очистки большого объема грунта. Физико-химические методы очистки почвы Самый простой физический метод восстановления почвы — снять верхний слой и заменить его чистым, незараженным. Но не всегда есть возможность найти достаточное количество свободной и плодородной почвы. Электрофизический метод очистки — используется для удаления из почвы нефтепродуктов, фенолов и хлорсодержащих углеводородов. В основе метода лежит эффект электролиза воды при прохождении электрического тока через почву. Сложные загрязняющие соединения при таком воздействии активно окисляются и распадаются на менее вредные простые составляющие. Метод электрофизической очистки позволяет очищать почву от опасных соединений на основе свинца, ртути, кадмия, мышьяка и т.д. схема электрохимической очистки почвы (метод электролиза) В зависимости от условий в грунте и использованного дополнительного оборудования кроме электролиза могут быть использованы другие варианты метода: электрокоагуляция, электрохимическое окисление, электрофлотация, электроосмос, электрокинетический метод и некоторые другие. Практически все перечисленные способы электроочистки почвы технически сложны и дороги. Термический метод очистки почвы Термический метод очистки можно отнести к физическому. В зависимости от типа загрязнений нагрев может производиться как на воздухе, так и в вакууме — в специальных герметичных установках. Метод применяется для освобождения почвы от нефтепродуктов, масел, бензина, от некоторых цветных металлов, от галогеносодержащих и органических соединений. Углеводороды выгорают при нагреве материала до + 800 С. Восстановить свойства почвы после такого воздействия можно добавлением компоста или минеральных удобрений. Существуют не только стационарные, но и передвижные термические установки на автомобильном шасси. Во всем мире ежегодно термическим методом очищаются миллионы тонн почвы. термическая очистка почвы Очень сильный нагрев до сплавления частиц почвы проводится с помощью электродов, опускаемых в землю. Данный электро-термический метод используется для связывания в невымываемые грунтовыми водами формы таких опасных загрязнителей, как тяжелые металлы и радионуклиды. Биологические методы очистки почвы Фиторемедиация — комплекс методов использования растений для очистки сточных вод, почвы и атмосферы от различных типов загрязнений. В свою очередь фиторемедиация является составной частью еще более широкой методики биоремедиации. Рассмотрим фито-методы для очистки почвы. Метод фитоэкстракции — на загрязненном участке высаживаются специально отобранные растения. В силу своих биологических особенностей некоторые виды флоры способны поглощать и накапливать в корнях, стеблях и листьях соединения меди, цинка, кобальта, никеля, свинца, хрома, тем самым снижая содержание этих элементов в земле. Для более полного восстановления участка почвы необходимо обеспечить несколько циклов произрастания данных растительных видов. По завершении процесса фитоэкстракции все растения необходимо собрать и сжечь. При этом продукты сгорания следует захоронить на специальном полигоне для отходов, так как в пепле сохранится высокое содержание вредных элементов. Метод фитостабилизации немного отличается от фитоэкстракции. Используемые растения не поглощают, но осаждают в почве рядом с корнями опасные химические соединения, почвенные бактерии способны переработать некоторые из них в менее опасные. В результате соединения переводятся в неактивную и мало подвижную форму, чем снижается риск их дальнейшего распространения. ярутка полевая — поглощает из почвы тяжелые металлы Кроме определенных растений, естественным образом произрастающих в природе и пригодных для решения задач очистки почвы и воды, производятся опыты по созданию более эффективных генномодифицированных растений с улучшенными характеристиками. Все биологические методы очистки действенны только при невысоком и среднем уровне загрязнений почвы. Процесс биологической очистки воды и почвы достаточно медленный, но естественный и наименее затратный. Методы биостимуляции и биодеструкции — особые организмы разрушают проникшие в почву загрязнения. Методы используются в основном для нейтрализации различных нефтепродуктов, жиров и масел. Микроорганизмы-деструкторы либо просто добавляются в почву, либо в почве создаются условия — вносятся специальные добавки для ускоренного размножения эндогенных, то есть уже живущих там аэробных бактерий, способных расщеплять углеводороды. На рост бактерий влияет влажность, уровень аэрации и температура почвы, поэтому эффективность данного способа зависит от многих факторов. Лучший метод очистки почвы В сложных случаях, когда в почву попали разные по типу загрязнения, или новое загрязнение наложилось на неизвестное старое, наиболее эффективным будет последовательное использование нескольких способов очистки. Как мы уже сказали выше, вряд ли большинство из перечисленных в статье вариантов можно применить на загородном участке. Но некоторые методы вполне доступны и могут улучшить экологическую ситуацию. Это касается наиболее простых с технической точки зрения физических и биологических методов.

Читайте также:  Условия выращивания томатов теплице

Источник

Российские химики придумали способ очистить почву от ядов с помощью растений

Российские химики помогли клеверу эффективнее очищать почву от тяжёлых металлов.
Фото Pixabay.

Растение страдает от накапливаемых токсинов, но это можно компенсировать специальными добавками.
Фото Анна Макарова и др./РХТУ.

Химики из РХТУ имени Д. И. Менделеева и НИЦ «Курчатовский институт» разработали перспективный способ очистки почвы от тяжёлых металлов. Они создали специальные добавки, которые помогают растениям изымать эти токсичные элементы из почвы и при этом не погибать от них.

Известно, что некоторые растения накапливают в себе ядовитые тяжёлые металлы, присутствующие в почве. Это плохая новость, если мы собираемся съесть эти растения. И хорошая, если мы готовы использовать зелёных помощников, чтобы очистить почву. Ведь токсичную биомассу, аккумулировавшую в себе извлечённый из земли яд, можно сжечь, а золу утилизировать.

Такой метод очистки почвы называется фиторемедиацией. Он был изобретён ещё в прошлом веке, но до сих пор дорабатывается и улучшается специалистами. Учёные стремятся, во-первых, заставить растения более интенсивно извлекать из грунта ядовитые вещества. Во-вторых, необходимо компенсировать действие токсинов на сами очищающие растения. Ведь понятно, что если они не будут расти и накапливать биомассу, то никакой очистки не получится.

Этому и была посвящена работа российских химиков. Они изучали возможность очистки почвы от кадмия, никеля и меди с помощью клевера. Толчком к исследованию стал запрос от руководства одного из закрытых мусорных полигонов, в грунте которого накопились эти вредные вещества.

Клевер известен своей способностью накапливать тяжёлые металлы. Химики ещё усилили её с помощью специальной добавки – этилендиаминтетрауксусной кислоты (ЭДТА). Обычно она используется, чтобы помочь растениям извлекать из почвы полезные минеральные вещества, но оказалось, что это работает и с токсичными тяжёлыми металлами.

Однако у ЭДТА есть большой минус: она так плохо разлагается в почве, что в конце концов сама становится загрязнителем. Поэтому исследователи опробовали также другое соединение с не менее зубодробительным названием гидроксиэтилидендифосфоновая кислота (ОЭДФ). Это вещество легко разлагается в почве и полезно для растений.

Чтобы растение не слишком страдало от накопленных тяжёлых металлов, биологи использовали поддерживающие добавки: фитогормоны и соли железа.

Для проверки работоспособности смеси экспериментаторы ввели в универсальный грунт тяжёлые металлы в количествах, наблюдаемых на мусорном полигоне. В этой почве в течение 31 дня выращивали клевер: одни растения с добавкой ЭДТА, другие – ОЭДФ, а третьи (контрольные) без добавок. Фитогормоны вводили с поливом, а солями железа опрыскивали листья.

Оказалось, что ЭДТА лучше стимулирует накопление металлов. Их содержание выросло по сравнению с контрольными образцами почти в шесть раз. Но от такого количества яда биомасса растения значительно снизилась.

Читайте также:  Можно ли клематис подкормить навозом

С другой стороны, добавка ОЭДФ увеличивала концентрацию тяжёлых металлов в растении только в 2,6 раза. Зато и биомасса уменьшалась не так сильно, а с помощью фитогормонов и солей железа этот эффект был почти нейтрализован.

Впрочем, у ОЭДФ оказалось неожиданное и неприятное свойство. Почти все тяжёлые металлы, поглощённые растением, накапливались не в его побегах, а в корнях. В некоторых экспериментах содержание кадмия в «корешках» было в сто раз выше, чем в «вершках».

Это подрывает идею очистки почвы по схеме «засеяли клевером, скосили его и сожгли», ведь накопившие яд корни останутся в грунте. Зато, возможно, с помощью ОЭДФ можно будет выращивать злаки и другие съедобные растения на неблагополучных почвах: токсичные металлы останутся в корнях, которые никто и не собирался есть.

Описанные выше эксперименты – важный шаг на пути к схемам очистки почвы, эффективным не только в лаборатории, но и в реальных условиях.

Научная статья с результатами исследования опубликована в журнале Sustainability.

К слову, ранее мы рассказывали о том, как российские учёные спасают растения от загрязнённой почвы с помощью селена. Писали мы и о другой отечественной разработке: искусственной почве, которая заставляет сосны расти в два раза быстрее.

Больше новостей из мира науки вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».

Источник

Растения-фильтры и грибы-аккумуляторы. Секреты фитоочистки

З агрязнение окружающей среды оказывает губительное влияние на растительные организмы. Однако многие представители флоры сумели приспособиться к новым условиям обитания. Более того, они научились очищать воздух, почву и воду от вредных химических элементов.

Вредные вещества, поллютанты – пестициды, гербициды, органические растворители, тяжелые металлы, радионуклиды – чаще всего попадают в растительные организмы через корневую систему или листья (через устьица или кутикулу эпидермиса). Соединения, поглощенные корнями, переносятся в надземные части растений или откладываются в запасающих органах.

Разрушающее воздействие

Все загрязняющие вещества могут необратимо влиять на растительные организмы, вызывая как морфологические, так и физиолого-биохимические изменения. Эти воздействия, как правило, носят неспецифичный характер. К примеру, тяжелые металлы и радионуклиды, попадая в растительные клетки, могут взаимодействовать с различными белками, что приводит к изменениям клеточного метаболизма – нарушаются процессы фотосинтеза, дыхания, меняются функции клеточных мембран и т. д.

На морфологическом уровне могут происходить изменения размеров, формы, окраски листьев и цветков, их увядания или опадения. Нередко усыхает крона деревьев, нарушается целостность коры, деформируется корневая система, срастаются некоторые органы. У хвойных деревьев отмечают изменения в размерах хвоинок. При сильных атмосферных загрязнениях у различных древесных и кустарниковых наблюдают нарушение интенсивности ветвления.

Атмосферные поллютанты также могут воздействовать на пыльцу растений, изменяя поверхность и форму пыльцевых зерен, нарушая целостность оболочек и вызывая их слипание.

В целом характер воздействия загрязняющих веществ зависит от их количества в окружающей среде, от их химического строения, а также от генетических и видовых особенностей самих растений, которые различаются по устойчивости к токсическому воздействию повышенных концентраций загрязняющих веществ.

Адаптация и фиторемедиация

Благодаря механизмам адаптации, действующим на разных организменных уровнях, в фитоценозах постепенно отбираются популяции, способные развиваться и расти без серьезных нарушений физиологических процессов при довольно высоких концентрациях загрязняющих веществ в среде.

Так, к примеру, постоянное накопление тяжелых металлов у одних видов сначала вызывает стимуляцию роста, а затем угнетение и гибель. У других же по мере увеличения содержания вредных веществ включается механизм, препятствующий их поглощению. Такое ограниченное поглощение наиболее характерно для опадающих частей (например, листьев) и репродуктивных органов (цветков) растений, неограниченное – для корней, древесины, стеблей.

Способность растительных организмов поглощать, аккумулировать и трансформировать поллютанты используют для фиторемедиации (от греческого phyton – «растение» и латинского remedium – «восстанавливать») – очистки окружающей среды (воды, почвы, атмосферы) при помощи растений.

Растения-фильтры

Травянистые растения применяют для фитостабилизации загрязнений – уменьшения их мобильности в почве за счет адсорбции или осаждения на корнях в виде нерастворимых соединений (фосфатов, карбонатов, гидроксидов и т. д.). При этом обычно выбирают виды, устойчивые к загрязнениям, способные образовывать плотный травянистый покров, связывать поллютанты в процессе интенсивного корневого обмена.

Бобовые растения совместно с микроорганизмами-симбионтами из прикорневой зоны также могут участвовать в биодеградации – разложении различных органических поллютантов.

Улучшить почвы с повышенным содержанием свинца помогают бобовые

Некоторые растения – осоковые, различные виды фасоли, пшеницы, риса – способны к фитотрансформации пестицидов, растворителей, топливных остатков, преобразуя (метаболизируя) их при помощи собственных внутриклеточных ферментных систем.

Крестоцветные используют для фитоэкстракции – извлечения загрязнений из почвы. Они являются аккумуляторами тяжелых металлов и радионуклидов, которые поступают в растения через корневую систему и откладываются в надземных органах (стеблях и листьях). Растительную биомассу затем можно собрать и переработать. Наиболее широко фитоэкстракцию используют для удаления из почвы свинца, цинка, кадмия, никеля.

Читайте также:  Буддийские удобрения для растений

Достаточно активно способны аккумулировать тяжелые металлы также и некоторые виды папоротников, которые являются типичными представителями лесных экосистем.

Страусник обыкновенный способен поглощать из почвы ионы кадмия

Древесные биофильтры

Деревья и кустарники часто используют как эффективные и естественные биофильтры в городах и сельской местности:

  • они обладают высокой продуктивностью;
  • способны поглощать загрязняющие вещества из нескольких почвенных горизонтов, благодаря большой поверхности и объему корневой системы;
  • могут адсорбировать пылевые и аэрозольные частицы на высоте до 30 м;
  • достаточно быстро адаптируются к смене окружающей среды.

Так, к примеру, для создания фитозаградительных барьеров вдоль автомагистралей, улиц с активным движением транспорта для защиты воздушной и водной сред часто высаживают различные виды тополя, клена, каштана, липы. Осину, различные виды берез, сосну используют при проведении комплексных работ по фитомелиорации – очистке почвы от нефти и нефтепродуктов.

Береза способствует очистке почв от нефти и нефтепродуктов

При проведении мероприятий по очистке территорий, загрязненных радионуклидами, высаживают манчьжурский орех и амурский бархат, которые считаются гораздо более устойчивыми к радиационному воздействию, чем хвойные деревья и многие лиственные породы. Эти виды отличаются способностью к быстрому вегетативному восстановлению (корневой и пневой порослью) после облучения, а также обладают сильно развитой листовой и корневой поверхностью, что позволяет им удерживать пылевые частицы и капли воды с радионуклидами и локализовать их в ветках, коре, древесине, плодах.

Клен очищает воду и воздух возле автомагистралей

Большинство деревьев могут вступать в симбиотические взаимоотношения с грибами с формированием микоризы. Микориза улучшает почвенную структуру, связывает ионы тяжелых металлов, защищает растения от токсичных органических соединений, помогая им лучше адаптироваться и выживать в условиях повышенного загрязнения окружающей среды. Благоприятный эффект от такого «сотрудничества» наблюдали, к примеру, для ели обыкновенной, различных видов клена, растущих на урбанизированных территориях в «сожительстве» с грибным мицелием.

Смотрите также:

Корневые симбиозы. Микориза

Грибы внутри тканей корня

Сожительство микоризы и растения, как правило, бывает чрезвычайно взаимовыгодно, что обусловлено объединением имеющихся у них различных способностей.

Селекция и инженерия

Для получения растений, устойчивых к неблагоприятным антропогенным воздействиям, активно применяют методы современной клеточной селекции, а также генетической клеточной инженерии.

Особое внимание также уделяют получению растений-гипераккумуляторов тяжелых металлов. За основу берут виды с высокой продуктивностью и вводят бактериальный геном, который отвечает за формирование у растений способности адсорбировать или трансформировать поллютанты в значительных количествах. Особо эффективно этот метод применяют для выведения устойчивых газонных трав.

Грибы-аккумуляторы

Достаточно интенсивно способны поглощать и накапливать тяжелые металлы грибы. Интересно, что отдельные виды обладают определенной избирательностью по отношению к этим элементам.

Грибы также активно способны сорбировать из лесной подстилки радионуклиды, в частности радиоактивный цезий. Так, в первые годы после аварии на Чернобыльской АЭС грибы использовали как биоиндикаторы радиоактивного загрязнения.

Шампиньоны активно аккумулируют ртуть

Наиболее активно из субстрата грибами поглощаются легкорастворимые соединения тяжелых металлов и радиоизотопов. В молодых плодовых телах отмечают более высокие их концентрации, чем в старых. Наибольшие количества, как правило, аккумулируются в шляпках грибов, особенно в гименофорах. Со временем в условиях постоянного загрязнения эти элементы могут накапливаться в мицелии.

Интенсивность поглощения и накопления тяжелых металлов и радионуклидов грибами сильно зависит от условий окружающей среды, в первую очередь от плотности, состава и степени увлажнения субстрата. К примеру, было установлено, что на увлажненных лесных почвах грибы гораздо интенсивнее накапливают радиоизотопы, чем те же виды, растущие на почвах с глубоким залеганием грунтовых вод. Определяющими также являются различные видовые особенности, в частности глубина расположения мицелия, тип питания. Так, в грибах-симбионтах содержится больше тяжелых металлов, чем в древоразрушающих грибах-сапрофитах.

При употреблении в пищу съедобных грибов, собранных в лесах с высокой степенью техногенного загрязнения, высока вероятность тяжелых отравлений и внутреннего облучения. Даже кулинарная обработка (например, последовательная варка с неоднократной сменой воды) не всегда приводит к снижению концентрации вредных веществ до допустимых величин.

Для справки:

Фиторемедиация – очистка окружающей среды при помощи растений.

Фитостабилизация – уменьшение мобильности поллютантов в почве за счет адсорбции или осаждения на корнях в виде нерастворимых соединений.

Биодеградация – разложение различных органических поллютантов.

Фитоэкстракция – извлечение загрязнений из почвы.

Фитомелиорация – очистка почвы от нефти и нефтепродуктов.

Рекомендуем прочитать:

Строение дерева. От клеток до корней

Строение растений мы изучали еще в школе. В этой статьей мы решили напомнить, что из себя представляет дерево, и рассказать о каждой из его частей: клетках и тканях, древесине и коре, ветвях и ветках, листьях и корнях.

Свойства древесины разных пород

Еще пару веков назад ни сельское хозяйство, ни строительство, ни промышленность не обходились без древесины. Не потеряла она своего важного значения и сегодня

Источник

Adblock
detector