Меню

Что означает коэффициент структурности почвы

Тема Определение структурного состояния почвы (коэффициента структурности) методом «сухого просеивания»

Раздел 3 Свойства почвы

Тема Определение структурного состояния почвы (коэффициента структурности) методом «сухого просеивания»

Структура почвы – совокупность комков, отдельностей (агрегатов) различных форм и размеров на которые распадается почва,а способность почвы распадаться на отдельности называется структурностью почвы.

Принцип метода определения структурного состояния почвы основан на просеивании через набор сит диаметрами отверстий 10; 7; 3; 2; 1; 0,5;0,25 мм не растертую воздушно-сухую почву массой 0,25-2,5 кг с последующим взвешиванием массы каждой фракции почвы на ситах. По соотношению суммы содержания (%) агрономически ценных (0,25-10,0 мм) к малоценным ( 10,0 мм) определяется коэффициент структурности и оценивается структурное состояние почвы.

Задание к выполнению работы: а)определить структурное состояние почвы; б) рассчитать коэффициент структурности почвы и дать оценку; в) при значении коэффициента структурности 10мм

При оценке структурного состояния почвы по коэффициенту структурности следует пользоваться следующей градацией

Кст Оценка

10 10-7 7-5 5-3 3-2 2-1 1-0.25 3\ \га . мм. водного столба, а также сроки полива для слоя почвы 0-50 см,. если влажность почвы в момент ее определения 14.6 %от массы почвы , наименьшая влагоемкость 30.3% от массы., плотность почвы в слое 0-18 см-1.11 а в слое 18-50 см-1.23 г/см 3. . Определить также сроки наступления (необходимость ) полива

Тема: Подготовка почвы к анализам

Образцы почв для химических анализов должны быть просеяны через сита диаметром 1,0, 0,25 мм (опр. гумуса) и не должны содержать включения (растительные остатки, галька, мелкие камни и т.д.). Прежде чем приступить к растиранию, из образца почвы отбирают среднюю пробу методом конвертирования. Для этого образец после перемешивания располагают на бумаге в виде квадрата или прямоугольника и делят диагоналями линейкой на четыре равные части. Две противоположные части высыпают в коробку для определения водно- физических и других свойств с соответствующей этикеткой. Оставшиеся на бумаге части почвы небольшими порциями растирают в фарфоровой ступке, просеивают через сито диаметром 1,0 мм. Просеянную почву массой 200-250 г распределяют тонким слоем по листу бумаги ровным слоем толщиной 0,5 см в виде квадрата. Квадрат на листе делят на несколько квадратиков размерами 3*3 см и из каждого квадратика берут ложечкой небольшое кол-во почвы(10-30г). Оставшуюся массу почвы помещают в предварительно сделанный бумажный пакетик с надписью: район, населенный пункт, время отбора, группа, курс, состав бригады (фамилии студентов). Из отобранной массы весом 10-30 г почвы тщательно отбирают корешки электризованной стеклянной палочкой, просеивают через сито с отверстиями диаметром 0,25 мм, помещают в пакетик с этикеткой для определения механического состава и содержания гумуса.

Оборудование:Фарфоровая ступка, пестик, сита на 1,0 и 0,25 мм, оберточная бумага или коробка.

Тема: Определение содержания гигроскопической влаги (аг)

Способность твердых, жидких. газообразных веществ поглощать из атмосферы влагу называется гигроскопичностью, а поглощенная влага- гигроскопической влагой. Определяется эта влага термостатным методом, т.е высушиванием образца почвы весом 7—10 г. при температуре 105 градусов в термостате в течении 3х часов. Содержание гигроскопической влаги в почвах колеблется от 1.5 до 15% в зависимости от содержания гумуса,.механического состава, степени дисперсности, .состава поглощенных катионов. Данные определений значений гигроскопической влаги применяются на практике для перерасчета данных анализов воздушно сухой почвы на абсолютно сухую почву через коэффициент гигроскопичности (Кг)

Задание:

  1. Определитьсодержание в почве гигроскопической влаги (аг) и рассчитать ее значение;
  2. Рассчитать коэффициент гигроскопичности (Кг) .

Форма контроля: проверка правильности выполнения работы посредством расчетов, сдача работы с объяснениями полученных результатов.

Ход анализа: 1. Стеклянный или алюминиевый стаканчик с притертой крышкой, просушенный в термостате до постоянного веса, взвешивают на аналитических весах с точностью до 0,0001 г. (m0).

Читайте также:  Чем подкормить аспарагус перистый

2. В бюкс помещают от 7-10 г воздушно-сухой почвы, просеянной через сито с отверстиями в 1 мм. Бюкс с почвой взвешивают на аналитических весах. (m1).

  1. Бюкс с почвой в открытом виде сушат в термостате при температуре 100-105 0 в течение 3 часов, затем охлаждают в эксикаторе и взвешивают (m2). Сушку продолжают до тех пор, пока разница между повторным взвешиваниями не будет превышать 0,001 г.

Расчет содержания гигроскопической влаги производят по формуле:

а г содержание гигроскопической влаги % к массе почвы

m1-m2 — вес испарившейся влаги после сушки, г

m2-m0 — вес абсолютно сухой почвы

100–коэффициент пересчета на %

Коэффициент перерасчета результатов анализа воздушно-сухой почвы на абсолютную сухую вычисляют по формуле:где

КГ — коэффициент гигроскопичности

Вопросы для самоконтроля

1. Цель подготовки почвы к анализу.

  1. Методика отбора среднего образца.
  2. Зависимость содержания гигроскопической влаги от свойств почв.
  3. Методы определения влажности почвы.
  4. Рассчитать коэффициент гигроскопичности при содержании аг 5,8 %и пересчитать содержание гумуса 9,2 % в воздушно сухой почве на абсолютно сухую почву.

Оборудование

Стаканчики на 100 мл, рН метр, индикаторы бумага или шкала сравнения, весы.

Реактивы

1 н раствор KCI (74,5 г KCI растворяют в 1 л Н2О, дистиллированная H2O).

Вопросы для самоконтроля

1. Символ pH- что он означает?

2. Кислотность, щелочность почв — что собою они представляют?

3. Причина и природа кислой реакции среды почв.

4. Для каких типов почв характерна кислая реакция среды?

5. Градации почв по реакции среды.

6. Какие почвы требуют известкования?

7. Чем обусловлена потенциальная (скрытая) кислотность?

8. Причина и природа щелочной реакции среды почв.

9. Какая вытяжка (солевая или водная) применяется на щелочных почвах?

10. Какие типы почв имеют щелочную реакцию среды?

11. Мероприятия по регулированию щелочной реакции среды почв.

1. Значение pHKCl 5.3, реакция среды почв:

г) близкая к нейтральной

Оборудование

Колбы конические на 200-250 мл, фильтраты, воронки, взбалтыватель.

Реактивы

  1. 1 н СН3СООН* 3Н2О (136 г реактивы растворяют в 1 л)
  2. 0,1 н NaOH (4,0 г реактивы растворяют в 1 л воды)
  3. Фенолфталеин 1% (1 г реактивы растворяют в 100 мл раствора)

Таблица 8. Определение механического состава почвы методом скатывания шнура

Отношение к скатыванию Название почв по механическому составу
Не скатывается в шнур, раздельное состояние Песчаный
При раскатывании в шнур распадается на мелкие кусочки с образованием непрочных шариков Супесчаный
При раскатывании образуется шнур, легко распадающийся на дольки Легкосуглинистый
При раскатывании формируется сплошной шнур, который при свертывании в колечко распадается на дольки Среднесуглинистый
При раскатывании легко образуется шнур, свертывается в кольцо, но дает мелкие трещины Тяжелосуглинистый
При раскатывании в шнур легко свертывается в колечко, не трескаясь Глинистый

Порядок определения:Почву смачивают водой и разминают стеклянной палочкой с резиновым наконечником до полного разрушения структурных отдельностей. Смачивать следует до консистенции теста, так чтобы вода из почвы не отжималась, но почва была достаточно пластичной. Хорошо размятую почву раскатывают на ладони ребром другой руки в шнур толщиной около 3 мм и сворачивают в кольцо диаметром около 3 см. Пользуясь таблицей8 определяют название почвы, почвообразующих пород по механическому составу.

Таблица 9 Классификация почв по механическому составу

Название механического состава Содержание физической глины (частиц 0.01 мм), %
Песок рыхлый 0-5 100-95
Песок связный 5-10 95-90
Супесь 10-20 90-80
Суглинок лёгкий 20-30 80-70
Суглинок средний 30-45 70-55
Суглинок тяжёлый 45-60 55-40
Глина лёгкая 60-75 40-25
Глина средняя 75-85 25-15
Глина тяжёлая

Вопросы для самоконтроля

1. Чем представлена твёрдая фаза почвы?

2. На чём основана классификация механических элементов и механического состава почвы?

3. Какие водные свойства зависят от механического состава почв?

Читайте также:  С листом дерева почвой земли

4. Оптимальный механический состав для большинства с/х растений.

5. Какие культуры предпочитают тяжёлые, а какие культуры лёгкие по механическому составу почвы?

6. Приёмы регулирования механического состава почвы.

7. Какие по механическому составу почвы в большей степени подвергаются водной и ветровой эрозии?

Тест-задания

Тесты

Вопросы для самоконтроля

1. Формы фосфатных соединений в почве.

2. Роль фосфора в росте и развитии растений.

3. Объяснить необходимость применения 0.2 Н HCl для определения подвижных форм фосфора в почве.

4. Содержание подвижных P2O5 12.5 мг на 100 гр почвы. Рассчитать содержание подвижного фосфора в % к массе почвы, в мг/кг, гр/кг и кг/га при значениях плотности почвы 1.15 гр/см 3 и мощности пахотного слоя 30 см.

Вопросы для самоконтроля

1. Условия, факторы, способствующие процессам соленакопления в почве.

2. Актуальность изучения засолённых почв.

3. Влияние токсичных солей на свойства почв, физиологические процессы роста и развития растений.

4. Какие соли относятся к токсичным? Ряд токсичности солей.

5. Приёмы регулирования солевого режима почв и рационального использования засолённых почв.

6. Как определяется химизм (тип) засоления почв?

Раздел 3 Свойства почвы

Тема Определение структурного состояния почвы (коэффициента структурности) методом «сухого просеивания»

Структура почвы – совокупность комков, отдельностей (агрегатов) различных форм и размеров на которые распадается почва,а способность почвы распадаться на отдельности называется структурностью почвы.

Принцип метода определения структурного состояния почвы основан на просеивании через набор сит диаметрами отверстий 10; 7; 3; 2; 1; 0,5;0,25 мм не растертую воздушно-сухую почву массой 0,25-2,5 кг с последующим взвешиванием массы каждой фракции почвы на ситах. По соотношению суммы содержания (%) агрономически ценных (0,25-10,0 мм) к малоценным ( 10,0 мм) определяется коэффициент структурности и оценивается структурное состояние почвы.

Задание к выполнению работы: а)определить структурное состояние почвы; б) рассчитать коэффициент структурности почвы и дать оценку; в) при значении коэффициента структурности 10мм

При оценке структурного состояния почвы по коэффициенту структурности следует пользоваться следующей градацией

Источник

Оценка структурного состояния почвы

Содержание агрегатов 0,25—10 мм, % от массы воздушно-сухой почвы Оценка структурного состояния
сухое просеивание мокрое просеивание
>80 >70 Отличное 80-60 70-55 Хорошее 60-40 55-40 Удовлетворительное 40-20 40-20 Неудовлетворительное

В такой почве потери воды от поверхностного стока незначительны, почти вся она поглощается почвой, а наличие некапиллярных пор предохраняет почву от испарения влаги с поверхности.

Следовательно, в структурной почве одновременно создают благоприятные условия обеспечения растений влагой и воздухом. Даже при увлажнении до НВ в таких почвах сохраняется хороший воздухообмен и господствуют окислительные процессы. Достаточная аэрация при наличии доступной влаги обеспечивает лучшие условия питательного режима по сравнению с бесструктурной почвой;

активнее идут микробиологические процессы,

отсутствуют процессы денитрификации, образования и накопления активных несиликатных форм полуторных окислов, что ослабляет связывание фосфатов в труднорастворимые формы.

Бесструктурной почвой вода поглощается медленно, значительная часть ее может теряться вследствие поверхностного стока. Сплошная капиллярная связь в толще почвы вызывает большие потери влаги от испарения.

В такой почве нередко наблюдается два крайних состояния увлажнения: избыточное или недостаточное. При избыточном увлажнении все промежутки заполнены водой, воздух отсутствует. В этих условиях развиваются анаэробные процессы, ведущие к потерям азота в результате денитрификации, образованию вредных для растений закисных форм железа и марганца, накоплению подвижных несиликатных форм полуторных окислов и к закреплению фосфора в труднорастворимые формы, т. е. создается неблагоприятный питательный режим.

При недостаточном увлажнении в почве много воздуха и кислорода, но растения испытывают недостаток в воде.

Агрономически ценная структура, придавая почве рыхлое сложение, облегчает прорастание семян и распространение корней растений, а также уменьшает энергетические затраты на механическую обработку почвы.

Более плотное сложение и повышенная связность бесструктурных почв повышают удельное сопротивление при их обработке и ухудшают развитие корней растений. Как отмечалось выше, структурная почва хорошо поглощает воду и резко снижает поверхностный сток, а следовательно, смыв и размыв почвы, а структурные комочки размером более 1—2 мм устойчиво противостоят развеванию ветром.

Благоприятное влияние на агрономические свойства почв оказывает и микроструктура при условии ее пористости и водопрочности.

Наилучшими являются микроагрегаты размером 0,25—0,05 и 0,05 и 0,01 мм. Микроагрегаты размером средней пыли (0,01—0,005 мм) затрудняют водо- и воздухопроницаемость, способствуют повышению испаряющей способности почв.

Оптимальный размер структурных отдельностей связан с зональными особенностями почв и условий земледелия. Так, во влажных зонах более крупные макроагрегаты обеспечивают лучшую водо- и воздухопроницаемость, а в заболоченных почвах и водоотдачу.

В засушливых условиях, где аэрация достаточна, важно ослабить испаряемость, поэтому здесь благоприятнее более мелкий размер агрегатов, но надо иметь в виду, что при наличии в верхнем слое пахотной почвы менее 50% агрегатов крупнее 1—2 мм почва становится податливой к ветровой эрозии.

Рассмотренное выше агрономическое значение структуры позволяет сделать следующее общее заключение:

«во всех случаях на почвах одного типа, одной генетической разности и в сходных агротехнических условиях структурная почва всегда характеризуется более благоприятными для сельскохозяйственных культур показателями, нежели бесструктурная или малоструктурная» (Н. А. Качинский).

3.Образование структуры почвы

В формировании макроструктуры почвы следует различать два основных процесса:

механическое разделение почвы на агрегаты (комки)

и образование прочных, не размываемых в воде отдельностей.

Указанные процессы протекают под воздействием физико-механических, физико-химических, химических и биологических факторов структурообразования.

Физико-механические факторы обусловливают процесс крошения почвенной массы главным образом под влиянием изменяющегося давления или механического воздействия.

К действию этих факторов может быть отнесено разделение почвы на комки в результате изменения объема (и давления) при переменном высушивании и увлажнении, замерзания и оттаивания воды в ней,

давления корней растений, деятельности роющих и копающих животных и рыхлящего воздействия почвообрабатывающих орудий.

На важное значение промораживания почвы в создании ее рыхлого сложения указывал еще П. А. Костычев.

Замерзание воды раньше начинается вкрупных промежутках, примерно при 0°С, а в более тонких капиллярах вода замерзает при более низкой температуре.

При замерзании вода расширяется и давит на стенки комков; при этом участки с незамерзшей водой уплотняются, а часть воды выжимается в более крупные капилляры. В результате неравномерного уплотнения при оттаивании замерзшей воды и при испарении воды почва будет крошиться по линии наименьшего сопротивления.

Промораживание способствует разрыхлению почвы, образованию агрегатов, но водопрочность при этом не создается.

Разрыхляющее воздействие промораживания на почву проявляется только при оптимально влажном ее состоянии (не более 90% полной влагоемкости).

При замерзании воды в переувлажненной почве структурные отдельности разрываются и такая почва при оттаивании приобретает киселеобразную консистенцию и обесструктуривается.

Промерзание сухой почвы не оказывает положительного влияния на ее крошение.

Большое влияние на формирование почвенной структуры оказывает обработка почвы сельскохозяйственными орудиями: наряду с образованием структурных отдельностей происходит и их разрушение.

В зависимости от количества и качества органического вещества, гранулометрического состава почвы, применяемого орудия, влажности почвы и других условий, при которых проводится обработка, могут преобладать процессы или создания, или разрушения структуры. Даже на одной и той же почве применением одного орудия обработки можно получить структурную пашню, глыбистую или слитную.

Благоприятно сказывается на структурообразовании обработка почвы в состоянии ее физической спелости, и, наоборот, при обработке почвы в пересохшем состоянии она сильно распыляется, а при обработке в переувлажненном состоянии образуется глыбистая поверхность.

Следует подчеркнуть, что одной механической обработкой нельзя создать водопрочную структуру почвы.

Дата добавления: 2015-06-27 ; просмотров: 1865 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Adblock
detector