Методы культивирования анаэробов.
Для культивирования анаэробов необходимо понизить окислительно-восстановительный потенциал среды, создать условия анаэробиоза, т. е. пониженного содержания кислорода в среде и окружающем ее пространстве. Это достигается применением физических, химических и биологических методов.
Физические методы.Основаны на выращивании микроорганизмов в безвоздушной среде, что достигается:
1) посевом в среды, содержащие редуцирующие и легко окисляемые вещества;
2) посевом микроорганизмов в глубину плотных питательных сред;
3) механическим удалением воздуха из сосудов, в которых выращиваются анаэробные микроорганизмы;
4) заменой воздуха в сосудах каким-либо индифферентным газом.
В качестве редуцирующих веществ обычно используют кусочки (около 0,5 г) животных или растительных тканей (печень, мозг, почки, селезенка, кровь, картофель, вата). Эти ткани связывают растворенный в среде кислород и адсорбируют бактерии. Чтобы уменьшить содержание кислорода в питательной среде, ее перед посевом кипятят 10—15 мин, а затем быстро охлаждают и заливают сверху небольшим количеством стерильного вазелинового масла. Высота слоя масла в пробирке около 1 см.
В качестве легко окисляемых веществ используют глюкозу, лактозу и муравьинокислый натрий.
Лучшей жидкой питательной средой с редуцирующими веществами является среда Китта — Тароцци, которая используется с успехом для накопления анаэробов при первичном посеве из исследуемого материала и для поддержания роста выделенной чистой культуры анаэробов.
Посев микроорганизмов в глубину плотных сред производят по способу Виньяль — Вейона, который состоит в механической защите посевов анаэробов от кислорода воздуха. Берут стеклянную трубку длиной 30 см и диаметром 3—6 мм. Один конец трубки вытягивают в капилляр в виде пастеровской пипетки, а у другого конца делают перетяжку. В оставшийся широкий конец трубки вставляют ватную пробку. В пробирки с расплавленным и охлажденным до 50°С питательным агаром засевают исследуемый материал. Затем насасывают засеянный агар в стерильные трубки Виньяль — Вейона. Капиллярный конец трубки запаивают в пламени горелки и трубки помещают в термостат. Так создаются благоприятные условия для роста самых строгих анаэробов. Для выделения отдельной колонии трубку надрезают напильником, соблюдая правила асептики, на уровне колонии, ломают, а колонию захватывают стерильной петлей и переносят в пробирку с питательной средой для дальнейшего выращивания и изучения в чистом виде.
Удаление воздуха производят путем его механического откачивания из специальных приборов — анаэроста-тов, в которые помещают чашки с посевом анаэробов. Переносный анаэростат представляет собой толстостенный металлический цилиндр с хорошо притертой крышкой (с резиновой прокладкой), снабженный отводящим краном и вакуумметром. После размещения засеянных чашек или пробирок воздух из анаэростата удаляют с помощью вакуумного насоса.
Замену воздуха индифферентным газом (азотом, водородом, аргоном, углекислым газом) можно производить в тех же анаэростатах путем вытеснения его газом из баллона.
Химические методы.Основаны на поглощении кислорода воздуха в герметически закрытом сосуде (анаэро-стате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия Na2S204.
Биологические методы.Основаны на совместном выращивании анаэробов со строгими аэробами. Для этого из застывшей агаровой пластинки по диаметру чашки вырезают стерильным скальпелем полоску агара шириной около 1 см. Получается два агаровых полудиска в одной чашке. На одну сторону агаровой пластинки засевают аэроб, например часто используют S. aureus или Serratia marcescens. На другую сторону засевают анаэроб. Края чашки заклеивают пластилином или заливают расплавленным парафином и помещают в термостат. При наличии подходящих условий в чашке начнут размножаться аэробы. После того, как весь кислород в пространстве чашки будет ими использован, начнется рост анаэробов (через 3—4 сут). В целях сокращения воздушного пространства в чашке питательную среду наливают возможно более толстым слоем.
Комбинированные методы.Основаны на сочетании физических, химических и биологических методов создания анаэробиоза.
Реакция агглютинации.
Реакция агглютинации — простая по постановке реакция, при которой происходит связывание антителами корпускулярных антигенов (бактерий, эритроцитов или других клеток, нерастворимых частиц с адсорбированными на них антигенами, а также макромолекулярных агрегатов). Она протекает при наличии электролитов, например при добавлении изотонического раствора натрия хлорида.
Применяются различные варианты реакции агглютинации: развернутая, ориентировочная, непрямая и др. Реакция агглютинации проявляется образованием хлопьев или осадка (клетки, «склеенные» антителами, име ющими два или более антигенсвязывающих центра — рис. 13.1). РА используют для:
1) определения антител в сыворотке крови больных, например, при бруцеллезе (реакции Райта, Хеддельсона), брюшном тифе и паратифах (реакция Видаля) и других инфекционных болезнях;
2) определения возбудителя, выделенного от больного;
3) определения групп крови с использованием моноклональных антител против алло-антигенов эритроцитов.
Для определения у больного антител ставят развернутую реакцию агглютинации:к разведениям сыворотки крови больного добавляют диагностикум (взвесь убитых микробов,) и через несколько часов инкубации при 37 ˚С отмечают наибольшее разведение сыворотки (титр сыворотки), при котором произошла агглютинация, т. е. образовался осадок.
Характер и скорость агглютинации зависят от вида антигена и антител. Примером являются особенности взаимодействия диагностикумов (О- и H-антигенов) со специфическими антителами. Реакция агглютинации с О-диагностикумом (бактерии, убитые нагреванием, сохранившие термостабильный О-антиген) происходит в виде мелкозернистой агглютинации. Реакция агглютинации с Н-диагностикумом (бактерии, убитые формалином, сохранившие термолабильный жгутиковый Н-антиген) — крупнохлопчатая и протекает быстрее.
Если необходимо определить возбудитель, выделенный от больного, ставят ориентировочную реакцию агглютинации,применяя диагностические антитела (агглютинирующую сыворотку), т. е. проводят серотипирование возбудителя. Ориентировочную реакцию проводят на предметном стекле. К капле диагностической агглютинирующей сыворотки в разведении 1:10 или 1:20 добавляют чистую культуру возбудителя, выделенного от больного. Рядом ставят контроль: вместо сыворотки наносят каплю раствора натрия хлорида. При появлении в капле с сывороткой и микробами хлопьевидного осадка ставят развернутую реакцию агглютинации в пробирках с увеличивающимися разведениями агглютинирующей сыворотки, к которым добавляют по 2—3 капли взвеси возбудителя. Агглютинацию учитывают по количеству осадка и степени просветления жидкости. Реакцию считают положительной, если агглютинация отмечается в разведении, близком к титру диагностической сыворотки. Одновременно учитывают контроли: сыворотка, разведенная изотоническим раствором натрия хлорида, должна быть прозрачной, взвесь микробов в том же растворе — равномерно мутной, без осадка.
Разные родственные бактерии могут агглютинироваться одной и той же диагностической агглютинирующей сывороткой, что затрудняет их идентификацию. Поэтому пользуются адсорбированными агглютинирующими сыворотками, из которых удалены перекрестно реагирующие антитела путем адсорбции их родственными бактериями. В таких сыворотках сохраняются антитела, специфичные только к данной бактерии.
Источник
Лекция № 4. физиология и принципы культивирования микроорганизмов
Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.
ГЛАВА АНАЭРОБНОЕ КУЛЬТИВИРОВАНИЕ МИКРООРГАНИЗМОВ
Анаэробы — организмы, использующие в качестве конечного акцептора электронов не кислород, а другие вещества. К ним относятся организмы как микро-, так и макроуровня. Анаэробные микроорганизмы — это обширная группа прокариот и некоторые простейшие. Термин «анаэробы» ввел в 1861 году Луи Пастер, изучавший маслянокислое брожение.
В отличие от аэробов культивирование анаэробных микроорганизмов более сложное, поскольку контакт микроорганизмов с молекулярным кислородом должен быть сведен к минимуму. В жидкой питательной среде облигатные аэробы и микроаэрофилы содержатся в верхней части пробирки (колбы), тогда как облигатные анаэробные бактерии во избежание контакта с кислородом располагаются в нижней части сосуда. Факультативные анаэробы собираются в основном в верхней части питательной среды, однако они могут быть найдены на всем протяжении среды, так как имеют два набора ферментных систем. Аэротолерантные анаэробы не реагируют на концентрацию кислорода и равномерно распределяются по всему объему питательной среды. На практике к анаэробным относят бактерии, которые не растут на поверхности плотной или полужидкой среды на воздухе при атмосферном давлении. Степень анаэробиоза измеряется по окислительно-восстановительному (Eh) потенциалу среды. При увеличении Eh выше -100 мВ, обусловленном присутствием растворимого кислорода, подавляется рост всех анаэробных бактерий. Для создания анаэробных условий при культивировании микроорганизмов используют физические, химические, биологические и смешанные методы.
Физические методы предусматривают откачивание воздуха, введение специальной газовой безкислородной смеси (N2 — 85 %, CO2 — 10 %, H2 — 5 %, или азот с 5 % СО2 и 10 % Н2). Эти методы основаны на создании вакуума в специальных аппаратах — микроанаэростатах. Иногда воздух в них заменяют каким-либо другим газом, например, СО2. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробы в пробирках в глубине столбика расплавленного и остуженного сахарного агара или среды Вильсона-Блера. По методу Вейона-Виньяля агар с посевным материалом набирают в стеклянные трубочки, которые запаивают с двух концов.
Химические — методы, при которых применяют химические поглотители кислорода или восстанавливающие агенты. В первом случае при культивировании исследуемого материала на плотных средах в эксикатор помещают химические вещества, например, пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода. Помимо щелочного раствора пирогаллола в качестве поглотителей молекулярного кислорода в лабораторной практике используют дитионит натрия (N a 2 S 2 O 4), металлическое железо, хлорид одновалентной меди и некоторые другие реактивы. При использовании восстанавливающих агентов в жидкие питательные среды добавляют различные редуцирующие вещества: аскорбиновую, тиогликолевую кислоту или тиогликолат натрия, цистеин, которые снижают окислительновосстановительный потенциал.
Биологический метод основан на одновременном культивировании анаэробов с аэробными или факультативно-анаэробными бактериями. Для этого питательную среду в чашках Петри разделяют желобком на две половины, на одну половину засевают какой-либо аэробный микроорганизм, на другой анаэроб. Края чашки заливают парафином. Вначале кислород поглощается растущими аэробами, посеянными на одной половине среды, а затем начинается рост анаэробов, посев которых сделан на другой половине. Наиболее удобна для культивирования анаэробов специальная среда Китта-Тароцци, которую перед употреблением кипятят на водяной бане для удаления из нее растворенного кислорода. Среду заливают сверху стерильным вазелиновым маслом. В зависимости от количества посевного материала видимый рост анаэробов в виде помутнения может наблюдаться уже через 48 ч с момента посева.
Рост изолированных колоний анаэробов можно получить при рассеве определенного количества исследуемого материала, нанесенного на поверхность кровяно-сахарного агара в чашках Петри, которые помещают в анаэростат. Образовавшиеся колонии анаэробов выделяют, распилив пробирку в месте роста. Колонии анаэробов для получения значительного количества биомассы отсевают затем на среду Китта-Тароцци. В качестве источника углерода и энергии в питательную среду добавляют глюкозу.
При смешанных методах используют несколько вариантов. Для культивирования анаэробных бактерий могут быть использованы и другие методы, ограничивающие доступ воздуха к растущей культуре. В их числе методы выращивания в высоком слое среды; в толще плотной питательной среды; культивирование в вязких средах, в которых диффузия молекулярного кислорода в жидкость уменьшается с увеличениемее плотности; заливка засеянной среды высоким слоем стерильного вазелинового масла. При создании оптимальных условий для строгих анаэробов необходимо постоянное поддержание безкислородных условий культивирования. Это достигается за счет использования специальных сред, не содержащих растворенный кислород, поддержания на соответствующем уровне окислительно-восстановительного потенциала, а также путем забора, доставки и посева материала в анаэробных условиях.
Существует ряд методов, обеспечивающих более подходящие условия для анаэробов — предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом, использование герметически закрывающейся посуды с инертным газом, плотно закрывающихся эксикаторов с горящей свечой. Наиболее простым и эффективным оборудованием являются системы с газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях (например, HiAnaerobicTM System-10).
Типы и механизмы питания бактерий.
Типы питания.
Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы , использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы , питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.
Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или животных, относят к патогенным и условно-патогенным. Среди патогенных микроорганизмов встречаются облигатные и факультативные паразиты (от греч. parasitos — нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.
В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофными (от греч. lithos — камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, — органотрофами.
Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.
Механизмы питания.
Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп.
Наиболее простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.
Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.
Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.
Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется.
Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.
Какие бактерии для чего подходят
Исходя из условий жизнедеятельности и функциональных характеристик биологических средств для септиков, определяется сфера их использования.
- Анаэробные бактерии просты в работе, не требуют особых условий для деятельности, хорошо работают в разных средах. Они удобны в использовании: достаточно добавить биопрепарат в сантехнический слив. Использовать такие средства лучше всего в качестве средства для септиков закрытого типа, так как они не нуждаются в воздухе. Очищенные стоки можно использовать для последующего полива огородов. Если загородный дом или дача не используется для регулярного проживания, такой вид бактерий подойдет лучше всего, так как при работе бактерий выделяется метан, кроме того, для удаления осадка придется прибегать к услугам ассенизатора.
- Аэробные бактерии применяются как средство для септика для частного дома при постоянном проживании в качестве биосредства для выгребных ям дачных туалетов, а также в закрытых септиках. Однако, применяя бактерии для бетонных септиков, не следует забывать, что для их использования необходимы определенные условия – регулярная подача воздуха компрессором или аэратором. Результат деятельности аэробных бактерий – активный ил – может использоваться для удобрения огородов, а очищенная воды – для полива и в качестве технической.
- Биоактиваторы – универсальные средства. Принцип их действия такой: сначала начинают работать аэробы, запуская кислую реакцию. После того, как, отработав кислород, аэробы погибают, в дело вступают анаэробные микроорганизмы. Таким образом, биоактиваторы подходят для любых видов септиков – от сливных открытых ям до промышленных септиков закрытого типа.
Причины развития инфекции
Можно выделить несколько основных причин, по которым происходит инфицирование:
- Создание подходящих условий для жизнедеятельности патогенных бактерий. Это может произойти:
- когда на стерильные ткани попадает активная внутренняя микрофлора;
- при применении антибиотиков, которые не оказывают действия на анаэробные грамотрицательные бактерии;
- при нарушении кровообращения, например, в случае хирургического вмешательства, опухолей, травм, попадания чужеродного тела, болезней сосудов, при омертвении ткани.
- Заражение ткани аэробными бактериями. Они, в свою очередь, создают необходимые условия для жизнедеятельности анаэробных микроорганизмов.
- Хронические заболевания.
- Некоторые опухоли, которые локализуются в , кишечнике и голове нередко сопровождаются этим заболеванием.
Классификация анаэробов
Согласно устоявшейся в микробиологии классификации, различают:
- Факультативные анаэробы
- Капнеистические анаэробы и микроаэрофилы
- Аэротолерантные анаэробы
- Умеренно-строгие анаэробы
- Облигатные анаэробы
Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам .
До 1991 года в микробиологии выделяли класс капнеистических анаэробов , требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа — B. abortus )
Умеренно-строгий анаэробный организм выживает в среде с молекулярным O 2 , однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O 2 .
Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода , то он относится к группе аэротолерантных анаэробов . Например, молочнокислые и многие маслянокислые бактерии
Облигатные анаэробы в присутствии молекулярного кислорода O 2 гибнут — например, представители рода бактерий и архей : Bacteroides , Fusobacterium , Butyrivibrio , Methanobacterium ). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.
Источник