Минеральные удобрения
Содержание:
Свойства минеральных удобрений
Минеральные удобрения
Классификация
Минеральные удобрения классифицируют по нескольким параметрам.
По количеству питательных элементов
- простые (односторонние, односоставные) – содержат только один питательный элемент (азотные, фосфорные, калийные);
- комплексные (многосторонние) – содержат два и более питательных элемента (калийную селитру, нитрофоску, диаммофоску и пр.).
Подробнее при переходе по ссылке
Подробнее при переходе по ссылке
По агрегатному состоянию
- твердые (хлорид аммония, натриевая селитра);
- жидкие (аммиачная вода, жидкий аммиак);
- газообразные (CO2).
Твердые удобрения, в свою очередь, подразделяются на
- порошковидные (размер частиц менее 1 мм);
- кристаллические (размер кристаллов более 0,5 мм);
- гранулированные (размер гранул более 1 мм).
самого тяжелого удобрения»/> Добыча фосфоритной муки —
Физико-механические свойства удобрений
Влажность удобрений
Гигроскопичность удобрения
Калийные удобрения обладают гораздо меньшей гигроскопичностью: хлорид калия – 3,2–4,4 балла, сульфат калия – 0,2 балла.
Гигроскопичность определяет условия хранения, транспортировки и упаковки удобрений. Сильно гигроскопичные удобрения (7–10 баллов) хранят и перевозят только в герметично закрытой таре. Обычно это полиэтиленовые мешки.
Сыпучесть удобрений
Предельная влагоемкость
Подробнее при переходе по ссылке
«>удобрение сохраняет способность к удовлетворительному рассеиванию туковыми сеялками.
Слеживаемость
Гранулометрический состав
Прочность гранул
Рассеиваемость
Плотность удобрения
Ассортимент минеральных удобрений
Азотные удобрения
Азотные удобрения – удобрительные вещества, содержащие азот в различных химических соединениях. Их производство основано на получении синтетического аммиака из молекулярного азота воздуха и водорода. Источником водорода служит природный газ, коксовые и нефтяные газы. Этот процесс требует значительных энергозатрат. При производстве 1 тонны азота затрачивается энергия, эквивалентная переработке 4 тонн нефти.
В зависимости от формы содержания азота и агрегатного состояния азотные удобрения подразделяются на:
- Нитратные – удобрения, содержащие азот в нитратной форме (NO3 — ). К ним относится кальциевая и натриевая селитра. Нитратные удобрения используются под все сельскохозяйственные культуры, во всех почвенно-климатических зонах.
- Аммонийные – удобрения, содержащие азот в аммонийной форме (NH4 + ). К ним относятся сульфат аммония, сульфат аммония-натрия, хлористый аммоний. Использование аммонийных удобрений ограничивается их физиологической кислотностью. Для ее устранения применяют известкование почвы.
- Аммонийно-нитратные (Аммиачно-нитратные) – удобрения, содержащие азот в нитратной и аммонийной формах (NO3 – и NH4 + ). К ним относятся аммонийная (аммиачная) селитра , сульфат аммония, известково-аммонийная селитра. Это универсальные удобрения, рекомендуемые к применению под любые культуры и на всех почвах в различные приемы внесения.
- Амидные (мочевина) – удобрение, содержащее азот в форме органического соединения – мочевины СО(NН2)2. Содержит 46 % азота. Получают путем синтеза аммиака и диоксида углерода (CO2) при высоких показателях давления и температуры. Применяют до посева и в Подкормка – способ применения удобрений. Проводятся в течение вегетационного периода. Предназначены для усиления питания растений в период максимального потребления питательных элементов.
Подробнее при переходе по ссылке
«>подкормку.
Виды минеральных удобрений
Фосфорные удобрения
Фосфорные удобрения – удобрительные вещества, содержащие фосфор в различных химических соединениях. Сырьем для получения фосфорных удобрений являются природные фосфорсодержащие руды – апатит и фосфорит, а также отходы металлургической промышленности.
Фосфатное сырье перерабатывают на удобрение четырьмя способами:
- измельчением фосфатов в фосфоритную муку;
- разложением фосфатов кислотами – серной, фосфорной и азотной;
- электротермическим восстановлением фосфатов углеродом в присутствии диоксида кремния с извлечением элементарного фосфора и его последующей переработкой в фосфорную кислоту и ее соли,
- термической обработкой фосфатов.
Фосфорные удобрения подразделяются на несколько групп по степени доступности содержащихся в них форм фосфора растениям:
- Водорастворимые фосфорные удобрения. Фосфор этих удобрений легко доступен для корневых систем растений. К ним относятся все суперфосфаты.
- Цитратно- и лимоннорастворимые фосфорные удобрения. Фосфор этих удобрений не растворим в воде, но легко растворим в слабых кислотах. К этой группе удобрений принадлежат преципитат, термофосфаты.
- Труднорастворимые фосфорные удобрения. Фосфор не растворим в воде и слабых кислотах, но хорошо растворим в сильных кислотах. К ним относятся фосфоритная мука и вивианит.
Калийные удобрения
Калийные удобрения – удобрительные вещества, содержащие калий – один из важнейших элементов в питании растений. Сырьем для производства этой группы удобрений являются природные калийные соли.
Промышленные калийные удобрения делят на:
- концентрированные (хлоистый калий, сернокислый калий, хлоистый калий – электролит, калийная соль, калимагнезия, калийно-магниевый концентрат);
- сырые (каинит и сильвинит).
Калийные удобрения хорошо растворимы в воде. Во взаимодействие с почвенно-поглощающим комплексом калийные удобрения вступают по типу обменного (физико-химического), а частично и необменного поглощения.
Эффективность калийных удобрений зависит от почвенно-климатических условий и биологических особенностей культур.
Комплексные удобрения
Комплексные удобрения – удобрительные вещества, содержащие два, три и более элементов питания: азот, фосфор, калий, магний, серу и микроэлементы.
По количеству элементов питания различают
- двойные (азотно-фосфорные, азотно-калийные, фосфорно-калийные) комплексные удобрения;
- тройные (азотно-фосфорно-калийные) комплексные удобрения.
По способу производства комплексные удобрения делят на
- Сложные – комплексные минеральные удобрения, твердые или жидкие, все частицы которых имеют одинаковый или близкий химический состав.
- Сложно-смешанные – комплексные удобрения. Получаются путем смешивания готовых однокомпонентных и сложных удобрений и введения в смесь газообразных и жидких продуктов.
- Смешанные – комплексные минеральные удобрения, которые получаются путем механического смешивания готовых удобрений различных форм.
По форме выпуска
- Жидкие (ЖКУ).
- Суспензированные (СЖКУ).
- Гранулированные.
Магниевые удобрения
Магниевые удобрения – комплексные минеральные удобрения, содержащие магний. Основной источник производства – природные соединения магния. Они используются и как непосредственные источники магния, и для переработки на магнийсодержащие удобрения. К этой группе удобрений относятся доломитовая мука, полуобожженный доломит, магнезит, сульфат магния.
Серосодержащие удобрения
Серосодержащие удобрения – комплексные минеральные удобрения, содержащие серу. Кроме элементарной серы, к этой группе удобрений относятся суперфосфат, сульфат аммония, сульфат аммония – натрия, сульфат калия, калимагнезия, сульфат магния, азофоска с серой, марганец сернокислый пятиводный, азотосульфат и др.
Микроудобрения
Микроудобрения – минеральные удобрительные вещества, содержащие микроэлементы. Наиболее распространены борные, марганцевые, молибденовые, медные и цинковые микроудобрения.
Повышение содержания микроэлементов в почве до их оптимального уровня рентабельно только при условии бедности почвы тем или иным микроэлементом. Вносятся микроэлементы путем обработки семенного материала и при внекорневых подкормках.
При избыточном содержании микроэлемента в почве его внесение категорически исключается.
Микроудобрения по действующему веществу различают на:
- молибденовые (молибдат аммония, молибдат аммония – натрия, гранулированный суперфосфат молибденизированный);
- цинковые (цинк сернокислый);
- медные (сульфат меди или медный купорос, сернокислая медь, пиритные огарки);
- борные (борная кислота), гранулированный боросуперфосфат, двойной боросуперфосфат, бормагниевое удобрение и др.);
- марганцевые удобрения (марганизированный суперфосфат, марганизированная нитрофоска, марганцевые шламы, марганец сернокислый пятиводный).
Значение минеральных удобрений
Подробнее при переходе по ссылке
«>пестицидов для окружающей среды. Однако самые развитые и благополучные в экономическом отношении страны используют их в наибольших количествах. Примером может служить Япония, где продолжительность жизни человека – одна из самых больших в мире.
Действительно, основные проблемы экологического неблагополучия связаны не столько с химическим загрязнением из-за применения минеральных удобрений, сколько с преобладанием экстенсивной формы хозяйствования и недостаточным или неграмотным применением минеральных удобрений и других средств химизации.
Многочисленные исследования показывают, что применение минеральных удобрений – один из основных факторов получения высоких урожаев сельскохозяйственных культур и улучшения плодородия почв.
В мировой практике сохраняется тенденция роста производства и применения минеральных удобрений. По интенсивности применения минеральных удобрений на 1 га пашни в десятку первых стран входят Малайзия, Голландия, Корея, Иордания, Бельгия, Египет, Новая Зеландия, Япония, Великобритания и Колумбия.
Между дозами применяемых удобрений на 1 га и урожайностью прослеживается четкая связь. Установлено, что наиболее высокие дозы минеральных удобрений применяются во Франции, Нидерландах и Великобритании. Средняя урожайность зерновых во Франции – 73,2 ц/га, Нидерландах – 82,9 ц/га, Великобритании – 70,8 ц/га. Это самые высокие показатели в мире.
Подробнее при переходе по ссылке
«>пестицидами) и при общей культуре земледелия.
Источник
Что такое гигроскопичность удобрений
ТЕХНОЛОГИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА УДОБРЕНИЙ И ХИМИКАТОВ
Вопросы:
1. Общая характеристика химикатов.
2. Виды удобрений и их предварительная характеристика.
3. Механико-технологические свойства минеральных удобрений.
3.2. Методы определения характеристик минеральных удобрений.
4. Органические удобрения:
Оформление лекции:
8. Плакат: Степень слеживаемости минеральных удобрений.
9. Плакат: Значение коэффициента внешнего трения минеральных удобрений.
10.Плакат: Величина липкости органических удобрений.
1. Общая характеристика химикатов
Химикаты, которые используются в сельском хозяйстве для защиты растений, имеют общее название – пестициды – от латинского слова Pestis – зараза, Caedo – убивать, что означает убивать заражение.
При этом химикаты делятся на:
гербициды- для борьбы с сорняками ( Herba – трава);
Бактерициды- против бактерий;
Фунгициды – против грибковых организмов;
Лесиканты – для подсушивания растений;
Дефолианты – для удаления листье;
Зооциды – для борьбы с грызунами и т. д.
Химические препараты могут быть в виде порошков, эмульсий, суспензий, аэрозолей, паров, газов, ядовитых приманок, гранул. Аэрозоли – мягкие частички твердого (дым) или жидкого (туман) ядохимиката, зависшего в воздухе.
На поверхность растений химические препараты наносятся с помощью специальных машин: опрыскивателей, аэрозольных генераторов или протравливателей.
2. Виды удобрений и их предварительная характеристика
Удобрения (используют для улучшения пожнивного, поливного, водного, воздушного и теплового режима почвы, повышения урожая и его качества.
Удобрения бывают минеральные и органические, а также смесь минеральных и органических – органико-минеральные компосты.
Минеральные компосты – это промышленные или побочные продукты, которые содержат необходимые для жизни растений и улучшения плодородия почвы элементы. Они бывают простыми (однокомпонентными и комплексными (комбинированными). Простые удобрения содержат только один главный элемент, комплексные – не меньше двух элементов. Промышленность выпускает удобрения в виде гранул, кристаллов, порошков и жидкостей.
Минеральные удобрения бывают Прямого действия (для непосредственного потребления растениями) и Побочного (для улучшения физико-механического состава почвы).
Удобрения прямого действия:
Калийные – хлористый калий и калийные соли;
Азотные – аммиачная селитра, сульфат аммония;
Хлористый аммоний, карбомид;
Жидкие – аммиачная вода и т. д.
Удобрения Побочного действия – это гипс.
Наиболее распространенные минеральные удобрения:
Суперфосфат – ;
Калийная соль – ;
Сульфат аммония – азот 20,5%;
Аммиачная селитра азота 34,7%;
Мочевина – 46%;
Аммиак (сжиженный) – 82,3%;
Аммиачная вода (нашатырный спирт) – 20%.
Органические удобрения – это перегной, торф, навоз, торфо-навозные компосты, отходы растениеводства и животноводства, а также бактериальные добавки и сидераты («зеленые» удобрения).
3. Механико-технологические свойства минеральных удобрений
3.1. Характеристики
Плотность удобрений определяется по формуле:
,
Где M – масса взятой пробы материала;
V – объем этой пробы.
Плотность минеральных удобрений зависит от влажности и степени уплотнения и находится в широких пределах от 0,6 до 2 т/м3:
– мочевина – 0,70 т/м3;
– аммиачная селитра – 0,9 т/м3;
– хлористый калий – 1,0 т/м3;
– суперфосфат гранулы – 1,1, порошок – 0,9 т/м3.
Когда удобрения транспортируются, то происходит их утряска и плотность увеличивается на 2…17%. Поэтому при инженерных расчетах дополнительного определяется такая характеристика как коэффициент уплотнения:
.
Где – начальная и конечная величины плотности материалов, т/м3.
Гигроскопичность – способность удобрений поглощать влагу из воздуха. Поглощение этой влаги резко ухудшает такие свойства, как сыпучесть, рассеивание, слеживаемость и затрудняет механизированное внесение удобрений в почву.
Гигроскопичными являются: аммиачная селитра, суперфосфат, сульфат натрия (технический), диамофос и другие твердые удобрений.
Степень гигроскопичности оценивается точкой, которая является относительной влажностью окружающего воздуха h0, при которой удобрения не теряют и не поглощают влагу из него.
Удобрение поглощает из воздуха количество влаги прямо пропорционально разности Hb – Ho, где Hb – относительная влажность воздуха. Вследствие сказанного максимально количество влаги поглощается удобрениями, у которых Ho маленькое, а в месте, где оно хранится, Hb больше.
Гигроскопичность выражается в баллах. По гигроскопичности удобрения делятся на 3 группы:
– слабогигроскопичные – до 3 баллов (хлористый калий – 3,5№ суперфосфат, сернокислый калий – 2,4 б.);
– среднегигроскопичные – до 5 баллов (двойной суперфосфат, калийная соль);
– сильногигроскопичные – до 10 баллов (сульфат аммония, аммиачная селитра, мочевина).
Почти все минеральные удобрения растворимые в воде. Исключением является фосфоритная мука и известь.
Сыпучесть– это способность удобрений проходить сквозь отверстия. Зависит от влажности туков и размера их отдельных частиц. Повышенная влажность приводит к потере сыпучести, сводообразованию, удобрения переходят в пластические состояние.
Сыпучесть связана с углом естественного откоса. Порошкоподобные удобрения свободно проходят через отверстия при . Для гранулированных этот показатель равен 40°.
Сыпучесть оценивается по 12-бальной системе (от 0° до 180°). Наибольшая сыпучесть у фосфоритной муки и суперфосфата. Плохую сыпучесть имеет аммиачная селитра, еще хуже хлористый калий.
Рассеиваемость – способность удобрений проходить узкие щели воронки, не образуя сводов, не зависая. Это свойство оказывает основное влияние на процесс прохождения удобрений по поверхностям высевающих аппаратов.
Рассеиваемость оценивается по 10-бальной шкале, при этом, чем легче удобрение проходит через щели, тем больше количество баллов оно получает. Хорошая рассеиваемость у хлористого калия КСl, фосфоритной муки, суперфосфата. Удовлетворительная – у аммиачной селитры, калийной соли. Плохая – у сульфата аммония, хлористого аммония.
Слеживаемость – это слипаемость, связность частиц между собой в процессе хранения, т. е. способность удобрений образовывать сплошную массу различной прочности. В связи с этим перед внесением удобрения дробят и просеивают через отверстия с диаметром 3…5 мм. Слеживаемость связана с гигроскопичностью и возрастает с увеличением влажности удобрений, времени хранения и давлением на них.
Сильнослеживаемые удобрения выпускают в гранулированном виде или с добавкой специальных веществ.
Сильнослеживающиеся – аммиачная селитра, хлористый калий.
Слабослеживающиеся – мочевина, суперфосфат порошковидный.
Не слеживается гранулированный суперфосфат, мочевина гранулированная.
Определяется слеживаемость методом сжатия цилиндра из слежавшегося материала, по величине сопротивления разрушению.
,
Где Р – сила давления на цилиндр из слежавшихся удобрений;
– площадь поперечного сечения цилиндра, см2.
Источник