Меню

Эколого геохимическая оценка состояния почв

Эколого геохимическая оценка состояния почв

Библиографическая ссылка на статью:
Даль Л.И. Эколого-геохимическая оценка почвенного покрова нефтегазовых районов // Современные научные исследования и инновации. 2015. № 11 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2015/11/58841 (дата обращения: 09.12.2021).

Проблема изучения и оценки эколого-геохимического состояния почвенного покрова нефтегазовых районов имеет важное теоретическое и прикладное значение с целью охраны окружающей среды для любых территорий. Проводится сравнительный анализ эколого-геохимических условий двух нефтегазовых районов, находящихся на значительном расстоянии друг от друга, имеющих разные стадии освоения. Первый – расположен в Приуралье (Пермский край), в междуречье рек Камы и Сылвы, между гг. Пермь и Кунгур; второй – в Восточной Сибири (центральная часть Красноярского края), в бассейне р. Камо. Оба района, площадью по 4-5 тыс.км 2 , характеризуются близкими физико-географическими и геологическими условиями – преимущественно таежными холмистыми ландшафтами с подзолистыми почвами на карбонатно-терригенных породах. Район Пермского Приуралья более освоенный, разрабатывается 15 месторождений нефти (всего в Пермском края открыто более 200 нефтегазовых месторождений), существует также другая техногенная нагрузка, в основном локального характера. Второй район – слабо освоенный, но здесь открыто крупнейшее в Восточной Сибири Юрубчено-Тохомского месторождение (где пробурено более 200 скважин).

Материалы и методы.

Методологической основой геоэкологического и эколого-геохимического изучения природной среды является системный подход и анализ компонентов природно-техногенной системы окружающей среды. Антропогенное воздействие, приводящее к изменению химического состава одного или нескольких компонентов окружающей среды территорий, является геохимическим [1]. Поэтому, одним из важнейших методов определения экологической обстановки является геохимический метод, позволяющий оценить геохимическое состояние территории, которое в основном зависит от уровня техногенного загрязнения, формирующего аномальные геохимические зоны. При этом оптимальной группой показателей площадной оценки экологической обстановки могут быть почвенный и снежный покров [2]. Почвы являются первым геохимическим барьером на пути миграции токсичных веществ и их концентрации. Геохимическое состояние территории, которое в основном зависит от уровня техногенного загрязнения, формирующего аномальные геохимические зоны, а также от природно-геологических факторов, играет важную роль среди критериев оценки экологического риска 4. Особая роль отводится геодинамическим активным зонам, где наблюдается наибольшая концентрация геохимических аномалий 9.

Автор принимала участие в составе геоэкологической партии ФГУП «Геокарта-Пермь» (руководитель работ д.г.-м.н. И.С. Копылов), в проведении региональных геоэкологических исследований, эколого-геохимической, ландшафтно-геохимической съемки на территории Пермского края (области) и участие в обработке материалов при составлении эколого-литогеохимических карт районов Красноярского края, ландшафтно-геохимической типизации территории, оценке влияния техногенных факторов на здоровье населения [10, 11]. Основными объектами исследований были почвы (а также другие компоненты окружающей среды – ландшафты, подземные и поверхностные воды, снежный и растительный покров, приземный воздух), являющиеся накопителями токсичных химических элементов, а, следовательно – индикаторами антропогенного загрязнения. Оценка состояния почвенного покрова проводилась по изучению микроэлементного состава спектральным анализом и нефтепродуктам. Было проанализировано несколько тысяч проб. Изучен характер и распределение тяжелых металлов почвенного покрова, характеристики которых в сравнении с предельно-допустимыми концентрациями (ПДК) приведены в публикациях 13 составлен комплект карт с учетом методических рекомендаций 16.

Результаты и их обсуждение

В результате проведенных исследований были получены следующие результаты.

В Пермском Приуралье в рассматриваемом районе нефтегазовых месторождений (Лобановское, Козубаевское, Баклановское, Ильичевское, Юрманское, Обливское, Кукуштанское, Южно- Кукуштанское, Лазуковское, Троельжанское, Елкинское, Ожгинское, Кыласовское, Ергачинское, Кокуйское) [18, 19] в пределах крупных аномальных геохимических зон преимущественно природного характера установлены аномалии с превышением ПДК в почвах по: Cr, Mn, Ni, Co, Mo, Ti, Zr, Cu, V, Pb, P, Ba, Ga, Sr, Zn – до 4-5, реже до 10-15 ПДК. Наиболее крупные из них, с площадями 100-500 км 2 выделяются по Cu, Cr, Mn, Ni, Co, Ti, Ba. Преобладает северо-восточное простирание аномалий, параллельно направлению крупных тектонических зон и нефтегазоносных структур.

В Восточной Сибири (Юрубчено-Тохомская зона нефтегазонакопления, Юрубченское и Оморинское месторождения нефти) установлены аномалии в почвах с превышением ПДК по: Mn, Ni, Ti, Zr, Cu, V, Pb, P, Ba, Ga, Sr- до 1,5-2, реже до 4 ПДК. Характеристика аномалий и условия их образования изложены в работах [20, 21]. Наиболее крупные аномалии с площадями 100-400 км 2 (установлены в районах нефтегазовых месторождений) по: Pb, Cu, Cr, Ti, Ba, Mn, Co.

По результатам исследований составлены моноэлементные карты распределений элементов, геоэкологические и эколого-геохимические карты районов масштаба 1:200 000.

Сделаны следующие выводы.

1. В обоих нефтегазовых районах наиболее опасными являются элементы: Pb, Cu, Cr, Ti, Ba, Mn, Co. Все они имеют высокий фон и создают контрастные аномалии.

Читайте также:  Как подготовить грядку под голубику осенью

2. Техногенное воздействие нефтепромыслов и отдельных скважин на почвы имеет в целом, локальный характер.

3. Отмечается сильная загрязненность тяжелыми металлами на некоторых участках скважин. Статистический анализ показал более высокие средние значения микроэлементов на участках скважин по сравнению с фоновыми, однако, эти различия в целом, не очень существенны.

4. Анализ содержания нефтепродуктов в почвах показал на повышенное их содержание в пределах изученных площадок скважин районов месторождений с превышением ПДК и фона от 2-3 до 20 раз.

5. Наблюдается также приуроченность многих аномалий к зонам тектонических нарушений геодинамических активных зон и локальных поднятий. Поэтому, не исключая, техногенного влияния на формирование крупных аномалий, контролирующую роль на территориях в целом играет природный фактор, обусловленный ландшафтно-геохимическими, геодинамическими, структурно-тектоническими и биогеохимическими миграционными процессами.

6. Влияние тяжелых металлов в почвах и других компонентов (особенно – в приповерхностной гидросфере) вносит существенный вклад на комплексный интегральный показатель состояния окружающей среды. Поэтому практически все территории в районах нефтегазовых месторождений с учетом методик оценки [15, 17, 22-24] характеризуются как зоны экологического риска или кризиса.

Библиографический список

  1. Геохимия окружающей среды / Ю.Е. Сает, Б.А. Ревич, Е.П. Янин и др. М.: Недра, 1990. 335 с.
  2. Даль Л.И. Эколого-геохимическая оценка снежного покрова городской среды как показатель социально-экологического риска // Исследования в области естественных наук. 2015. № 5 [Электронный ресурс]. URL: http://science.snauka.ru/2015/05/10240 (дата обращения: 01.07.2015).
  3. Копылов И.С. Научно-методические основы геоэкологических исследований нефтегазоносных регионов и оценки геологической безопасности городов и объектов с применением дистанционных методов / автореферат дис. … доктора геолого-минералогических наук. Пермь, 2014. 48 с.
  4. Копылов И.С. Геологические факторы формирования геоэкологических условий // Исследования в области естественных наук. – 2015. № 6 [Электронный ресурс]. URL:http://science.snauka.ru/2015/06/10233 (дата обращения: 29.06.2015).
  5. Копылов И.С., Коноплев А.В., Ибламинов Р.Г., Осовецкий Б.М. Региональные факторы формирования инженерно-геологических условий территории Пермского края // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2012. № 84. С. 102-112.
  6. Копылов И.С. Теоретические и прикладные аспекты учения о геодинамических активных зонах // Современные проблемы науки и образования. 2011. № 4.
  7. Копылов И.С. Линеаментно-геодинамический анализ Пермского Урала и Приуралья // Современные проблемы науки и образования. 2012. № 6.
  8. Копылов И.С. Геодинамические активные зоны Приуралья, их проявление в геофизических, геохимических, гидрогеологических полях // Успехи современного естествознания. 2014. № 4. С. 69-74.
  9. Копылов И.С. Геоэкологическая роль геодинамических активных зон // Международный журнал прикладных и фундаментальных исследований. 2014. № 7. С. 67-71.
  10. Даль Л.И. Эколого-геохимическая оценка почвенного покрова нефтегазовых районов (на примере Красноярского края и Пермской области) // Экология и проблемы защиты окружающей среды: тез. докл. Всерос. конф. Красноярск, 2003. С. 94-95.
  11. Копылов И.С., Даль Л.И. Типизация и районирование ландшафтно-геохимических систем // Современные проблемы науки и образования. 2015. № 2; URL: www.science-education.ru/122-21150 (дата обращения: 06.08.2015).
  12. Копылов И.С. Эколого-геохимические закономерности и аномалии содержания микроэлементов в почвах и снежном покрове Приуралья и города Перми // Вестник Пермского университета. Геология. 2012. № 4 (17). С. 39-46.
  13. Копылов И.С. Закономерности формирования почвенных ландшафтов Приуралья, их геохимические особенности и аномалии // Современные проблемы науки и образования. 2013. № 4.
  14. Копылов И.С. Аномалии тяжелых металлов в почвах и снежном покрове города Перми как проявления факторов геодинамики и техногенеза // Фундаментальные исследования. 2013. № 1-2. С. 335-339.
  15. Требования к производству и результатам многоцелевого геохимического картирования масштаба 1:1000000 / А.А. Головин, А.И., Ачкасов и др.. М.: ИМГРЭ, 1999. 104 с.
  16. Копылов И.С. Концепция и методология геоэкологических исследований и картографирования платформенных регионов // Перспективы науки. 2011. № 8 (23). С. 126-129.
  17. Копылов И.С. Принципы и критерии интегральной оценки геоэкологического состояния природных и урбанизированных территорий // Современные проблемы науки и образования. 2011. № 6.
  18. Атлас Пермского края / Под редакцией А.М. Тартаковского. Пермь, 2012. 124 с.
  19. Копылов И.С., Коноплев А.В. Геологическое строение и ресурсы недр в атласе Пермского края // Вестник Пермского университета. Геология. 2013. № 3 (20). С. 5-30.
  20. Копылов И.С. Влияние геодинамики и техногенеза на геоэкологические и инженерно-геологические процессы в районах нефтегазовых месторождений Восточной Сибири // Современные проблемы науки и образования. 2012. № 3.
  21. Копылов И.С. Геоэкология нефтегазоносных районов юго-запада Сибирской платформы: монография / Пермь, 2013. 166 с.
  22. Копылов И.С., Даль Л.И. Геоэкологические оценка состояния природной среды Коми-Пермяцкого округа // Современные проблемы науки и образования. 2015. № 2.
  23. Копылов И.С., Карасева Т.В., Гершанок В.А. Комплексная геоэкологическая оценка горно-промышленных районов Северного Урала // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2012. № 84. С. 113-122.
  24. Копылов И.С., Наумов В.А., Спасский Б.А., Маклашин А.В. Геоэкологическая оценка горно-промышленных и нефтегазоносных закарстованных районов Среднего Урала // Современные проблемы науки и образования. 2014. № 5.
Читайте также:  Виды почв свойства 5 класс

Количество просмотров публикации: Please wait

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Источник

Оценка химического загрязнения почв и грунтов

При оценке экологического состояния почв/грунтов очень важным представ¬ляется оценка содержания как естественных элементов и соединений, так и соединений-ксенобиотиков. Оценка загрязненности почв и грунтов проводится путем сравнения (сопоставления) содержания загрязняющих элементов и веществ в изучаемых почвах, с их фоновым содержанием с одной стороны, и с другой — с их предельно-допустимым содержанием (ПДК).

ПДК какого-либо вещества в почве — это концентрация, не вызывающая при длительном воздействии на почву и растения патологических изменений (аномалий) в ходе биологических процессов, не приводящая к накоплению токсических элементов в растениях и не представляющая опасность для здоровья и жизни человека. Значения ПДК определяют экспериментально, как правило, на песчаных почвах, по нескольким показателям вредности, в основном для валовых форм, что не позволяет сделать вывод о мощности потока и доступности загрязняющих веществ растениям. Это делает применение таких стандартов спорным как с экологической, так и экономической точки зрения. Более того, в настоящее время практически везде признается, что покомпонентная оценка экосистем не дает удовлетворительных результатов. Необходимы комплексные экосистемные нормативы, которые могли бы охарактеризовать состояние рассматриваемой экосистемы в целом.

Поскольку гигиеническая опасность той или иной концентрации загрязняющих веществ зависит от почвенных условий, создание унифицированных норм ПДК встречает значительные трудности. Не случайно, в настоящее время установлены ПДК всего лишь немногим более сотни веществ, по которым контролируется качество почв.

Принципы нормирования химических веществ в почвах тоже отличаются от таковых для водоемов, атмосферного воздуха, пищевых продуктов. Это связано, главным образом, с тем, что в основе норматива ПДК для почвы положено опосредованное ее воздействие на организм человека через продукты питания.

Прямое поступление вредных веществ из почвы в организм человека ограничено и чаще всего происходит через другие среды, сопредельные с почвой. Так, поступление загрязняющих веществ в организм человека про¬исходит по путям: почва-растение-человек, почва-растение-животное-человек, почва-вода-человек, почва-атмосферный воздух-человек.

Поэтому вопрос оценки загрязненности почв на основе ПДК весьма непрост. В настоящее время во многих урбанизированных регионах России, и особенно в Москве, состояние почв и грунтов, оцененное по принятым санитарно-гигиеническим методам (ПДК), близко к критическому, когда содержания многих загрязняющих веществ превышают эти ПДК от нескольких до десятков раз. Кроме того, эта ситуация осложняется пространственной неоднородностью содержания загрязняющих веществ и дискретностью источников загрязнения.

Перечень показателей химического загрязнения почв и грунтов определяется исходя из приоритетности компонентов химического загрязнения в соответствии с требованиями ГОСТ 17.4.2.01-81 «Охрана природы. Почвы. Номенклатура показателей санитарного состояния», СанПиН № 2.1.7.1287-03 «Санитарно-Эпидемиологические требования к качеству почвы», ГОСТ 17.4.1.02-83 «Охрана природы. Почвы. Классификация химических веществ для контроля загрязнения».

Классы опасности химических элементов и веществ в почвах и грунтах

Классы опасности Химический элемент, загрязняющее вещество
1 мышьяк, кадмий, ртуть, свинец, цинк, фтор, селен,

3,4-бенз(а)пирен

2 бор, кобальт, никель, молибден, медь, сурьма, хром
3 барий, ванадий, вольфрам, марганец, стронций, ацетофенон

В настоящее время в соответствии с СанПиН 2.1.7.1287-03 «Санитарно-эпидемиологические требования к качеству почвы» химическое исследование почв и грунтов при проведении инженерно-экологических изысканий включает в себя стандартный и расширенный перечень показателей.
Стандартный перечень химических исследований почв и грунтов включает в себя определение:

  • содержания тяжелых металлов 1 и 2 класса опасности: свинца (Pb), кадмия (Cd), цинка (Zn), ртути (Hg), меди (Cu), никеля (Ni) и мышьяка (As);
  • содержания 3,4-бенз(а)пирена и нефтепродуктов.

Расширенный перечень исследований проводится при наличии определенных специфических источников загрязнения почв и грунтов путем определения более полной номенклатуры загрязняющих химических веществ. Выбор показателей химического загрязнения зависит от предполагаемого состава загрязняющих веществ с учетом характера источника загрязнения почв и грунтов.
Основным критерием оценки уровня загрязнения почв и грунтов химическими веществами является предельно допустимая концентрация (ПДК) или ориентировочно допустимая концентрация (ОДК) химических элементов (веществ) в почвах и грунтах (ГН 2.17.2041-06 «Предельно допустимые концентрации (ПДК) химических веществ в почве» и ГН 2.1.7.2511-09 «Ориентировочно допустимые концентрации (ОДК) химических веществ в почве»).

Для эколого-геохимической оценки состояния почв и грунтов используются следующие показатели:

  • коэффициент концентрации относительно ОДК (ПДК), характеризующий превышение содержания элемента в почвах и грунтах над его ОДК (ПДК). Коэффициент концентрации относительно ОДК(ПДК) равен отношению содержания элемента в исследуемом объекте к его ОДК(ПДК):
    КОДК(ПДК)i /ОДК(ПДК),
  • коэффициент концентрации (Ксi) относительно фона, характеризующий интенсивность техногенной аномалии. Коэффициент концентрации равен отношению содержания элемента в исследуемом объекте к его фоновому содержанию
    Ксi = Сi / Сф, где
    Сi — фактическое содержание i-го химического элемента в почвах и грунтах, мг/кг;
    Сфi — фоновое содержание i-го химического элемента в почвах и грунтах, мг/кг.

Фоновые содержания валовых форм тяжелых металлов и мышьяка в почвах (мг/кг)

Почвы Zn Cd Pb Hg Cu Со Ni As
Дерново-подзолистые песчаные и супесчаные 28 0,05 6 0,05 8 3 6 1,5
Дерново-подзолистые суглинистые и глинистые 45 0,12 15 0,10 15 10 20 2,2
Серые лесные 60 0,20 16 0,15 18 12 35 2,6
Черноземы 68 0,24 20 0,20 25 25 45 5,6
Каштановые 54 0,16 16 0,15 20 12 35 5,2
Сероземы 58 0,25 18 0,12 18 12 40 4,5
  • суммарный показатель загрязнения (Zc), характеризующий эффект воздействия группы элементов. Суммарный показатель загрязнения равен сумме коэффициентов концентрации химических элементов
    Zс = Кci + … + Кcn — (n — 1), где
    n — количество учитываемых химических элементов;
    Кci — коэффициент концентрации i-го компонента загрязнения, превышающий единицу.

Оценка опасности химического загрязнения почв и грунтов тяжелыми металлами и мышьяком проводится по суммарному показателю загрязнения (Zc) (таблица 4.10). Для расчета Zc следует использовать не менее семи химических элементов — Pb, As, Cd, Zn, Hg, Cu, Ni.

Оценочная шкала уровней химического загрязнения почв и грунтов тяжелыми металлами и мышьяком по суммарному показателю загрязнения (Zс)

Категория загрязнения почв Величина Zс
Допустимая Менее 16
Умеренно опасная 16-32
Опасная 32-128
Чрезвычайно опасная более 128

Оценка опасности химического загрязнения почв и грунтов веществами органического происхождения проводится исходя из его ПДК (или допустимого уровня) и класса опасности. Для органических соединений их фоновое содержание в почвах и грунтах приравнивается к 0,1ПДК

Оценочная шкала уровней химического загрязнения почв и грунтов веществами органического происхождения

Содержание Категория загрязнения почв и грунтов
Класс опасности

вещества

1 класс 2 класс 3 класс
> 5 ПДК Чрезвычайно опасная Чрезвычайно опасная Опасная
От 2 до 5 ПДК Опасная Опасная Умеренно опасная
От 1 до 2 ПДК Допустимая Допустимая Допустимая

При многокомпонентном загрязнении оценка уровня химического загрязнения почв и грунтов допускается по наиболее токсичному веществу с максимальным содержанием в почвах и грунтах. В таблице приведен пример установления категории загрязнения с учетом всех показателей загрязнения.

Номер участка и глубина отбора проб, м Категория химического загрязнения неорганическими токсикантами Категория химического загрязнения органическими токсикантами Категория биологического загрязнения Комплексная

оценка категории загрязнения

1 (0-0,2) Допустимая Опасная Умеренно опасная Опасная
2 (0-0,2) Умеренно опасная Допустимая Умеренно опасная Умеренно опасная

Почвы и грунты, характеризующиеся чрезвычайно опасной категорией загрязнения, в соответствии с требованиями СанПиН 2.1.7.1287-03, подлежат вывозу и утилизации на специализированных полигонах.

Отнесение отходов к классу опасности для окружающей природной среды осуществляется на основании показателя К, который характеризует степень опасности отходов при его воздействии на окружающую природную среду и определяется расчетным путем, в соответствии с Критериями отнесения опасных отходов к классу опасности для окружающей природной среды, утвержденными приказом МПР России от 15.06.2001 № 511, по следующей формуле:

где: К – показатель степени опасности отходов для окружающей природной среды;
К1, К2, Кn – показатели степени опасности отдельных компонентов отходов, рассчитанные по уравнению: Кi = Сi / Wi
Сi — фактическое содержание загрязняющего химического компонента в почве (грунте), мг/кг;
Wi – коэффициент степени опасности i-го компонента опасных отходов, мг/кг;
n — число определяемых загрязняющих химических компонентов.
Решение об отнесении почв/грунтов к классу опасности отходов определяется по величине индекса опасности по таблице 4.12.

Класс опасности отхода Показатель степени опасности отхода
I 1000000 >К > 10000
II 10000 > К > 1000
III 1000 > К > 100
IY 100 > К > 10
Y К Вытяжные шкафы Подготовка проб почвы Проведение экстракции проб

Полезные статьи

Как определить жесткость воды

Стафилококки в воде

Бактериологическое исследование и анализ почвы

Источник

Все про удобрения © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector