Зеленые биореакторы
Растения-биофабрики
Развитие биотехнологий открыло новые возможности использования живых организмов на благо человечества. Методы генетической инженерии позволяют производить различные вещества в живых объектах, следовательно, мы можем использовать эти объекты в качестве природных «фабрик». Центральная догма молекулярной биологии в общем случае гласит: ДНК – РНК – белок. Именно белок часто является конечным продуктом биотехнологического производства: это может быть инсулин, интерфероны, антитела, ферменты, вакцины. Нам лишь нужно задать программу и «записать» ее в ДНК, а живой объект всё сделает сам. В качестве «фабрик» используют клетки дрожжей, бактерий, растений, а также культуры клеток насекомых и млекопитающих. В этой статье речь пойдет о растительных биофабриках.
Что такое растение-биофабрика?
Как объяснить понятие «растение-биофабрика»? Можно сказать, что это природное предприятие, которое будет изготавливать нужный нам биопродукт. В отличие от обычной фабрики, на таком предприятии будут трудиться не рабочие, а компоненты клеток: полимеразы нуклеиновых кислот, рибосомы, тРНК и многие другие. А производить они будут белок.
Почему именно растения?
В настоящее время для наработки белков чаще всего используют бактерий, дрожжи, культуры клеток насекомых и млекопитающих. Очень привлекательной системой синтеза и накопления рекомбинантных белков (экспрессионной системой) являются и растения, и тому есть несколько причин. Прежде всего, в растительных тканях нет риска загрязнения рекомбинантного белка вирусами животных и прионами – инфекционными белками [1]. Растительные клетки обеспечивают правильную модификацию рекомбинантного белка, характерную для эукариотических клеток [2, 3]. Также большое значение имеют стоимость, простота и время. На рисунке 1 сравнивается несколько основных экспрессионных систем.
Рисунок 1. Сравнение систем продукции рекомбинантных белков
(от самых привлекательных «+» до наименее привлекательных «–»).
Из таблицы видно, что идеальной системы экспрессии не существует. Сегодня в России шире всего распространены бактериальные системы с E. coli в качестве самой популярной «рабочей лошадки». Еще в 2009 г. на долю этого микроорганизма приходилось 85% от всех систем экспрессии, несмотря на ряд существенных недостатков.
У каждой биофабрики есть свои плюсы и свои минусы. Но растительная система для многих ситуаций оказывается наиболее привлекательной.
Как заставить растение производить белок?
Для того чтобы растение производило нужный белок, в клетки этого растения необходимо внести чужеродный генетический материал – последовательность ДНК, кодирующую аминокислотную последовательность нужного белка.
Первый этап модификации растений с применением методов генетической инженерии включает поиск и выделение (или синтез) генов, которые будут перенесены в растительный геном. Гены, представляющие интерес для биотехнологов (целевые гены), могут быть «выращены» химическим путем, а также наработаны с помощью ПЦР (полимеразной цепной реакции). Затем целевой ген встраивается в подходящий вектор, который и доставляет его к месту производства белка – подобно тому, как вагон с сырьём прицепляется к паровозу, направляющемуся к фабрике.
Как перенести в растительную клетку необходимую последовательность ДНК?
В настоящее время чаще используют два способа.
Первый связан с использованием природных генно-инженерных «навыков» почвенной агробактерии Agrobacterium tumefaciens, способной переносить фрагменты ДНК в растительную клетку, то есть модифицировать ее генетически. Этот процесс в природе происходит повсеместно и регулярно. В природной A.tumefaciens помимо хромосомы содержится Ti-плазмида, в состав которой входит так называемая Т-ДНК (transferred DNA) длиной 12–22 тысяч пар нуклеотидов, встраивающаяся в ДНК растительной хромосомы. Она кодирует ферменты синтеза фитогормонов и опинов – производных аминокислот, которые используются бактерией как источник углерода, азота и энергии.
Т-ДНК Ti-плазмид обладает двумя свойствами, делающими ее почти идеальным вектором для введения чужеродных генов в клетки растений. Во-первых, круг хозяев агробактерий очень широк: они трансформируют клетки практически всех двудольных растений (а при некоторых стараниях можно добиться заражения и однодольных, в том числе злаков). Во-вторых, интегрированная в геном растения Т-ДНК наследуется как простой доминантный признак в соответствии с законами Менделя. Простейший способ введения Т-ДНК в клетки растения – заражение его A.tumefaciens, содержащей подходящую Ti-плазмиду, дальнейшее же предоставляется естественному ходу событий. Необходимо только уметь встраивать нужные гены в Т-сегмент плазмидной ДНК.
После проникновения агробактерий в межклеточное пространство Т-ДНК переносится из агробактерии в ядро растительной клетки и встраивается в хромосомную ДНК. Далее происходят транскрипция и трансляция – синтезируется целевой белок. Сама бактерия в клетку при этом не проникает, а остается в межклеточном пространстве.
Второй способ – баллистическая трансформация с использованием генной пушки. Маленькие золотые или вольфрамовые частицы покрывают чужеродной ДНК и «выстреливают» в молодые растительные клетки. Этот метод позволяет встраивать нужные гены не только в хромосомы растений, но и в геном их органелл – пластид. Это очень полезно в первую очередь для получения растений, защищенных от вредителей, но при этом безопасных для опылителей, ведь трансгены не экспрессируются в не имеющих пластид цветках. Недавно таким способом создали трансгенный (а именно – транспластомный) картофель, в хлоропластах которого образуется и сохраняется неповрежденной двухцепочечная РНК, блокирующая синтез жизненно важного белка колорадского жука – бета-актина. Поедая листья такого картофеля, личинки жуков погибают в считанные дни [6].
Менее распространенные, но всё же действенные способы трансформации – электропорация и трансформация с помощью вирусов.
Постоянная и временная экспрессия гена
В генетической инженерии растений можно встретить такие понятия: генетически модифицированное (ГМ, или трансгенное) растение и растение, обеспечивающее транзиентную (временную) экспрессию гена. В чем же разница?
Если речь идет о трансгенном растении, то подразумевается, что чужеродная ДНК интегрирована в хромосому. К настоящему времени получены десятки видов трансгенных растений, в геном которых перенесена ДНК, кодирующая различные белки медицинского назначения, такие как антигены различных возбудителей инфекционных заболеваний, терапевтические белки и моноклональные антитела [7, 8, 9]. Однако количество синтезируемого целевого белка в таких растениях обычно небольшое (менее 1% от общего растворимого белка).
При транзиентной экспрессии ДНК обычно не включается в ядерный геном, не реплицируется и не передается по наследству. Этот вид экспрессии не постоянный, однако некоторое время в одной клетке может присутствовать большое количество копий чужеродной ДНК, что обеспечивает высокий уровень синтеза конечного продукта. При наработке белков в растениях данный вариант наиболее эффективен. Мы как бы арендуем фабрику, и это оказывается более рентабельным, чем ее покупка. На рисунке 2 представлена модель переноса в растительную клетку ДНК для транзиентной экспрессии (в роли курьера – Agrobacterium tumefaciens).
Рисунок 2. Транзиентная экспрессия чужеродных генов в растениях с помощью агроинфильтрации.
А – общий механизм процесса, Б – визуализация синтезируемого в растении репортера –
GFP (зеленого флуоресцентного белка) – освещением листа ультрафиолетом.
Что может производить растение-биофабрика?
Использование растений в биотехнологии развивается в нескольких направлениях (рис. 3).
Рисунок 3. Возможности использования растений в биотехнологических целях.
Первое направление включает в себя создание растений с новыми свойствами. О несомненных плюсах трансгенных растений сказано немало [10]. Так, ведется разработка сортов, устойчивых одновременно к насекомым-вредителям и болезням, вызываемым вирусами, плесневыми грибками и бактериями. Идут исследования, которые позволят вывести сорта сельскохозяйственных культур, переносящих неблагоприятные климатические и химические условия, например, засуху и засоленность почвы [11]. Создаются продукты, в которых значительно увеличена доля полезных и питательных веществ, снижено содержание насыщенных жиров и аллергенов. Особое внимание уделяется разнонаправленным модификациям риса – ценного и относительно недорогого продукта питания, который можно было бы производить во всех беднейших регионах мира, включая засушливые [12].
В эту же группу можно отнести трансгенные растения, которые используются в качестве модельных объектов для изучения фундаментальных проблем функционирования генов.
Многие ГМ-растения сейчас находятся в массовом производстве. Это соя, кукуруза, картофель, маслянистые растения (рапс и подсолнух) и многие другие (рис. 4). Странами-лидерами в производстве таких растений являются США, Канада, Аргентина и Бразилия. Догоняют их Китай и Япония. С рядом растений работают некоторые страны ЕС и Австралия.
Рисунок 4. Примеры трансгенных растений.
Среди компаний, разрабатывающих трансгенные растения, можно отметить Calgen, Monsanto, Ciba Seeds. Несмотря на то, что ГМ-растения продаются на многих рынках мира, дискуссии о безопасности их использовании еще не закончены. Больше всего слухов и скандалов разворачивается вокруг компании «Монсанто». Основная продукция этой фирмы – генетически модифицированные семена кукурузы, сои, хлопка, а также самый распространенный в мире гербицид «Раундап» (непатентованное название – глифосат).
Основанная Джоном Фрэнсисом Куини в 1901 году как чисто химическая компания, «Монсанто» эволюционировала в концерн, специализирующийся на высоких технологиях в области сельского хозяйства. Ключевым моментом в этой трансформации стал 1996 год, когда «Монсанто» выпустила на рынок первые генно-модифицированные сельскохозяйственные культуры: сою «Раундап Рэди» (Roundup Ready, RR), устойчивую к глифосату, и хлопок «Боллгард» (Bollgard), устойчивый к насекомым-вредителям (гусеницам).
В марте 2005 года «Монсанто» приобрела крупнейшую семеноводческую компанию Seminis, специализирующуюся на производстве семян овощей и фруктов, в 2007–2008 годах поглотила 50 компаний – производителей семян по всему миру, после чего подверглась жесткой критике со стороны общества. В знак протеста против генетических манипуляций биотехнологического гиганта 25 мая 2013 года прошел «Марш против „Монсанто“», в котором приняли участие более 2 млн человек на шести континентах, в 52 странах мира.
В Центре «Биоинженерия» Российской академии наук на протяжении двух десятилетий ведутся работы по генетической инженерии растений – как для фундаментальных исследований, так и для сельского хозяйства. Были созданы генетически модифицированные сорта картофеля, устойчивые к колорадскому жуку, сорта свёклы, устойчивые к гербицидам и вирусам и др. Эти культуры могли бы решить ряд задач сельского хозяйства, но из-за до сих пор действующего в России законодательного ограничения они не выращиваются в открытом грунте. Само собой, этот запрет более чем странен, ведь ввоз ГМ-продукции в страну разрешен.
Второе направление представляет собой создание съедобных вакцин. В данном случае получают генно-модифицированное растение, синтезирующее вакцину. Такой привлекательной кажется идея: лежишь под пальмой, ешь банан, и ни одна тропическая зараза не берет!
Концепцию производства вакцин в растениях впервые сформулировал Xью Мэйсон с соавторами [13]. Они предприняли попытку получения съедобной вакцины против вируса гепатита В на основе трансгенного табака. На следующем этапе был создан ГМ-картофель, продуцирующий поверхностный антиген вируса гепатита В. При скармливании мышам клубней такого картофеля наблюдали развитие специфического иммунного ответа. В 1999 г. были начаты эксперименты на добровольцах, и у людей, употреблявших в пищу сырые клубни картофеля, наблюдали формирование специфического иммунитета. Также были получены съедобные вакцины против вируса гепатита В на основе люпина и салата.
Созданы трансгенные растения картофеля и табака, производящие белок нуклеокапсида вируса Норфолк, вызывающего у людей острый гастроэнтерит и устойчивого к спиртовым антисептикам. Появился и трансгенный картофель, синтезирующий полипептид LT-B – субъединицу термолабильного токсина Е.coli, вызывающего диарею. Однако, несмотря на активные исследования в этой области, коммерческих препаратов на сегодняшний день нет.
Третье направление связано с наработкой в растениях определенных продуктов, которые затем выделяются из растений и могут быть использованы, например, в качестве лекарственных препаратов. Биотехнологическими компаниями по всему миру уже создано большое количество ГМ-растений для получения белков, в том числе и медицинского назначения [14].
Среди компаний, деятельность которых основана на использовании трансгенных растений, следует отметить фирмы Рrotalix (Израиль), Medicago (Канада), LemnaGene (Франция), Planet Biotechnology (США), ProgyGene (Люксембург), Сhlorogen Inc. (США), SemBioSys Genetics (Канада) и Bayer AG (Германия).
Из белков медицинского назначения у производителей наиболее популярны инсулин, лизоцим, лактоферрин, коллаген, липаза, антитела, вакцины и др.
Многие из этих препаратов уже проходят клинические испытания. А вот трипсин (на снимке справа) уже можно купить у компании Sigma.
При наработке в растительных клетках продуктов медицинского назначения тоже используют метод агробактериальной трансформации, обеспечивающей транзиентную экспрессию генов на высоком уровне. Очевидными преимуществами этих систем являются простота манипуляций, скорость, низкая стоимость и высокий выход конечного продукта. Кроме того, в данном случае возможен синтез сложных белков, состоящих из нескольких субъединиц. Этот способ позволяет получать в течение нескольких дней белок в больших количествах (до нескольких граммов белка на килограмм массы растения). Выход продукта начинается уже через три часа (!) после проникновения агробактерий в клетку и переноса ДНК, а экспрессия сохраняется до 10 дней. Максимум наработки определяется для каждого белка индивидуально, но в среднем это 3–4 суток. Суммарно на получение белков в растениях уходит 2–3 недели (рис. 6).
Рисунок 6. Принципиальная схема экспрессии генов целевых белков в растениях.
Весь процесс получения белка занимает 2–3 недели.
В растениях уже нарабатываются вакцины от вирусов папилломы человека, гепатита В [15], гриппа, папилломы крупного рогатого скота [16], африканской катаральной лихорадки, герпеса рогатого скота [17], ящура [18] и др.
В Центре «Биоинженерия» также ведутся работы по экспрессии терапевтических белков в растениях. Так, в клетках Nicotiana benthamiana (вид табака) были произведены вакцинные препараты против вируса гриппа [19, 20]. Основой препарата служит высококонсервативный вирусный белок M2, который присоединен к белку-носителю для увеличения иммуногенности. Носителем может быть кОровый белок вируса гепатита В или бактериальный флагеллин. В случае флагеллина вакцинный препарат применяют интраназально, что является явным преимуществом. А использование высококонсервативной последовательности белка M2 делает вакцину универсальной, что исключает необходимость изготовления каждый год всё новых и новых ее вариантов. Эти вакцинные препараты показали хорошие результаты по иммуногенности и протективности в экспериментах с лабораторными животными; следующим этапом должно стать клиническое тестирование.
Об успехах в мире
Персонифицированная терапевтическая вакцина для лечения лимфомы, полученная с помощью транзиентной экспрессии в растении Nicotiana benthamiana, уже прошла I и II фазы клинических испытаний [21]. На данный момент (2015 год) ожидается старт III фазы. Растительная вакцина против пандемического гриппа H5N1 проходит II фазу клинических испытаний, результаты будут опубликованы в июне 2015 г. [22, 23]. Вакцина была разработана компанией Medicago. Стандартный процесс получения этой компанией вакцинных белков в растениях показан на видео.
Клинические испытания вакцинных препаратов занимают продолжительное время (около 10 лет). Невольно возникает вопрос с вакциной от гриппа, так как каждый год появляются новые штаммы, и будет ли прошедшая клинические испытания вакцина актуальной? Здесь большее значение имеет технология получения препарата. Новый тип вакцины проходит полный цикл клинических испытаний, а затем уже по отработанной методике может быть получена вакцина с учетом циркулирующих штаммов вируса. Так, сейчас сезонные профилактические прививки от гриппа получают в куриных яйцах, и такие вакцины уже не проходят клинических испытаний. Как будут обстоять дела с производством в растениях рекомбинантных вакцин для массового применения, покажет время.
Подводя итог, можно сказать, что растения дали возможность получения жизненно важных белков методами биотехнологии. Человек научился брать от природы всё лучшее и избегать худшего. Как Уильям Шекспир в «Ромео и Джульетте» написал про растение:
В его цветах – целебный аромат,
А в листьях и корнях – сильнейший яд.
Так и человечество научилось брать целебный аромат, но не смертельный яд у растений. У растений-биофабрик – большое будущее!
Работа выполнена при поддержке гранта Президента Российской Федерации для государственной поддержки ведущих научных школ РФ НШ-6150.2014.4.
Источник