Меню

Датчик температуры почвы для ардуино

Датчик влажности почвы (ёмкостный): инструкция по использованию и примеры

Ёмкостный сенсор влажности почвы пригодиться для создания систем автоматического полива растений. Датчик не даст засохнуть комнатным цветкам и флоре на огороде.

Принцип работы

Ёмкостный датчик выполнен в виде штыря, которым погружается в грунт на расстояние до 80 мм. На штыре в виде дорожек расположены два электрода, но в отличии от резистивной модели, электроды ёмкостного сенсора защищены токоизолирующей маской и неподвержены коррозии.

Внутри ёмкостного датчика находится RC-генератор на таймере 555, частота которого зависит от ёмкости между двумя электродами, которые выполняю роль конденсатора. Изменение влажности грунта сказывается на его диэлектрических свойствах и меняет ёмкость, что приводит к повышению или понижению выходного сигнала датчика. Итоговое напряжение пропорционально степени влажности почвы.

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Код для Arduino IDE

Прошейте платформу Arduino скетчем приведённым ниже.

После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.

Источник

Датчик влажности почвы (резистивный): инструкция по использованию и примеры

Используйте резистивный сенсор влажности почвы для создания систем автоматического полива растений. Датчик подойдёт для ухода за комнатными цветками и флоре на огороде. Не дайте своим растениям засохнуть!

Принцип работы

Датчик для измерения влажности почвы выполнен в виде вилки с двумя электродами, которыми погружается в грунт на расстояние до 40 мм. При подключении питания на электродах создаёться напряжение. Если почва сухая, её сопротивление велико и через датчик между электродами течёт слабый ток. Если земля влажная — её сопротивление становится меньше, а ток датчика между электродами соответственно увеличивается. По итоговому аналоговому сигналу можно судить о степени увлажнения почвы.

Максимальное напряжение на выходе S не превышает 75% от напряжения питания модуля V , т.е. сигнальный диапазон датчика равен:

На показания датчика также влияют следующие факторы:

Электроды датчика покрыты золотом, чтобы предотвратить пассивную коррозию, когда он выключен. Избавиться от электролитической коррозии, вызванной протекающим током, невозможно, поэтому сенсор резистивного типа рекомендуется запитывать через силовой ключ. То есть, включать его только на время измерений, чтобы максимально продлить ресурс. В плане эксплуатации это доставляет неудобство, поэтому рекомендуем обратить внимания на ёмкостный датчик влажности почвы, который в силу своего исполнения неподвержен корозии.

Читайте также:  Растительное удобрение для огорода

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Код для Arduino IDE

Прошейте платформу Arduino скетчем приведённым ниже.

После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.

Патч для XOD

После загрузки прошивки, в отладочной ноде watch будут выводиться текущие показания сенсора в диапазоне от 0 до 0,75:

Пример для Espruino

В качестве мозга для считывания показаний с датчика рассмотрим платформы из серии Espruino, например Iskra JS.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Iskra JS. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Iskra JS методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Исходный код

Прошейте платформу Iskra JS скриптом приведённым ниже.

После загрузки скрипта, в консоль будут выводиться текущие показания сенсора в диапазоне от 0 до 75%.

Пример для Raspberry Pi

В качестве мозга для считывания показаний с датчика рассмотрим одноплатные компьютеры Raspberry Pi, например Raspberry Pi 4.

Схема устройства

К сожалению в компьютере Raspberry Pi нет встроеенного аналого-цифрового преобразователя. Используйте плату расширения Troyka Cap, которое добавит малине аналоговые пины.

Подключите датчик влажности почвы к Raspberry Pi через плату расширения Troyka Cap к 3 пину. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Программная настройка

Исходный код

Запустите скрипт на малине приведённым ниже.

После загрузки скрипта, в консоль малины будут выводиться текущие показания сенсора в диапазоне от 0 до 75%.

Элементы платы

Измерительные электроды

Датчик построен на основе транзисторного усилителя тока. Для измерения влажности почвы на датчике расположены два электрода, которые для проведения измерений необходимо воткнуть в почву. Электроды подключены в цепь между коллектором (точка SP) и базой (точка SN) встроенного транзистора на плате MMBT2222ALT1G.

При изменении влажности почвы, меняется сопротивление между базой и коллектором, к которому подключен положительный полюс источника питания. Соответственно меняется и протекающий ток от коллектора через эмиттер на землю. В результате изменяется и выходное аналоговое напряжение сенсора (точка OUT). Подробности найдёте на принципиальной схеме датчика.

Читайте также:  Можно ли подкормить малину осенью нитроаммофоской

Troyka-контакты

Датчик подключается к управляющей электронике через три провода.

Источник

Датчик влажности почвы. Датчики. Ардуино

Привет! Продолжаем рассматривать различные датчики для Ардуино. Сегодня сделаем обзор на датчик влажности почвы для Ардуино. С его помощью мы сможем проверить количество воды в почве или просто уровень воды в какой-то емкости.

В прошлый раз мы рассматривали Ethernet Shield для Ардуино. С его помощью мы сможем управлять Ардуино или проверять состояние подключенного к Ардуино оборудования через интернет. Это очень полезная штука, так что посмотрите предыдущий урок, если уже его забыли или пропустили.

Датчик влажности почвы состоит из двух частей. Это контактный щуп YL-69 и датчик YL-38. Они соединяются между собой парой проводков. Между электродами щупа есть небольшое напряжение. Если почва сухая, сопротивление больше и ток будет меньше. Если земля влажная, сопротивление меньше, а ток больше.

Датчик YL-38 имеет четыре контакта для подключения к Ардуино.

  • Vcc – питание датчика
  • GND – земля
  • A0 — аналоговое значение
  • D0 – цифровое значение уровня влажности

Технические характеристики

  • Напряжение питания: 3.3-5 В
  • Ток потребления 35 мА
  • Выход: цифровой и аналоговый

Для того, чтобы выполнить этот урок нам понадобиться

  • Ардуино UNO
  • Макетная плата
  • Перемычки
  • Датчик влажности почвы
  • Цветок в горшке
  • 3 светодиода
  • 3 резистора 220 Ом
  • Кабель USB

Программа и схема

Соберем простую схему на макетной плате. И напишем небольшой скетч, чтобы определить состояние почвы в горшке с цветком и зажечь разные светодиоды в зависимости от влажности почвы.

Принципиальная схема подключения датчика влажности почвы

Подключим аналоговый вывод с датчика к порту А0. И соединим контакты питания с соответствующими пинами Ардуино.

Теперь в программе нам нужно считать данные с аналогового порта. И зажечь соответствующий светодиод. На контакте мы получим значение от 0 до 1023. Следовательно 0 будет отвечать абсолютно сухой земле. 1023 будет означать, что датчик полностью погружен в воду. В этих случаях мы зажжем красную лампочку. А значения посередине будут отвечать умеренно влажной земле. Там будут желтая и зеленая лампочка.

Выведем результаты измерений в монитор порта, чтобы лучше контролировать показания программы и датчика. А с помощью встроенного в датчик переменного резистора мы сможем отрегулировать его.

Полный текст программы

Известные проблемы

Щуп датчика покрыт металлом. А при измерении сопротивления через металлические части датчика проходит ток. При взаимодействии металлических деталей с водой в почве и воздухе. А так же, под действием электричества, металл подвержен коррозии и датчик может быстро выйти из строя. Кроме того, при разложении металлические части попадают в почву и могут отравить ее и убить растения рядом.

Читайте также:  Гранулометрический состав плодородных почв

Чтобы избежать таких проблем, лучше использовать Емкостный датчик влажности почвы. Обзор на него мы сделаем в ближайшее время.

Заключение

В этом обзоре мы рассмотрели датчик влажности почвы. Подключили его к Ардуино и собрали простую сигнальную схему измерения состояния земли для растения.

Источник

Емкостной датчик влажности почвы

Общие сведения:

Trema-модуль емкостной датчик влажности почвы — в отличие от резистивных датчиков влажности не подвержен коррозии. Датчик является аналоговым, напряжение на выходе обратно пропорционально влажности почвы. Датчик идеально подходит для наблюдения изменений влажности почвы, для создания систем автоматического полива растений и для мониторинга целостности грунтового трубопровода.

Спецификация:

  • Напряжение питания Vcc: 5 В или 3,3 В
  • Напряжение на выходе датчика при Vcc 5В:

3 . 1,75 В; при Vcc 3,3В:

2 . 1 В

  • Выход датчика инверсный
  • Максимальный потребляемый ток:

    Способ — 2 : Используя проводной шлейф и Shield

    Используя 3-х проводной шлейф, к Trema Shield, Trema-Power Shield, Motor Shield, Trema Shield NANO

    Питание:

    Входное напряжение питания 5 В или 3,3 В, постоянного тока, подаётся на выводы Vcc (V) и GND (G) датчика. Датчик можно подключить к постоянному питанию (тип подключения 1), а можно управлять питанием датчика (тип подключения 2) если подавать питание на датчик с любого информационного вывода, тогда функцией digitalWrite() можно включать или выключать датчик. При таком подключении нужно дать датчику время для включения генератора частоты, примерно 50 миллисекунд.

    Питание датчика от информационного вывода (тип подключения 2), возможно, благодаря низкому энергопотреблению датчика (потребляемый ток

    В зависимости от влажности почвы, при питании 5 вольт показания датчика находятся в диапазоне от

    1.75 вольт; при питании 3,3 вольта от

    1. Соответственно, диапазон показаний функции analogRead() будет зависеть от напряжения питания датчика.

    График зависимости выходного напряжения датчика от влажности почвы при питании 5В

    Примеры:

    Считывание показаний с датчика:

    Показания датчика считываются вызовом функции analogRead(номер_вывода);

    Тип подключения 1:

    Тип подключения 2: датчик запитан от выводов A0 и A1.

    Так как датчик является инверсным, для удобства чтения данных можно воспользоваться встоенной функцией map(), которая в следующем скетче преобразует и инвертирует «сырые» показания датчка в диапазон от 0 до 100:

    Источник

  • Adblock
    detector