Тепловой режим почвы
Тепловой режим играет исключительно большую роль в жизни почвы.
Основным источником тепла являются солнечные лучи. Другие источники — внутреннее тепло планеты, тепло, получаемое при химических и биохимических реакциях, весьма незначительны и в расчет не принимаются. Тепловой эффект радиоактивных реакций пока не исследован.
Как известно, поверхность земли поглощает тепло, излучаемое солнцем в воздушное пространство. Окружающие слои воздуха предохраняют землю от охлаждения и вообще оказывают большое влияние на ее тепловой режим. Чем прозрачней воздух, чем меньше содержит он водяных паров, тем меньше задерживается тепла, излучаемого землей.
Поверхность земли нагревается солнцем неравномерно. Наибольший нагрев ее в экваториальной части и наименьший на полюсах. Поглощение тепла обусловлено не только географической зональностью, но и качественным составом, окраской почвы. Темноокрашенные почвы поглощают больше тепла, чем почвы светлые, серые и белесые. Черноземы, например, поглощают 86%, серая почва — 80%, а белесая — всего 20% лучистой энергии солнца.
Теплоемкость почв тоже различна. Она зависит от разных причин. Наибольшее значение имеет влажность, так как вода обладает большей теплоемкостью, чем твердые частицы почвы. Сухие почвы нагреваются быстрее, чем влажные. От влажности зависит и теплопроводность. Сухие почвы медленней проводят тепло, чем влажные.
Поверхность почвы нагревается днем и охлаждается ночью. Это создает суточную смену колебаний нагрева почвы. Наибольший размах этих колебаний бывает в летние месяцы и особенно в местах с резко континентальным климатом.
От чередования нагрева и охлаждения создаются в почве тепловые волны. Последние наиболее резко выражены в поверхностных горизонтах, с глубиной они постепенно сглаживаются и исчезают на расстоянии около одного метра от поверхности. Глубже температура почвы остается относительно постоянной.
Кроме суточных колебаний, существуют и годовые термические колебания. Глубина промерзания почвы зависит от зональности и климатических особенностей местности. Существуют зоны, где почва не оттаивает летом или оттаивает только с поверхности на небольшую глубину. Это зоны вечной мерзлоты. На температурный режим почвы оказывает большое влияние снежный покров. Он предохраняет почву от зимнего промерзания. В лесу почва промерзает меньше, чем на полях. Растительный покров уменьшает скорость нагревания в летнее время и степень охлаждения зимой. Точно так же он смягчает резкость суточных колебаний температуры в летнее время.
Замерзание почвы в зимние месяцы оказывает определенное влияние на биологические процессы. Известно, что микроорганизмы легко переносят низкую температуру. Зимние морозы в 20—30° и более не отражаются на их жизнедеятельности. Многие виды переносят температуру жидкого воздуха. В наших опытах азотобактер и клубеньковые бактерии сохраняли жизнедеятельность после месячного содержания их при температуре 180° ниже нуля.
Имеются данные о повышении активности микроорганизмов под влиянием зимних морозов. Азотобактер, например, после 3-недельного пребывания в замороженном состоянии (-15 — -20°) развивается и размножается быстрее, клубеньковые бактерии становятся более активными и вирулентными, дрожжи сильней сбраживают сахара и т. д. По-видимому, этим и объясняется бурный подъем биологических процессов в почве в весенние месяцы.
Весенние подъемы активности микробов иногда отмечаются даже и в тех случаях, когда они находятся в лабораторных условиях, в чистых культурах. Очевидно, периодичность смены зимних и летних температур сказывается на наследственных свойствах, закрепляется более или менее прочно и передается некоторое время последующим поколениям. Такой подъем жизнедеятельности мы наблюдали у некоторых культур азотобактера, выделенных в подмосковных почвах. Влияние сезонности и метеорологических условий на активность бактерий отмечали и некоторые другие исследователи.
Под влиянием зимних морозов в почве происходят заметные изменения химических и физико-химических свойств. Меняется концентрация почвенного раствора, ряд соединений выпадает в осадок, например ульминовая кислота — в ульмин. По нашим наблюдениям, токсические вещества почвы разрушаются и инактивируются. Клевероутомленные почвы после сильного промерзания становятся менее токсичными. Отмечается инактивация антибиотических веществ, образуемых микробами в почве, после длительного промораживания ее. Надо полагать, что многие другие органические и неорганические соединения в почве подвергаются резким изменениям под влиянием зимних морозов, а почва в целом становится более плодородной.
Источник
Тепловые свойства и тепловой режим почв
Тепло — необходимый фактор жизни и роста растения. С ним связаны важнейшие биологические и абиотические процессы, протекающие в почве и определяющие развитие почвообразования и плодородия:
- интенсивность химических реакций,
- процессы физического выветривания,
- деятельность микроорганизмов и почвенной фауны,
- прорастание семян и рост растений,
- процессы обмена веществом и энергией.
Знание закономерностей формирования теплового режима почв необходимо для его направленного регулирования с целью создания наиболее благоприятных условий для продуктивности возделываемых растений.
Источники тепла в почве
Главным источником тепла, поступающего в почву, является лучистая энергия Солнца (солнечная радиация). Небольшое количество тепла почва получает из глубинных слоев Земли и за счет химических, биологических и радиоактивных процессов, протекающих в верхних слоях литосферы.
Тепло, образующееся при разложении органических веществ (навоза, растительных остатков и др.), широко используют в овощеводстве закрытого грунта.
Часть поступающей к поверхности почвы лучистой солнечной энергии поглощается почвой и, преобразуясь в тепло, нагревает почву; часть отражается поверхностью почвы и напочвенным покровом.
Почва отдает тепло в атмосферу, если температура ее поверхности выше, чем температура приземного слоя воздуха.
В зависимости от соотношения количества поглощенной поверхностью почвы лучистой энергии и излучения почвой тепла в атмосферу почвенная поверхность будет или нагреваться, или охлаждаться.
Наряду с поглощением тепла почвенной поверхностью идут процессы перемещения тепла от слоев более нагретых к слоям с более низкой температурой.
Это сказывается на тепловом состоянии различных слоев почвы. Чем больше разность температур поверхности почвы и ее глубоких слоев, тем больше тепла уходит из почвы или поступает в нее.
Тепловые свойства почвы
Приток лучистой солнечной энергии к поверхности почвы зависит от широты и рельефа местности, состояния поверхности почвы (покрытие растительностью), а также времени года и суток и состояния атмосферы (ясно, пасмурно и пр.).
В Северном полушарии суммарный приток солнечной радиации увеличивается при движении с севера на юг. Наибольший приток солнечной радиации получают южные склоны, наименьший — северные.
Наряду с условиями, определяющими приток солнечной энергии, важное значение в формировании теплового режима почвы (поглощение тепла, нагревание и охлаждение) имеют тепловые свойства почвы.
К тепловым свойствам почвы относятся тепло-поглотительная способность, теплоемкость и теплопроводность.
Теплопоглотительная способность
Способность почвы поглощать лучистую энергию Солнца. Она характеризуется величиной альбедо (А). Альбедо — количество коротковолновой солнечной радиации, отраженной поверхностью почвы и выраженное в % общей величины солнечной радиации, достигающей поверхности почвы.
Чем меньше альбедо, тем больше поглощает почва солнечной радиации. Оно зависит от цвета, влажности, структурного состояния, выравненности поверхности почвы и растительного покрова.
Приведем альбедо (%) различных почв, пород и растительных покровов (Чудновский, 1959):
- чернозем сухой – 14,
- чернозем влажный – 8,
- серозем сухой – 25-30,
- серозем влажный – 10-12,
- глина сухая –23,
- глина влажная – 16,
- песок белый и желтый – 30-40,
- пшеница яровая – 10-25,
- пшеница озимая – 16-23,
- травы зеленые – 26,
- травы высохшие – 19,
- хлопчатник – 20-22,
- рис – 12, картофель – 19.
Темно-каштановая почва (черноземы и др.) поглощает больше солнечной радиации, чем светло-каштановые (подзолистые, сероземы и др.); влажная – больше, чем сухая.
Теплоемкость
Свойство почвы поглощать тепло. Характеризуется количеством тепла в джоулях (калориях), необходимого для нагревания единицы массы (1 г) на 1 °С — весовая (или удельная) теплоемкость или объемная — в 1 см 3 на 1 °С.
Зависит от минералогического, гранулометрического составов, содержания органического вещества, влажности, пористости почвы и содержания воздуха. Теплоемкость воды равна 1,000 кал, торфа – 0,477, глины – 0,233 и песка – 0,196 кал.
Из этих данных видно, что вода – наиболее теплоемкий компонент почвы по сравнению с минеральными и органическими ее частями. Поэтому для повышения температуры влажной почвы требуется больше тепла, чем для сухой.
Влажные почвы медленнее нагреваются и медленнее охлаждаются, чем сухие. Глинистые почвы как более теплоемкие во влажном состоянии нагреваются весной медленнее по сравнению с песчаными.
Осенью при большем увлажнении они медленнее охлаждаются и становятся теплее песчаных. В связи с этим, изменяя влажность и пористость почвы поливами и обработкой, можно в определенных пределах регулировать температуру почвы.
Теплопроводность
Способность почвы проводить тепло. От нее зависит скорость передачи тепла от одного слоя к другому, а следовательно, и способность почвы быстрее или медленнее нагреваться или охлаждаться в определенной толще ее профиля.
Она измеряется количеством тепла в джоулях (калориях), которое проходит за 1 с через 1 см 2 слоя почвы толщиной в 1 см. Отдельные составные части почвы имеют разную теплопроводность. Минимальной теплопроводностью обладает воздух (0,00006 кал), затем торф (0,00027 кал) и вода (0,00136 кал).
Теплопроводность минеральной части почвы в среднем в 100 раз выше, чем воздуха, и в 28 раз, чем воды.
Поскольку в почве наряду с ее твердой (органической и минеральной) фазой в порах присутствуют воздух и вода, то теплопроводность сильно зависит от влажности почвы и содержания в ее порах воздуха. Поэтому чем влажнее почва, тем выше ее теплопроводность, а чем рыхлее, тем ниже.
Тепловой режим почвы
Совокупность явлений поступления, переноса, аккумуляции и отдачи тепла называют тепловым режимом почвы. Основным показателем теплового режима почвы, который характеризует ее тепловое состояние, является температура генетических горизонтов почвенного профиля.
Поскольку приток лучистой солнечной энергии связан с его суточными и годовыми ритмами, то и для температуры почвы характерны суточные и годичные закономерности ее изменения (рис. 6 и 7).
Суточный ход температуры. Днем поверхность почвы нагревается и максимальная ее температура наблюдается около 13 ч. Затем происходит постепенное охлаждение почвенной поверхности, и минимум ее температуры отмечается перед восходом солнца.
По мере нагревания поверхности почвы происходит передача тепла и в более глубокие слои. При этом наиболее быстро изменяется температура на поверхности почвы. С глубиной скорость этих изменений заметно уменьшается в связи со слабой теплопроводностью почвы.
Поэтому максимум и минимум суточных температур на разных глубинах профиля почвы наступают в разное время, в среднем отмечено запаздывание на 2-3 ч на каждые 10 см глубины профиля.
Наибольшие суточные колебания температуры происходят на поверхности почвы, а с глубины 3—5 см они уже резко уменьшаются. На глубине 30 ния температуры затухают.
На фоне общих закономерностей каждому типу почвы свойствен свой суточный ход температуры, поскольку ее профильная суточная динамика зависит от свойств почвы (гранулометрического состава, плотности, окраски, влажности и др.), состояния атмосферы, растительного и снежного покровов.
Годовой ход температуры. Годовой ход температуры имеет два периода: летний — период нагревания почвы с потоком тепла от верхних горизонтов к нижним и зимний — период охлаждения почвы с потоком тепла от нижних слоев профиля к верхним.
Амплитуды колебаний температуры почвы между этими периодами определяются условиями атмосферного климата и свойствами почв. В умеренных широтах максимум среднесуточной температуры почвы наблюдается обычно в июле — августе, а минимум — в январе — феврале.
Летом самая высокая температура отмечается в верхних горизонтах, с глубиной она снижается. Зимой нижние слои профиля имеют более высокие температуры.
На годовые изменения температуры почвы большое влияние оказывает растительность, предохраняя поверхность почвы от резких колебаний температуры.
В регионах со снежными и холодными зимами сильное влияние на температурный режим оказывают промерзание, оттаивание почвы, мощность и продолжительность снежного покрова.
Почва начинает промерзать при температуре несколько ниже 0 °С, поскольку в почвенном растворе содержатся растворимые вещества, понижающие температуру замерзания.
На замерзание почвы влияют снежный и растительный покровы, рельеф местности, свойства почвы, ее влажность, а также хозяйственная деятельность человека.
Снежный покров предохраняет почву от промерзания: чем он меньше, рыхлее и длительнее сохраняется, тем больше утепляет почву и снижает глубину ее промерзания.
Сохранение и накопление снега имеет большое значение в предохранении от вымерзания посевов озимых, многолетних трав и посадок плодово-ягодных культур.
Растительный покров, задерживая и накапливая снег, ослабляет промерзание почвы.
Рельеф влияет на накопление снега и увлажнение почвы. Поэтому наибольшую глубину промерзания почвы наблюдают на выпуклых формах рельефа и наветренных склонах, где сдувается снег. Накопление снега в понижениях (лощинах, западинах) способствует меньшему промерзанию почвы.
Глубже промерзают склоны северной экспозиции, а на меньшую глубину — южной. Чем влажнее почва, тем меньше она промерзает. При промерзании почвы идет подток парообразной и жидкой влаги к фронту промерзания.
Замерзание почвы начинается до или после установления снежного покрова и продолжается до января — февраля. Затем она начинает постепенно оттаивать снизу за счет передачи тепла от нижних незамерзших слоев.
Влияние деятельности человека на промерзание почвы связано с применением растительного покрова (вырубка или посадка древесно-кустарниковой растительности, сохранение травянистой растительности и т. д.), что сказывается на накоплении снега или существенном изменении увлажнения (орошение, осушение).
Оттаивание почв происходит двумя способами. В первом оттаивание идет снизу и заканчивается до схода снега. При этом мерзлая прослойка исчезнет у поверхности почвы; талая вода в этом случае лучше проникает в почву.
Во втором оттаивание начинается снизу, а затем одновременно и сверху, и снизу. В этот период мерзлая прослойка почвы сохраняется на некоторой глубине, что приводит к значительной потере воды и смыву почвы за счет поверхностного стока.
Для оценки теплообеспеченности почв как важной обобщающей характеристики их температурного режима используют сумму активных температур (>10 °С) в почве на глубине 20 см.
Здесь расположена главная масса корней многих растений. Рост корневых систем растений активно происходит при температуре почвы выше 10 °С.
Источник