Лабораторные исследования грунтов: назначение и методы
Лабораторные исследования грунтов и воды помогают узнать, как участок будет вести себя в условиях статической нагрузки и динамического воздействия извне: для этого искусственно создают нагрузку, соответствующую уровню той, что появится в месте строительства после возведения объекта. Все свойства, выявленные в лаборатории, отличаются достоверностью и высокой точностью.
Какую информацию дают лабораторные исследования грунтов?
Обязательный этап любого строительства — это проведение инженерных изысканий. При проведении этих работ грунт исследуют в полевых условиях и набирают образцы для лабораторного анализа. Это нужно, чтобы протестировать пробы в условиях, которые нельзя воссоздать на участке: бывает так, что имитация воздействия нужного масштаба на поле невозможна.
Во время лабораторных испытаний грунт проверяют не только статичными нагрузками, но и динамическими. Для этого искусственно создают воздействие, уменьшенное по силе пропорционально объему грунта, и фиксируют результаты испытаний.
В каких случаях нужно нельзя провести полевые испытания
К воздействию извне, которое нельзя отследить в месте естественного залегания грунтов, относят, например, снижение нагрузки при рытье котлована под фундамент и последующее возрастание давления, которое возникает при строительстве.
Тесты на динамическое воздействие нужны, если возле будущего объекта пролегают трамвайные линии, железнодорожные пути или шоссе с большой проходимостью. Не важно, на в каком состоянии инфраструктура — уже есть или строительство путей начнется в отдаленном будущем, — рассчитать дополнительную динамическую нагрузку, которую дает такое соседство, возможно только в искусственно смоделированных условиях.
Выявление физических свойств грунта
Исследование этих показателей позволяет выявить параметры, которые опасно игнорировать при проектировании: если заложить объект, который даст нагрузку больше, чем способен вынести участок, грунт сместится, и начнется разрушение здания.
Когда почва проседает под весом здания, возникает асимметрия, и давление перераспределяется. Это происходит неравномерно, фундамент и стены могут дать трещины, и тогда дальнейшая эксплуатация постройки станет опасной или вовсе невозможной.
Чтобы не допустить неграмотного проектирования, определяют следующие физические параметры грунтов:
- минеральный состав: это важно, потому что почва состоит из сотен различных минералов, каждый из которых имеет собственный химический состав и строение;
- естественная влажность — она определяется влагой, которая есть в порах. Как правило, нормальный показатель колеблется в рамках 3–8%;
- порозность и плотность почвы: показатели дают представление о физико-химических процессах, которые происходят в грунтах;
- предрасположенность горных пород к набуханию и усадке: эти два аналогичных процесса могут значительно повредить фундаменту сооружения, т.к. в случае изменения объема грунта под основанием происходит деформация.
Все эти данные позволяют определить или подтвердить вид и послойный состав грунтов, что, в свою очередь, поможет рассчитать максимально допустимые значения нагрузок и оптимально подобрать строительные материалы.
Определение химического состава
Залог надежного сооружения — это его фундамент. Основание объекта неизбежно подвергается воздействию окружающих его веществ — химических соединений, которые содержатся в грунте. Чтобы определить, насколько агрессивно его слои ведут себя по отношению к металлическим и бетонным конструкциям, определяют химические показатели проб, взятых на участке. Также специалисты выявляют липкость слоев, измеряют, насколько каждый из них водопроницаем и подвержен размытию, и рассчитывают вероятность размягчения грунтов.
Все нормативы проведения химического исследования грунтов закреплены в соответствующих документах — ГОСТ 25100-2011, ГОСТ 12248-2010, ГОСТ 12536-79, ГОСТ 5180-84, ГОСТ 25584-90, ГОСТ 12148-96.
Для химического анализа берут три пробы грунта на каждый из необходимых инженерно-геологических элементов. Чтобы оценить коррозионную активность по отношению к стали, алюминию и свинцу, проводят анализ не менее, чем трех образцов грунтовых вод.
Во время выполнения тестов особое внимание уделяют ряду параметров:
- определяют, насколько устойчивы горные породы к размыванию;
- тестируют пробы на содержание карбонатов;
- проверяют наличие и концентрацию растворимых в воде солей;
- выявляют общий состав веществ, которые содержит грунт, и определяют их количество.
Физико-химические параметры грунтов на участке могу сыграть против строительства, поэтому выбирать материалы наугад категорически нельзя. Чтобы найти оптимальное решение, следует отталкиваться от результатов лабораторного исследования.
Источник
Агрохимический анализ. Обоснование и интерпретация
Агрохимический анализ почв проводят для того, чтобы [2]:
- Определить, достаточно ли в почве доступных питательных веществ для растений;
- Следить за изменением свойств почвы, которые так или иначе влияют на рост и развитие растений;
- Оценить характер и определить особенности взаимодействия почвы с применяемыми удобрениями и поступающими из атмосферы веществами;
- Рассчитать количество удобрений, которое необходимо внести в почву.
Что мы делаем при анализе и почему именно это?
Мы определяем основные свойства почвы, которые тем или иным образом могут сказаться на росте и развитии растений. Одним из важнейших показателей, определяемых при агрохимическом анализе, является реакция среды (рН). Почему важно контролировать рН?
- В основном наибольшие урожаи сельскохозяйственных растений получают при слабокислой или нейтральной реакции среды, но очень часто почва становится более кислой и это препятствует получению высоких урожаев. [12]
- Реакция среды воздействует на способность растений поглощать из почвы питательные элементы. При более низких рН она уменьшается, а иногда даже приводит к потере питательных элементов из корней растений [12];
- рН сказывается на миграции и аккумуляции веществ в почве [3], в том числе токсичных [6];
- Микробиологическая активность почвы тоже зависит от реакции среды [3];
- Помимо этого, рН влияет на катионообменную ёмкость почв [4] – максимальное количество катионов, которое может быть удержано почвой в обменном состоянии при заданных условиях [1] и потенциально доступно растениям.
Поэтому при агрохимическом анализе мы определяем рН водной вытяжки из почвы. Но он позволяет судить только о степени кислотности или щёлочности и не даёт количественного представления о содержании кислот и оснований из-за высокой буферности почв. Однако, например, содержание кислотных компонентов может увеличиваться, а рН оставаться практически неизменным. В связи с этим помимо рН водной вытяжки мы определяем потенциальную кислотность — рН солевой вытяжки [8].
Кроме реакции среды важны так же и сами питательные элементы. Растения больше всего нуждаются в следующих из них:
Азот — один из наиболее распространённых элементов в природе, тем не менее растениям часто не хватает азота, так как растения могут усваивать только определённые формы соединений азота (в основном аммонийную и нитратную формы) [3]. В то же время азот является незаменимым элементом в растении, входя в состав белков, ДНК, многих жизненно важных органических веществ. При недостатке азота нарушается процесс фотосинтеза из-за разрушения хлорофилла, возможно высыхание и отмирание частей растений, поэтому обеспечение азотом — одна из важнейших проблем при выращивании сельскохозяйственных культур. В связи с этим для оценки доступного для растений азота мы определяем содержание аммонийного и нитратного азота в почве.
Фосфор тоже жизненно необходим растениям и также входит в состав многих органических соединений. Кроме того, он участвует в энергетическом обмене клеток. Но подвижные формы фосфора во многих почвах находятся в дефиците [4], что приводит к снижению активности ферментов, контролирующих клеточный метаболизм, и веществ, участвующих в синтезе РНК, белков и делении клеток. Соответственно, при недостатке фосфора рост растений замедляется, что, естественно, не может не сказаться на урожае [10]. Поэтому очень важно определять содержание подвижных форм фосфора в почве.
Калий является важнейшим элементом питания растений, он входит в состав цитоплазмы клетки, в значительной степени определяет её свойства и поэтому влияет практически на все процессы в клетке. Калий участвует в поглощении и транспорте воды, открывании и закрывании устьиц. Также при калийном голодании нарушается структура митохондрий и хлоропластов, что в свою очередь оказывает влияние на фотосинтез и дыхание [10]. Поэтому достаточное содержание калия в почве повышает устойчивость растений к воздействию низких и высоких температур, сопротивляемость растений болезням, а также сокращает сроки созревания растений [12]. Растениям доступны только подвижные формы калия, поэтому именно их мы и определяем.
Органическое вещество почвы является важным показателем её плодородия. Оно состоит из ещё не успевших разложиться органических остатков и уже претерпевших изменения органических веществ, называемых гумусом. Гумус способствует накоплению и удержанию питательных для растений веществ, которые при его разложении переходят в почвенный раствор и могут потребляться растениями [3]. Количество гумуса в почве определяют через количество органического углерода в почве.
Как должно быть в идеале и в каких диапазонах могут колебаться указанные параметры?
Данные показатели могут различаться для разных типов почв, и для разных сельскохозяйственных культур могут быть оптимальными разные диапазоны значений, тем не менее в среднем плодородие почвы можно оценить следующим образом:
Таблица 1. Оценка потенциального плодородия почв по содержанию гумуса и доступных для растений фосфора, калия и азота.
Уровень содержания | Подвижный фосфор Р2O5, млн -1 * | Обменный калий К2O, млн -1 * | Нитратный азот N — NO3, млн -1 ** | Аммонийный азот N-NH3+, N-NH4, млн -1 ** | Содержание гумуса (С орг*1,724), % от массы почвы*** |
---|---|---|---|---|---|
Очень высокий | Более 250 | Более 250 | – | – | Более 10 |
Высокий | 250–150 | 250–170 | Более 20 | Более 40 | 6–10 |
Повышенный | 150–100 | 170–120 | – | – | – |
Средний | 100–50 | 120–80 | 15–20 | 20–40 | 4–6 |
Низкий | 50–25 | 80–40 | 10–15 | 10–20 | 2–4 |
Очень низкий | Менее 25 | Менее 7 | Менее 10 | Менее 10 | Менее 2 |
* — по Г. В. Мотузовой и О.С. Безугловой, 2007 (по методу Кирсанова);
** — по Г. П. Гамзикову, 1981;
*** — по Л. А. Гришиной и Д. С. Орлову, 1978.
Таблица 2. Градация кислотности (щёлочности) почв по величине рН водной и солевой вытяжек [11].
Характеристика почвы | рНН2О | Характеристика почвы | рНKCl |
---|---|---|---|
Сильнокислые | 3,0–4,5 | Сильнокислые | 5,6 |
Слабощелочные | 7,0–7,5 | ||
Щелочные | 7,5–8,0 | ||
Сильнощелочные | >8,5 |
Что делать, если что-то не в норме?
Одним из основных приёмов повышения плодородия почв является внесение удобрений. В таблице 3 представлены некоторые из них.
Таблица 3. Вещества, добавляемые в почву для улучшения её свойств [7].
Какой показатель выходит за рамки нормального | Что нужно добавлять в почву |
---|---|
рН | Известь (если реакция кислая), гипс (если реакция щелочная) |
Азот | Натриевая, кальциевая, аммиачная селитра, сульфат аммония, аммиак жидкий, карбомид-аммиачная селитра, аммиачная вода, хлористый аммоний |
Фосфор | Суперфосфат простой гранулированный, суперфосфат двойной гранулированный, фосфоритная мука, преципитат, мартеновский фосфатшлак, обесфторенный фосфат |
Калий | Калий хлористый, калийная соль смешанная, сильвинит, сульфат калия-магния (калимагнезия), цементная калийная пыль, калий сернокислый, сульфат калия, полигалит, каинит, жидкий гумат калия |
Органический углерод | Навоз, торф, различные растительные компосты, сапропель, зелёное удобрение (сидераты) |
При недостатке в почве азота, фосфора и калия применяют комплексные удобрения, содержащие в своём составе сразу несколько питательных элементов. Например, это аммонизированный суперфосфат, аммофос, диаммофос, калийная селитра, нитрофос и нитроаммофос, нитрофоска и нитроаммофоска, карбоаммофос и карбоаммофоска, жидкие комплексные удобрения. Преимущество их заключается в том, что при внесении удобрений в крупных масштабах снижаются затраты на транспортировку смешивание, хранение и внесение удобрений. Из недостатков комплексных удобрений выделяют то, что соотношение элементов питания в них изменяется слабо и при внесении их в почву может получиться так, что одних элементов попадёт в почву больше, чем нужно, тогда как других окажется недостаточно [7].
Существуют также бактериальные удобрения, содержащие специальные бактерии, которые улучшают питание растений. Их применяют только при выращивании бобовых растений и для каждого вида подбирают разные штаммы бактерий [7].
Какое же удобрение лучше?
Таблица 4. Сравнение органических, минеральных и биологических удобрений [7].
Органическое | Минеральное | Биологическое | |
---|---|---|---|
Содержание питательных элементов | Все необходимые элементы | Некоторые элементы, определяемые типом удобрения | Нет |
Форма элементов питания | Недоступна для растений, но при разложении органического вещества постепенно выделяются доступные питательные вещества | Доступная для растений | Не содержит элементов питания, но способствует усвоению растениями питательных веществ |