Меню

Датчик влажности почвы wifi

Год измеряем влажность почвы на ESP8266 и двух батарейках. Часть 2

Всем привет! В этой статье хочется рассказать, как заставить датчик влажности почвы проработать год на двух батарейках (ААА) и при этом сделать все более менее правильно. Первая статья — про выбор среды разработки (Arduino IDE) и платформу Blynk.

Картинка домашнего дуба для привлечения внимания

Садовод любитель

Для начала небольшое признание — я не программист и я домашний садовод. И то и другое это мое хобби. У меня на подоконниках сделаны полки, с специальной сине-красной светодиодной подсветкой, под которой растения должны расти с бОльшим энтузиазмом. Не вдаваясь в детали фотосинтеза и прочую ботанику, можно сказать, что светодиодная подсветка создала одну проблему, решая которую и родилось устройство, которому посвящена эта статья.

Светодиодные линейки (мощность примерно 6 Вт), достаточно сильно нагреваются сами и нагревают полку и горшок с растением, который на ней стоит. Самому растению, подогреваемая почва не приносит какого либо дискомфорта, но возникает проблема быстрого пересыхания почвы.

При этом земля в горшках, которые стоят просто на подоконнике высыхает медленнее. А на верхних полках, там где во время полива не видно состояние почвы, регулярно случаются переливы или засухи.

Конечно же все уже придумано, и на Ebay можно купить вагон разных измерителей влажности почвы. Например, был куплен один экземпляр измерителя влажности с бипером (цена около 300 рублей).

Устройство работает, но есть несколько но:

  1. Не понятно на какой уровень влажности настроен бипер.
  2. Если устройств будет больше чем одно, то придется ходить и прислушиваться.
  3. Я ведь тоже так могу.

И тут Остапа понесло, ведь есть опыт (раз и два). Так родилось устройство способное измерять влажность почвы, освещенность, температуру и влажность воздуха, передавать результаты измерений в мобильное приложение и работать при этом от батареек достаточно продолжительное время. Про железо тут. А про программные особенности хочется рассказать подробнее в этой статье.

Анализируем энергопотребление

Согласно даташита, ESP8266 потребляет до 170 мА в режиме работы WiFi, 15 мА с выключенным модемом (Modem Sleep) и совсем ничего в режиме Deep Sleep – примерно 10 мкА.

Из потребляющего в нашем устройстве можно выделить WiFi модем, датчик AM2302 (на который подается 3.3 В через повышалку TPS60240DGKR) и мультиплексор (CD74HC4051M96) для коммутации входов АЦП.

Самый большой вклад в энергопотребление вносит WiFi и поэтому первым делом надо заставить ESP8266 стартовать с выключенным радиомодулем. После загрузки в режиме Modem Sleep можно сделать все измерения и только потом включать модем и передавать данные на сервер Blynk (для оптимизации потребления MQTT пока отключил), после чего уже заснуть до следующего раза.

Deep sleeep

При условии, что аппаратно все ноги соединены правильно (RST пин соединен с GPIO16), перевести ESP в режим Deep Sleep можно одной командой:

sleep_time – время сна в микросекундах, которое можно динамически менять и если, скажем, попытка передать данные не удалась (не работает роутер или не отвечают сервер blynk) – то можно установить таймер на 5-10 минут и после попробовать передать данные снова. А если все хорошо, то после успешного сеанса связи можно уснуть на час или сутки.

WAKE_RF_DISABLED — указывает на то, что проснется модуль с выключенным WiFi модулем.

Работа с WiFi

В этот раз также хотелось иметь возможность настраивать устройство без помощи компьютера через Captive портал. Но если, как в прошлый раз, взять библиотеку WiFiManager, то с выключенным модемом работать она будет как минимум странно. Поэтому всю логику работы данной библиотеки пришлось привязать к нажатию кнопки. А раз кнопка у нас всего одна и та используется для загрузки ПО через UART — то пришлось сделать так:

  1. Включаем питание (вставляем батарейки).
  2. Ждем мигание светодиода (в тестовом варианте слушаем бипер).
  3. Нажимаем кнопку и попадаем в WiFiManager.

Теперь мы можем открыть Captive портал, сохранить настройки WiFi и Blynk token.
В следующую загрузку библиотека уже использоваться не будет, а подключаться к WiFi будем средствами самой ESP.

В некоторых мануалах по оптимизации энергопотребления ESP8266 можно встретить команду WiFi.disconnect(); которая должна отключать модем от текущей WiFi сети. Однако на практике, эта команда удаляет сохраненный в памяти модема SSID() и пароль, поэтому использоваться ее мы не будем.

Считываем датчик AM2302

Для работы с датчиком температуры\влажности также была использована библиотека DHT Sensor Library от Adafruit. В целях экономии, питание на датчик подается не постоянно, а только по сигналу, специально выделенного GPIO. Однако, опытным путем установлено, что датчик достаточно продолжительное время выходит на рабочий режим и адекватные значения влажности (отличные от 99%) начинает выдавать примерно через 5 секунд после подачи на него питания. С одной стороны такая большая задержка на «прогрев» датчика это лишние мА, но возможность управлять питанием датчика AM2302 это скорее плюс, т.к. мы можем пользоваться датчиком не каждый раз или переставать измерять температуру\влажность при снижении заряда батареек.

Читайте также:  Самая низкая температура почвы

Измеряем показания на АЦП

АЦП у нас используется для измерения трех параметров: заряд батареек, освещенность и влажность почвы. Для коммутации разных сигналов на вход единственного АЦП — используется мультиплексор (модель).

У ESP8266 АЦП 10-битный, а диапазон измеряемых напряжений 0..1 В. Поэтому в схеме предусмотрен резистивные делители, понижающий все измеряемые сигналы до уровня 1 В. При измерении заряда батареи — все замеры на графике выглядят правильно. Однако оказалось, что по мере снижения заряда батареек начали снижать и показания датчика яркости.

Результаты измерений 4х дней. Яркость снижается вместе с зарядом батареек.

Как оказалось при снижении напряжения питания, у нас пропорционально понижается напряжение, прикладываемое к датчику яркости и как следствие измеренная яркость тоже. Но к счастью, зависимость во всем диапазоне входных напряжений от 3.3В до 2.5В оказалась линейной (в пределах допусков) и исправить проблему можно простой нормировкой результата измерения.


График зависимости максимальной измеренной яркости\влажности в зависимости от заряда батареек

Максимально возможное значение влажности\яркости при текущем заряде батареи можно посчитать по формулам:

q_w = (adcbattery * 4) / 15; // влажность почвы
q_l = (adcbattery * 25) / 101; // яркость

Чтобы учесть возможные погрешности (и случайные всплески) измерений АЦП был реализован простейший медианный фильтр. Делаем три замера с небольшим интервалом, далее с помощью алгоритма быстрой сортировки (спасибо Википедия) находим среднее значение и его принимаем за результат.

Измерение влажности почвы

Для того, чтобы измерять влажность почвы, необходимо на земляной электрод подать напряжение и на другом его конце измерить сколько этого самого напряжения дошло, а сколько «потерялось» в почве. На практике оказалось, что при подаче «единицы» диапазон возможных значений на входе АЦП при нахождении электрода в очень сухой и очень влажной почве — совершенно незначителен, что-то около 100 мВ. Но у братьев из поднебесной было подсмотрено, что надо подавать ШИМ сигнал с частотой 100 кГц и скважностью 50% и в этом случае потери сигнала во влажной почве становятся весьма заметными.

Максимальна частота ШИМ, на которую способен ESP8266 равна около 78 кГц, но как показала практика и при 75 кГц результаты измерений влажности достаточно точные и отражают состояние почвы.

Чтобы активировать ШИМ надо:

Планы на будущее

В данный момент, если проводить все измерения 1 раз в минуту, то комплекта новых батареек (2 шт ААА) хватит на 4 дня или 5760 измерений. Если же делать по 12 замеров в день (раз в два часа), то батареек должно хватить на год как минимум (480 дней).

Но время автономной работы можно еще увеличить, если включать WiFi не каждое «просыпание», а пару раз в день. Но, чтобы это реализовать надо каким то образом отличать одно включение от другого. Оперативная память для этого не годится, т.к. в режиме Deep sleep очищается. Для этой цели мог бы подойти EEPROM, однако на ESP он реализован как часть флеша и писать туда часто не самая лучшая идея (и не самая энергоэффективная).

Но, не все так плохо и в нашем распоряжении еще есть 512 байт RTC памяти, которая прекрасно сохраняет данные в то время, пока чип находится в режиме Deep sleep. Я нашел для себя две новые функции и не успел еще их внедрить в проект.

Также в ближайшее время будет добавлена самая важная функция, а именно отправка звуковых (бипером) и мобильных (пуш) уведомлений в случае высыхания почвы. Пока как то не до этого было. Самое важное, о чем надо не забыть, это учет текущего времени, чтобы не начать пиликать ночью.

Заключение

Проект целиком на гитхабе.

Спасибо за внимание.

Отдельное спасибо моей жене за регулярный полив тестового цветка.

Источник

Беспроводной DIY монитор влажности почвы

Приветствую всех читателей Хабра! Сегодня хочу поделится с вами моим новым проектом — беспроводным датчиком влажности почвы, который построен на основе всем известного модуля влажности почвы с алиэкспрес. Новый датчик это логическое продолжение первого моего DIY проекта на эту тему. Но в новой реализации это уже не ардуино модуль, а законченный девайс с своим собственным корпусом. Итак, каша из топора, часть вторая! 🙂

Китайский модуль измерения влажности почвы построен на таймере 555. Метод измерения — емкостной. Для моего проекта нужна была версия модуля с установленным стабилизатором напряжения XC6206P332 на 3.3В, который в дальнейшем придется удалить с платы модуля. Дело в том что в таких версиях используемся модификация таймера TLC555 с нижним порогом по питанию в 2В. В версиях без стабилизатора используются таймеры NE555 c нижним порогом по питанию в 5В. Но в любом случае что проще купить для повторения этого проекта дело повторяющего. В первом варианте выпаиваем стабилизатор напряжения, во втором меняем таймер например на такой — LMC555 (даташит) работающий даже от 1.5В. Для беспроводного модуля к китайскому датчику влажности почвы я выбрал радиомодуль от EBYTE E73C на котором установлен чип nRF52840. Аргументом стала цена модуля и имеющееся количество данных модулей у меня в запасах.

Читайте также:  Байкал для компоста осенью

Беспроводной модуль получился очень простой, RGB светодиод, пара кнопок, полевой транзистор, батарейка. Собрать такой девайс сможет даже самый неопытный начинающий паяльщик. На датчике влажности помимо удаления стабилизатора напряжения так же необходимо выпаять разъем и впаять на его место штырьевую вилку 3P, шаг 2.54 мм.

Размеры платы получились немного меньше чем в первом проекте — 42х29мм, определялись размером держателя батарейки.

Корпус был напечатан на моем бытовом SLA принтере ANYCUBIC. Время печати деталей порядка пары часов. Последующая пост обработка заняла около получаса. Стоимость израсходованной полимерной смолы

Потребление в режиме сна — 4.7мкА, в режиме передачи 8мА. Интервал замеров изменяемый, шаг 1 минута. Время измерения 50мс (5 замеров в тестовой программе), потребление во время измерения

1 мА. Так же производятся измерение температуры чипа, измерение уровня заряда батарейки. Передача данных на контролер УД посредством сети Mysensors, передача данных на контролер УД посредством сети Zigbee.

Код тестовых программ находится на моем Github

Пример работы в сети Mysensors и УД Мажордомо

Пример работы в сети ZigBee и УД Мажордомо

Код настройки конвертора в модуле zigbee2mqtt для датчика влажности (пока не уверен, что это верное решение).

Тестовую прошивку написал один из участников нашего DIY сообщества — Lenz, вот его GIthub.

Стоимость компонентов которые пришлось добавить к китайскому влагомеру составила порядка 400-500 рублей. На мой взгляд вполне неплохо.

Видео работы датчика

Дальнейшие планы на этот проект. Хочется заменить МК на что то более простое, например на nRF52810 или nRF52811, но всё будет упирается в цену, скорее всего придется отказаться от радиомодулей и сделать просто на чипе. Возможно подумаю добавить зуммер, вполне вероятно стабилизатор питания, так как сейчас необходимо учитывать напряжение питания при замере. Довести до стабильного состояния Zigbee версию, сделать BLE версию, сделать мобильное приложение-показометр. Вообщем точно будет что-то еще.

Если вас заинтересовал данный проект, предлагаю зайти в группу телеграмм, там всегда будет оказана помощь в освоении протокола Майсенсорс, Zigbee, BLE на nRF5, помогут освоить программирование nRF52 в Ардуино ИДЕ и не только в ней.

Источник

Zigbee-датчик влажности почвы для растений (проект modkam.ru)

В этом обзоре мы с вами познакомимся с еще одной разработкой Jagera, автора сайта modkam.ru, широко известного среди энтузиастов умного дома. Это zigbee датчик влажности почвы для растений, функционал которого, при необходимости может быть существенно расширен для других измерений.

Также, пользуясь случаем, хочу выразить благодарность Jager и всем кто приложил свои знания и умения к созданию таких полезных устройств.

Содержание

Где заказать ?

  • Заказать в РФ — телеграмм
  • Заказать в Украине — производитель датчика из обзора на OLX

О датчике

Информация о первой версии устройства появилась еще в августе 2020 года, как альтернативе Mi Flora, который существенно вырос в цене, хотя пару лет назад стоил меньше 10 долларов. Разработка построена на базе многократно проверенного модуля E18-MS1-PCB и измеряет влажность почвы емкостным методом, что защищает электроды датчика от коррозии, а кроме этого имеет возможность установки еще ряда сенсоров — влажности, давления, освещенности и двух датчиков температуры, включая выносной.

Меньше чем через месяц, благодаря участникам сообщества, свет увидела вторая версия датчика, кстати именно про нее и пойдет речь в этом обзоре. Не отличаясь от первой версии функционально, она была оптимизирована с точки зрения схемотехники, что позволило убрать часть лишних элементов и упростить монтаж.

В конце февраля 2021 года, вышла третья версия датчика. Функциональность не изменилась, главное отличие в том — полностью фабричная сборка. Приложенные к статье исходники для заказа содержат всю необходимую информацию для производства готового устройства, самостоятельно останется установить и припаять держатель элементов питания, прошить и распечатать корпус.

Внешний вид

Итак, как я уже сказал, герой этого обзора — датчик второй версии, оптимизированный. Собран в Украине, и очередная моя благодарность для Александра из Одессы, который собрал и безвозмездно передал мне несколько таких устройств.

Попавшие ко мне датчики рассчитаны на установку двух батареек формата ААА. Здесь важно использовать именно батарейки, так как их напряжение равно 1,5 В, что в сумме дает 3. А напряжение никелевых аккумуляторов в сумме дает около 2,5 В. Также можно заказать на базе круглой батарейки CR2032.

В датчике используется модуль E18-MS1-PCB от EBYTE на базе чипа CC2530 который очень часто используется в подобного рода DIY устройствах.

Эта часть датчика должна находится в почве. Прямого контакта электродов с влажным грунтом нет, что предотвращает коррозию. В моем случае это единственный измеряемый параметр, остальные сенсоры не установлены

В сочетании с высокой энергоэффективностью Zigbee, кстати в данной версии датчик передает данные раз в 30 минут, емкости батареек должно хватить на несколько лет минимум.

Читайте также:  Удобрение для травы газона

На датчике есть кнопка — короткое нажатие принудительно проводит обновление данных, а для синхронизации — нужно около 10 секунд удерживать ее, пока светодиод не начнет мерцать.

SLS gateway

Подключение начнем с SLS шлюза, в котором сразу появляется поддержка всех устройств с modkam. Синхронизация и подключения происходит в штатном режиме, поддержка — полная.

Помним что особенностью работы SLS является то, что сразу после подключения появляются не все объекты устройства. Они отобразятся по мере получения с них каких-то данных, это нормально так и должно быть.

Вот так выглядит перечень всех возможных параметров которые можно получать с шлюза. Влажность воздуха, освещение, тут кстати есть какое-то значение, давление, и два датчика температуры — воздуха и выносной для почвы.

Параметр LastSeen это время последнего отзыва от датчик в Unix формате — количество секунд прошедших от 00:00 01.01.1970

Сущности зеркально пробрасываются в Home Assistant. По мере обновления в SLS — будут появлятся и тут. Обновить их принудительно можно коротким нажатием на кнопку датчика. Из реальных параметров на этой версии — уровень заряда, сигнала и влажность почвы.

Напомню — интервал между передачей показания датчика — составляет 30 минут, для растений этого вполне достаточно.

Zigbee2mqtt

Это устройство поддерживается и в zigbee2mqtt — без применения внешних конвертеров и необходимости ставить версию для разработчиков. Сопряжение — тоже стандартное без каких-то специальных действий.

Поддержка полная, включая корректное изображение устройства. На всякий случай уточню — датчик является конечным устройством и не передает данные от других участников сети.

Чтобы данные датчика не исчезали после перезагрузки инстанса — в меню настроек нужно поставить галочку retain, тогда все данные в топике mqtt будут сохранятся.

Все основные параметры датчика тут те же самые что и в SLS — главный — влажность почвы, данные устройства — уровень заряда и сигнала и опциональные — влажность воздуха, давление, освещение и две температуры.

Корпус

Для этого датчика обязательно нужен какой-то корпус, по крайней мере для защиты от брызг при поливе. К вопросу можно подойти с фантазией — например корпуса в виде грибка, которые мне прислали вместе с датчиками.

Шляпка съемная — она открывает доступ внутрь ножки гриба, в которой и находится электронная часть датчика. Кроме этого она выполняет роль зонтика, защищающего датчик от попадания брызг.

На одной из стороны предусмотрено отверстие, через которое можно вывести например выносной датчик температуры.

Нижняя часть датчика с электродами, которую нужно погружать в грунт, выводится через прорезь в нижней части ножки гриба.

Кроме защиты от брызг, корпус выполняет и эстетическую функцию. Грибок в горшке с растением — смотрится оригинально и не чужеродно.

Mi Flora

А так выглядит датчик в грибном корпусе по соседству с заводским решением от Xiaomi Mi Flora. Лично мне больше симпатичен гриб.

Вот сравнение показаний датчиков сразу после полива. Емкостной сенсор Zigbee устройства показывает 100%, а miflora — 76%. Мне кажется что тут ближе к правде Zigbee устройство, так как верхний слой почвы полностью пропитан водой. Кстати хочу отметить что с последним обновлением интеграции Xiaomi gateway 3 — mi flora стала намного чаще отдавать показания, раньше было намного инертнее.

Показания примерно через час. Оба сенсора показывают снижение уровня влаги, но miflora — на 20 с лишним процентов, что как-то много, а Zigbee — всего на 6%.

А тут показания двух рядом стоящих датчиков в другом горшке, менее чем через сутки после полива. MiFlora показывает всего 11%, хотя земля чувствительно влажная на ощупь. При этом грибок считает что влажность — 76% и это больше похоже на правду.

Всего у меня в системе три таких датчика, как раз по количеству горшков в комнате.

Так они выглядят на карте сети. Они находятся в одной комнате с координатором, здесь это USB Zigbee Stick CC2652 и считают оптимальным подключаться прямо к нему.

Выводить в интерфейс мне удобнее всего при помощи кастомной карты Multiple Entity Row, она позволяет несколько значений выводить одной строкой. Я вывожу все что дает этот датчик — влажность почвы, уровень заряда и сигнала.

Видео версия обзора

Вывод

Говоря о достоинствах этого датчика — в первую очередь стоит упомянуть интерфейс, на мой взгляд Zigbee наиболее подходящий для таких устройств и возможность установки емкого источника питания в виде батареек ААА. Более адекватная, на мой взгляд, методика измерения влажности почвы, по крайней мере она более логичная.

Так же мне очень понравился корпус, но это уже немного другая история, так как его печать не связана с производством датчика, который, напоминаю, в третьей версии можно заказать сразу в сборе, либо приобрести локально с уже установленной прошивкой и элементами питания по одной из указанных мной ссылок.

Источник

Adblock
detector