Механические характеристики грунтов
Основными параметрами для проектирования и строительства, в процессе инженерно-геологических изысканий является определение механических свойств грунтов как лабораторными так и полевыми методами.
Именно механические свойства грунтов — являются основой в проектировании зданий и сооружений — от возведения небольших домов, коттеджей и прокладки коммуникаций до возведения высотных зданий с многоуровневыми подземными парковками.
Характеристики грунта – это его особенности, которые зависят от состава и взаимосвязей между компонентами. Механические характеристики грунтов представляют собой свойства, проявляющиеся при воздействии на грунт нагрузок. На основании механических характеристик выполняются расчеты для проектировки фундаментов, несущих конструкций и других элементов строения, контактирующих с геологией. Характеристики служат исходной информацией и имеют большое значение для исследования и предвидения процессов геологии, происходящих у поверхности земли.
Чтобы рассчитать деформации, нагрузку, которую может выдерживать грунт и оценить прочность фундамента, нужно обладать данными о механических свойствах эксплуатируемых грунтов.
К механическим характеристикам грунтов относят:
— прочность (сопротивляемость растяжениям, проницаемость водой, фильтрация);
На механические характеристики грунтов влияет их состав, параметры физического состояния, а также особенности их структуры. Грунты могут иметь гранулометрический или минеральный состав. К параметрам физического состояния относится плотность, уровень влажности, температура.
Характеристики деформации
К характеристикам деформации относятся:
— показатель упругости, он рассчитывается в пропорциональном соотношении между вертикальной нагрузкой, приходящейся на грунт и относительной величиной деформации почвы, происходящей в вертикальной плоскости. Для определения этого модуля проводятся эксперименты на сжатие в процессе разгрузки исходно уплотненного грунта, взятого в качестве образца;
— показатель общей деформации, рассчитывается в пропорциональном отношении между нагрузкой и относительной величиной искажений почвы в линейной плоскости, которые возникают под воздействием этого давления. Если значение модуля искажений меньше 5 Мпа грунт считается мягким.
Значение показателя упругости всегда превышает показатель общего искажения. Показатель упругости переделяется в процессе экспериментов над образцами почвы и основывается на их упругости, имеющей место во время разгрузки, а показать общих искажений, определяет поведение почвы и при упругих, и при остаточных искажениях.
Механические характеристики грунтов
Сжимаемость грунтов
Сжимаемость грунтов – это показатель, показывающий уровень сжимаемости в условиях, при которых грунт не может расширяться в стороны.
Осадка грунта – это свойства почвы сокращать объем под влиянием уплотняющего давления. Составляющими грунта являются частички, имеющие различную величину и поры, внутри которых находится вода и воздух. Частицы могут иметь связь друг с другом или быть несвязанными. В процессе появления напряжения, возникающего в ходе сжатия изменяются объемы, это становится возможно, благодаря сокращению объемов внутри грунтовых пор, в которых находится газ или же вода. Если грунты насыщены водой, их полное сжатие может произойти, только если жидкость будет вытеснена из пор.
Показатель искажения характеризует сжимаемость, значение уплотнения и коэффициент осадки.
Величина показателя сжимаемости изменяется в большом диапазоне, на нее влияет состав, тип и состояние почвы. Показатель искажения изменяет свое значение под воздействием давления.
Угол внутреннего трения – это значение, отражающее линейную зависимость сопротивляемости грунта от нагрузки, приходящейся вертикально.
Оценивать уровень сжимаемости почвы нужно по начальному отрезку компрессионной линии в диапазоне давления от 0,5 до 1,5 кгс/см2, если показатель давления будет выше, то даже самые слабы почвы слабо сжимаются. Показатель уплотнения позволяет приблизительно оценить степень сжимаемости почвы. Показатель осадки служит отражением величины искажения.
В зависимости от усадки искажения подразделяют на две группы: пластичные и упругие. Последние появляются под влиянием нагрузок, которые меньше прочность структуры почв, не оказывающих разрушительного действия на связи между составляющими, и обуславливается способностью почвы возвращаться в первоначальное состояние после того, как исчезнет давление.
Пластические искажения разрушают связи между составляющими и скелет почвы. Пластичные искажения делают почву более уплотненной благодаря изменению размера пор внутри почвы, а искажения со сдвигом благодаря изменению ее исходной формы и могут приводить к разрушению.
Характеристики прочности
Выделяют несколько характеристик прочности:
Механические характеристики грунтов
Сопротивляемостью к растяжениям называется свойство почвы оказывать противостояние перемещение частей почвы в отношении друг друга вод влиянием прямой нагрузки и касательной. Характеристики прочности применяются при расчете фундаментов. Под прочностью подразумевается свойство почвы выдерживать нагрузки, не подвергаясь разрушению. В песчаных почвах и грунтах с большими обломками сопротивляемость становится достижимой преимущественно благодаря силе трения отдельно расположенных частиц, такие почвы называются сыпучими. Почвы глинистого типа имеют большую сопротивляемость к сдвигам, так как в этом случае имеет место сцепление.
Водопроницаемость – это свойство почвы пропускать жидкость, она зависит от структуры почвы и ее состава. Если пор мало и в составе есть глина, показатель проницаемости водой будет ниже, чем у песчаных почв. Данная характеристика оказывает влияние на устойчивость строений и скорость уплотнения почв под фундаментами, а также оползни.
Под фильтрацией подразумевается перемещение воды в почвах при свободной гравитации, во всех направлениях: вверх, вниз, в стороны под влиянием гидравлики.
Характеристика прочности почв – это их способность оказывать сопротивление силовым влияниям извне.
Для скальных почв прочность оценивают по предельному значению прочности на сжатие в одной оси, а для нескальных по их механическим параметрам.
Различают следующие уровни прочности:
— сверх прочные – значение больше 120;
— прочные – больше 50, но меньше 120;
— средний показатель прочности – меньше 50, но больше 15;
— небольшой прочности – меньше 15, но больше 5;
— сниженной прочности – меньше 5, но больше 3;
— сниженной прочности – меньше 3, но больше 5;
— очень низкой прочности – меньше 1.
Удельное сцепление почвы – это показатель непосредственной зависимости почвы от давления. Сцепление зависит от типа грунта и уровня его влажности (измеряется в Мпа).
Разрыхляемость
Это свойство почвы увеличивать свой объем в ходе разработки из-за потери связей между составляющими. Показатель разрыхления может быть исходным и остаточным. Исходный коэффициент – это отношение количества разрыхленной почвы к ее количеству в первоначальном состоянии.
Показатель остаточного разрыхления – отражает увеличение размера почвы, происходящего в результате ее уплотнения в сравнении с ее первоначальным состоянием.
Трещины и воздействие, которое они оказывают на механические характеристики почв
На свойства почв влияет не только прочность минеральных компонентов, но связи между отдельно расположенными частицами.
Связи между составляющими элементами в грунтах обычно классифицируют на несколько категорий:
— жесткие, их также называют кристализационными;
— жидкостно-коллоидные или вязкие.
Связи, отличающиеся жесткостью, имеют скальные почвы, а пластичными обладают глинистые.
Жесткие связи растворяются или не растворяются в воде. В процессе растворения жестких связей их могут заменять жидкостно-коллоидные.
Нескальные почвы в соответствии с особенностями связей, классифицируются на несколько групп:
— сыпучие (с крупными обломками и песчаные почвы).
Чаще все трещины возникают в скальных и глинистых почвах, отличающихся плотностью. С учетом разделения трещинами такие почвы классифицируют на:
— цельные (трещины отсутствуют или они есть, но при этом не пересекаются друг с другом);
— трещиноватые (растрескивания пересекаются в определенной степени, при этом остаются участки прочной почвы);
— разборные (сетка из трещин, с пересечениями и разделением скального грунта).
Трещины отрицательно сказываются на механических характеристиках грунтов, а именно на прочности. Под воздействием трещин могут появляться сдвиги участков почвы, находящихся под нагрузкой. На почвах глинистого типа и песчаных также могут быть трещины, вызывающие замачивание почвы, отрыв ее частей и движение вниз в результате оползневых явлений. Игнорировать трещины нельзя, это может привести к негативным последствиям в ходе строительства и эксплуатации объекта.
Механические свойства грунтов имеют большое значение в строительстве. Они применяются для расчетов искажений, позволяют оценить прочность и почв и как следствие устойчивость фундаментов.
Исследование грунтов, их характеристик, ведется при помощи современного оборудования с применением передовых технологий.
Специалисты нашей компании обладают большим опытом в изучении механических характеристик грунта: сжимаемости, просадачности, прочности, упругости, трения, сцепления. Мы работаем с грунтами разных типов и знаем все нюансы исследования их свойств. Изучение механических характеристик грунтов выполняется в лаборатории и позволяет получить точные результаты, играющие большую роль в успешном строительстве.
Источник
Свойства почвы
Вопросы:
1. Сопротивление почвы разным видам деформации.
2. Твердость почвы.
3. Фрикционные свойства почвы.
4. Липкость почвы и способы ее снижения.
5. Пластичность, упругость, вязкость и хрупкость почвы.
6. Задернелость и ее влияние на технологические свойства почвы.
Технологические – это те свойства почвы, которые проявляются в процессе ее механической обработки и оказывают существенное влияние на закономерности и характер протекания технологического процесса.
Сопротивление почвы различным видам деформации
Почва под действием рабочих органов сельскохозяйственных машин поддается деформации: сдвигу, сжатию, растягиванию, резанию и кручению. Сопротивление почвы при таких деформациях изучено недостаточно. Для суглинистых почв ученые установили, что наименьший предел прочности отмечен при растяжении почвы 5…6 кПа, средний – при сдвиге 10…12 кПа и максимальный – при сжатии (65…108 кПа). Отсюда следует, что рыхление почв с минимальным расходом энергии можно добиться только путем разрушения связей между отдельными структурными агрегатами с помощью деформации растяжения.
Твердость почвы
Твердость почвы или сопротивление смятию – способность почвы сопротивляться внедрению (под давлением конуса, цилиндра, шара).
Твердость – сравнительный показатель механических свойств почвы.
Между твердостью и удельным сопротивлением почвы существует корреляционная связь, которая наблюдается только при работе плуга. Она различна для песчаных и глинистых почв.
Твердость определяется с помощью твердомеров, которые разделяют по принципу заглубления в почву на ударные и беспрерывные. К первому типу относятся конструкции Железнова, Захарова, Волкова и др.; ко второму – устройства ак. Горячкина, Качинского, Ревякина, Голубева, конструкции, разработанные ВИСХОМом и др.
Рис.1. Схема твердомера Ревякина: 1 – ручка,
2 – пружина, 3 – штанга, 4 – наконечник.
С помощью твердомера Ревякина получим диаграмму зависимости величины сжатия пружины (ось У) от глубины погружения наконечника в почву (ось Х).
Рис.2. Зависимость деформации пружины У твердомера от глубины погружения в почву H.
Давление Р равно силе сопротивления почвы смятию и пропорциональна сжатию пружины У.
Линейная деформация почвы равна величине заглубления наконечника в почву H. Зависимость Р От H представляется в виде диаграммы:
Рис.3. Диаграмма смятия почвы. Зависимость силы сопротивления почвы смятию Р от глубины погружения H.
Диаграмма (рис. 3) аппроксимируется двумя линиями ОА им АВ, которые характеризуют две фазы деформации почвы. В первой фазе (отрезок ОА) сила сопротивления растет пропорционально линии деформации H. Во второй фазе (отрезок АВ) увеличение деформации H не вызывает изменение силы сопротивления и почва “течет”, то есть деформируется под действием постоянной силы сдавливания. Поэтому т. А называют пределом пропорциональности.
Первая фаза имеет большое практическое значение, т. к. деформация почвы сельскохозяйственными машинами, как правило, не выходит за пределы первого участка (ОА) диаграммы. Путем обработки этого участка получают показатели, характеризующиеся способность почвы сопротивляться смятию.
(1)
Где: Рср – средняя нагрузка (сила) соответствующая среднему значению Hср на участке HA, H,
S – площадь поперечного сечения наконечника твердомера, см2.
Рср находится по закону Гука:
, (Н) (2)
Где Уср – величина деформации пружины твердомера (измеряется по диаграмме, рис. 2) , см;
Gп – жесткость пружины, Н/см.
, (Па) (3)
Твердость почвы на разных глубинах неодинаковая, поэтому ее определяют на каждой глубине в отдельности.
Для инженерных расчетов важно знать предельное значение удельного сопротивления почвы смятию или Несущую способность почвы
, (Па) (4)
Где PА – ордината точки А на диаграмме.
Кроме этого, определяют коэффициент объемного смятия почвы, который показывает на сколько возрастет сопротивление почвы при смятии каждой последующей единицы ее объема.
,
(5)
Где PA – сила сопротивления почвы, которая соответствует т.А диаграммы;
V – объем смятой (вытесненной) почвы, который соответствует т. А диаграммы.
Коэффициент объемного смятия имеет следующие значения:
· для свежевспаханной почвы Н/см3;
· для стерни и паров Н/см3;
· для грунтовой дороги Н/см3.
На показатели твердости и коэффициента объемного смятия почвы значительное влияние оказывает влажность, при ее увеличении твердость и коэффициент объемного смятия уменьшается.
При смятии почвы затрачивается энергия. Для ее определения можно использовать диаграмму. С учетом масштаба она будет равна площади, ограниченной линиями ОА и АВ. Для первой и второй фазы энергия равна:
Дж (6)
Дж (7)
Из выражений следует, что при обработка почвы на глубине соответствующей несущей способности (т. А на диаграмме) почвы, приводит к увеличению расхода энергии.
Фрикционные свойства почвы
Оказывают огромное влияние на процессы ее механической обработки. На трение затрачивается от 30 до 50% энергии МТА.
Фрикционные свойства возникают вследствие скольжения почвы относительно другого тела, которое находится с ней в контакте (внешнее трение), или скольжения частиц составляющих почву относительно друг друга (внутреннее трение).
Наружное трение под действием собственной силы тяжести почвы называют Статическим, а под действием внешней активной силы – Динамическим.
Сила трения – это сила сопротивления перемещению, возникает от действия активной силы, стремящейся создать скольжение поверхности одного тела относительно другого при нормальном давлении.
Сила трения Fтр всегда находится в плоскости взаимодействия тел и направлена в противоположную сторону от активной силы.
Максимальное значение Fтр достигает при скольжении. Численное значение определяется по формуле Амонтона (1966 г.)
, Н (8)
Где F – коэффициент трения;
N – сила нормального давления или реакции опоры, Н.
,
Где – угол трения;
и
– не постоянны. Они изменяются в зависимости от механического состава, влажности почвы, скорости относительного движения, площади поверхности и ее состояния.
Численные значения F находятся в интервале 0,25…0,90, – 14˚…42˚.
На трение значительное влияние оказывает влажность (рис.4).
Рис. 4. Зависимость F от Wа.
При низкой влажности от 0 до 8…10% почвенная влага не прилипает к металлу (отрезок АB на рис. 4) – имеет место “истинное трение” и коэффициент трения не зависит от влажности.
Увеличение F – отрезок Bс объясняется возникновением сил молекулярного притяжения почвенных частиц к поверхности металла.
Когда влажность увеличивается до 50…80%, она играет роль смазки, поэтому F уменьшается (кривая Cd).
На F оказывает влияние механический состав почвы рис. 5 , т. е. содержание физической глины (частицы менее 0,1 мм).
Рис. 5. Влияние содержания в почве “физической глины” на коэффициент трения покоя почвы по стали.
Как видно из графика рис.5, с ростом процентного содержания “физической глины” коэффициент трения увеличивается. Это объясняется тем, что у малосвязных песчаных почв отдельные частички не скользят, а перекатываются по поверхности металла (трение качения) вследствие чего сила трения уменьшается.
Улучшение структуры почвы приводит к уменьшению F, что объясняется уменьшением площади действительного контакта почвы со сталью.
По рыхлой почве F ниже, чем по твердой.
Различают Коэффициент трения покоя Fп (характеризует процесс внешнего трения в момент перехода материала из состояния покоя в состояние движения по исследуемой плоскости под действием силы тяжести),
Коэффициент трения движения Fд (характеризует процесс внешнего трения – движении одного материала по другому под действием внешней активной силы) и
Коэффициент внутреннего трения Fвн (характеризует процесс внутреннего трения исследуемого материала – т. е. частиц его составляющих друг относительно друга).
Fп определяется с помощью наклонной плоскости
Рис. 6. Схема сил при определении коэффициента трения покоя Fп: R – равнодействующая сил Fтр и N; – Угол трения (между R и N);
– угол наклона плоскости из исследуемого материала на которой находится образец почвы.
Fд определяется с помощью прибора академика Желиговского:
Рис. 7. Схема сил при определении Fд На приборе академика Желиговского: 1 – доска с ватманом; 2 – линейка с исследуемым материалом; 3 – образец почвы.
Коэффициент трения движения можно также определить на дисковом приборе трения, при скорости V = 12 м/с, N = 15 г/см2 (динамографе).
Исследованиями установлено, что при скорости скольжения почвы относительно отполированной стальной поверхности 0,4 м/с и давлении 20…100 кПа коэффициент трения составляет:
· для сыпучих песчаных и супесчаных почв – 0,25…0,35;
· для связанных песчаных и супесчаных почв – 0,50…0,7;
· для суглинистых – 0,35…0,50;
· для тяжелых суглинков и глины – 0,40…0,90.
Fвн характеризуется углом естественного откоса сыпучих материалов, – это – между образующей конуса и горизонтальной плоскостью.
Т. е. это угол, при котором обеспечивается предельное равновесие .
Рис.8. Схема сил при определении коэффициента внутреннего трения.
Чем мельче фракционный состав сыпучего материала, тем больше .
Угол естественного откоса определяется с помощью прибора.
Рис. 8. Схема устройства для определения угла естественного откоса .
Для воды .
Для масла подсолнечного .
4. Липкость почвы
Липкость почвы – способность ее частиц прилипать и склеиваться. Характеризуется усилием необходимым для отрыва от почвы 1 см2 стальной поверхности.
,
Где Ротр – сила, необходимая для отрыва диска от почвы, Н;
Sд – площадь диска, см2.
Рис.9. Схема прибора для определения показателя липкости: 1 – диск;
2 – стержень; 3 – ролик; 4 – нитка; 5 – чашка для гирек; 6 – емкость с грунтом.
Она проявляется двояким образом.
1. Как сопротивление при скольжении почвы по поверхности рабочих органов машин.
2. Как сопротивление при отрыве находящихся в контакте с ней твердых тел (качение колес, движение гусениц и т. д.).
Сопротивление скольжению от прилипания:
Где Р0 – коэффициент удельного прилипания при отсутствии нормального давления, Па;
P – коэффициент удельного прилипания, вызываемого нормальным давлением, см-2;
S – видимая площадь контакта, см2;
N – сила нормального давления, Н.
Сравнивая и
, отметим, что законы трения и прилипания имеют существенные различия.
Прилипание в отличие от трения зависит не только от нормального давления и свойств материалов рабочей поверхности, но и от площади контакта и проявляются даже при отсутствии нормального давления N.
Липкость почвы зависит от механического состава (дисперсности), влажности, материала рабочей поверхности рабочего органа и удельного давления. С увеличением дисперсности липкость возрастает, поэтому глинистые почвы более липкие, чем песчаные. Бесструктурные более липкие, чем структурные.
Липкость проявляется лишь при определенной влажности:
· для бесструктурных почв при относительной влажности 40…50%;
· для структурных почв – 60…70%.
С увеличением влажности липкость сначала возрастает, а затем падает.
Рис. 10. Зависимость давления необходимого для счищения прилипшей к материалам почвы.
Один из путей уменьшения липкости – использование новых (синтетических) материалов для рабочих органов почвообрабатывающих машин (см. рис.10).
При определенной влажности почвы прилипание и трение действует совместно. Если почва скользит по поверхности рабочего органа, оба процесса проявляются одновременно в виде сопротивления ее скольжению.
,
Где Fтр – сила трения почвы по поверхности рабочего органа,
Fпр – сила прилипания почвы к материалу поверхности рабочего органа.
Залипание рабочих органов происходит в том случае, когда сумма сил трения и прилипания почвы к их поверхности больше, чем предел прочности ее на сдвиг.
Самоочищение наблюдается в том случае, когда сумма сил прилипания и трения почвы о почву становится больше, чем общее сопротивление налипших частиц скольжению.
Способы снижения трения и налипания на поверхность рабочих органов
1. Применение пластинчатых отвалов, которые из-за повышенного уплотнения слоя почвы, способствуют появлению на поверхности пластин свободной воды, устраняющей налипание.
2. Применение вибрирующих рабочих органов.
3. Применение “электросмазки” – движение капиллярной воды в почве к отрицательному электроду под воздействием электрического тока. Следует отметить, что применение данного способа возможно лишь при повышенной влажности и малых скоростях движения (не более 0,5 м/с), поскольку иначе капиллярная вода не успевает перемещаться в почве к поверхности ее контакта с рабочими органами.
4. Нагнетание на рабочую поверхность орудия воды и воздуха.
5. Покрытие поверхностей рабочих органов почвообрабатывающих орудий износостойкими и малозалипаемыми синтетическими материалами.
5. Пластичность и упругость, вязкость и хрупкость
Пластичность и упругость, вязкость и хрупкость – тоже важные технологические свойства почвы.
Пластичность – свойство почвы деформироваться под действием внешней нагрузки (изменять свою форму без распадения на части) и сохранять эту форму после снятия нагрузки.
Пластичность зависит, в основном от механического состава и влажности и характеризуется числом пластичности.
Где WB – верхний предел пластичности т. е. влажность почвы при которой она расплывается от малейшего сотрясения;
WH – нижний предел пластичности, т. е. влажность при которой почва, раскатанная в стержень диаметром 3 мм, начинает крошиться.
Песок не пластичен; супесь – 1…7; суглинок – 8…17; глина более – 17.
Упругость – свойство восстанавливать форму после снятия нагрузки. Упругость зависит от механического состава, влажности и задернелости.
Относительное значение упругих деформаций колеблется от 30 до 80%.
Вязкость – свойство медленно деформироваться не только в функции нагрузки, но и времени.
Чем больше длится нагрузка, тем больше деформация. Вязкость связана с взаимным перемещением фаз почвы: твердых частиц, воды и воздуха.
Пример: колея трактора на болоте, тем глубже, чем меньше скорость и наоборот.
Хрупкость – антипод вязкости, пластические деформации отсутствуют. Пример: пересохшая почва.
В общем случае почва это упруго-вязко-пластическое тело. С изменением тех или иных параметров (Например: влажности) происходит изменение соотношение или утрата тех или иных свойств.
Например: при сильном высыхании (уменьшении влажности) почва утрачивает свойство вязкости и приобретает свойство хрупкости.
Задернелость и ее влияние на технологические свойства почвы
Почвы целинных и залежных земель, лугов пастбищ, полей из под многолетних трав пронизаны многочисленными корнями растений.
Крупные корни находятся в верхней части пласта 6-18 см. Ниже – тонкие и мелкие корешки. Почвенный пласт в таких случаях разграничивается на два слоя, резко отличающихся по своим технологическим свойствам. Так, верхний задернелый слой ведет себя, как упругое тело, а нижний обладает пластичностью.
Например: предел прочности на сдвиг задернелой почвы (многолетняя залежь). более чем в 3 раза превышает предел прочности старопахатных земель (стерня озимой пшеницы) при той же влажности.
Характеристикой задернелости могут служить толщина слоя дернины, связность дернины и степень задернения пахотного слоя (толщина 6…18 см).
Степень задернелости пласта (пахотного слоя) определяется вымыванием из пробы корней, высушивают их и взвешивают. Масса корней Mk отнесенная к объему взятой пробы Vn, показывает степень задернелости:
,
.
Степень задернелости на целине – 18…39 г/дм3, на полях клевера – 4,5…8 г/дм3.
Абразийность
Абразийность – это свойство почвы проявляется при износе рабочих органов почвообрабатывающих машин и зависит от механического состава почвы.
Например: износ лемеха при вспашке 1 га:
· на глинистых и суглинистых почвах от 2 до 30 г;
· суглинистых и супесчаных с небольшим количеством камней – 30…100 г;
· песчаных с большим количеством камней – 100…450 г.
Абразивность почвы зависит от содержания в ней физического песка. Высокая абразивность песчаных почв объясняется преобладанием в их составе кварца – самого твердого из минералов образующих почву.
Исходя из свойств почвы рабочая поверхность корпусов плугов у нас делают из Сталь 65Г (марганец). Немецкий плуг фирмы «ЛЕМКЕН» добавляется бор для прочности.
Литература
1. М55 Механіко-технологічні властивості сільськогосподарських матеріалів: Навч. посібник/О. М. Царенко, С. С.Яцун, М. Я.Довжик, Г. М.Олійник;За ред. С. С.Яцуна. — К.: Аграрна освіта, 2000.-243с.:іл. ISBN 966-95661-0-7
2. Механіко-технологічні властивості сільськогосподарськи матеріалів: Підручник / О. М.Царенко, Д. Г.Войтюк, В. М.Швайко та ін.;За ред. С. С. Яцуна.-К.: Мета, 2003.-448с.: іл. ISBN 966-7947-06-8
3. Механіко-технологічні властивості сільськогосподарських матеріалів. Практикум:Навч. посібник/Д. Г.Войтюк, О.М. Царенко, С.С. Яцун та ін.;За ред. С.С. Яцуна:-К.:Аграрна освіта,2000.-93 с.: іл.
4. Хайлис Г. А. и др. Механико – технологические свойства сельскохозяйственных материалов – Луцк. ЛГТУ, 1998. – 268 с.
5. Ковалев Н. Г., Хайлис Г. А., Ковалев М. М. Сельскохозяйственные материалы (виды, состав, свойства). — М.: ИК «Родник», журнал «Аграрная наука», 1998.—208 с., ил. 113.—(Учебники и учеб, пособия для высш. учеб, заведений).
6. Физико – механические свойства растений, почв и удобрений. — М.: Колос, 1970.
7. Скотников В. А. и др. Практикум по сельскохозяйственным машинам. – Минск: Урожай, 1984. – 375 с.
8. Методика изучения физико-механических свойств сельскохозяйственных растений. М.: ВИСХОМ, 1960. -–269 с.
9. Карпенко А. Н., Халаский В. М. Сельскохозяйственные машины. – М.: “Агропромиздат”, 1983. – 522 с.
Источник