Меню

Электрическая схема влажности почвы

Датчик влажности воздуха или почвы

Одним из зимних вечеров гулял по просторам интернета в поисках схемы датчика влажности почвы, увидел эту схему и она мне приглянулась из за её простоты.

Немного её переделал и вот что получилось

Развел дорожки в «Sprint-Layout», вытравил плату, впаял детали и подключил питание. Попробовал дотронуться до контактов Д1 Д2, реле щелкнуло, покрутив переменник убедился что чувствительность меняется. Вроде бы все и надо успокоиться, но я вспомнил, что когда то я разбирал видеомагнитофон и нашел там два как я тогда подумал сопротивления (я не ошибся). Откопав эти сопротивления в куче радиодеталей попробовал одно из них подключить и посмотреть что получится. Вращая переменник добился, чтобы схема реагировала на пар исходящий из рта. Дышишь на датчик и реле срабатывает, таким образом получился датчик влажности воздуха.

Схема очень простая с доступными деталями ( кроме сопротивления влажности из видеомагнитофона) . Применить устройство можно для включения вентиляции в ванной комнате, открытия форточки в теплице или парнике а если заменить сопротивление двумя электродами то можно включать автоматически полив растений.

При сборке используются следующие детали:

Переменный резистор 100 кОм тип R3296; Конденсаторы 0,022 мкФ керамика или пленочный, 220 мкФ х 16В электролит, 470мкФ х 25В электролит ; Сопротивление 10 кОм 0,125Вт ; Транзистор КТ315 с любым буквенным индексом или любой его аналог например BC847 ; Диод 1N4007 или любой другой аналогичный диод; Стабилизатор напряжения LM7809 (9B) или любой другой аналогичный; Реле LEG-12 или любое другое на 12В и тем-же расположением выводов; Микросхема К176ЛА7 или К561ЛА7 или CD4011 или любой её аналог, разница между микросхемами в напряжении питания;

При использовании микросхем К561ЛА7 и CD4011 вместо LM7809 нужно установить перемычку и реле 12В.

Если будет использоваться микросхема К176ЛА7, то вместо перемычки (видно на фото перемычка красного цвета между электролитами ) надо впаять стабилизатор по схеме, так как питание этой микросхемы максимум 9В. Так же надо вместо реле 12В установить реле на 9В.

Вот что получилось у меня

Настройка схемы производится вращением переменного сопротивления R1 100 кОм.

Источник

Схема контроля влажности почвы

Свтодиод включается при необходимости полива растений
Очень низкий ток потребления от батареи 3 В

Принципиальная схема:

Перечень компонентов:

Резисторы 470 кОм ¼ Вт

Керметный или угольный
подстроечный резистор 47 кОм ½ Вт

Резистор 100 кОм ¼ Вт

Резистор 3.3 кОм ¼ Вт

Резистор 15 кОм ¼ Вт

Резистор 100 Ом ¼ Вт

Лавсановый конденсатор 1 нФ 63 В

Лавсановый конденсатор 330 нФ 63 В

Электролитические конденсаторы 10 мкФ 25 В

Диод 1N4148 75 В 150 мА

Красный светодиод диаметром 5 мм

Микросхема CD4093 счетверенного вентиля «2И-НЕ»
с триггерами Шмитта на входах

PNP транзистор BC557 45 В 100 мА

Электроды (См. замечания)

Батарея 3 В (2 батареи типоразмера AA, N или AAA,
соединенные последовательно)

Назначение устройства:

Схема предназначена для того, чтобы подавать сигнал, если растения нуждаются в поливе. Светодиод начинает мигать, если почва в цветочном горшке слишком пересохла, и гаснет при увеличении влажности. Подстроечный резистор R2 позволяет адаптировать чувствительность схемы под различные типы грунта, размеры цветочного горшка и виды электродов.

Развитие схемы:

Это небольшое устройство пользовалось большим успехом у любителей электроники на протяжении многих лет, начиная с 1999 г. Тем не менее, переписываясь все эти годы со многими радиолюбителями, я понял, что некоторые критические замечания и предложения должны быть учтены. Схема была усовершенствована за счет добавления в нее четырех резисторов, двух конденсаторов и одного транзистора. В результате устройство стало проще в настройке и устойчивее в работе, а яркость свечения удалось увеличить, не используя сверхярких светодиодов.
Было проведено много опытов с различными цветочными горшками и различными датчиками. И хотя, как несложно себе представить, цветочные горшки и электроды сильно отличались друг от друга, сопротивление между двумя электродами, погруженными в почву на 60 мм на расстоянии порядка 50 мм, всегда находилось в пределах 500…1000 Ом при сухой почве, и 3000…5000 Ом при влажной

Читайте также:  Подкормка роз весной водкой

Работа схемы:

Микросхема IC1A и связанные с ней R1 и C1 образуют генератор прямоугольных импульсов с частотой 2 кГц. Через подстраиваемый делитель R2/R3 импульсы поступают на вход вентиля IC1B. При низком сопротивлении между электродами (т.е., если влаги в цветочном горшке достаточно) конденсатор C2 шунтирует вход IC1B на землю, и на выходе IC1B постоянно присутствует высокий уровень напряжения. Вентиль IC1C инвертирует выходной сигнал IC1B. Таким образом, вход IC1D оказывается блокированным низким уровнем напряжения, и светодиод, соответственно, выключен.
При высыхании почвы в горшке, сопротивление между электродами возрастает, и C2 перестает препятствовать поступлению импульсов на вход IC1B. Пройдя через IC1C, импульсы 2 кГц попадают на вход блокировки генератора, собранного на микросхеме IC1D и окружающих его компонентах. IC1D начинает генерировать короткие импульсы, включающие светодиод через транзистор Q1. Вспышки светодиода указывают на необходимость полива растения.
На базу транзистора Q1 подаются редкие пачки коротких отрицательных импульсов частотой 2 кГц, вырезанные из входных импульсов. Следовательно, и светодиод вспыхивает 2000 раз в секунду, однако человеческий глаз воспринимает такие частые вспышки как постоянное свечение.

Замечания:

  • Для предотвращения окисления электродов используется их питание прямоугольными импульсами.
  • Электроды изготавливаются из двух отрезков зачищенного одножильного провода, диаметром 1 мм и длиной 60 мм. Можно использовать провод, применяемый для прокладки электропроводки.
  • Электроды необходимо полностью погрузить в землю на расстоянии 30…50 мм друг от друга. Материал электродов, размеры и расстояние между ними, в целом, не имеют большого значения.
  • Потребление тока порядка 150 мкА при выключенном светодиоде, и 3 мА при включении светодиода на 0.1 секунду каждые 2 секунды, позволяет устройству работать годами от одного комплекта батарей.
  • При таком небольшом токе потребления в выключателе питания просто нет необходимости. Если, все же, возникнет желание выключить схему, достаточно закоротить электроды.

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Сделай сам своими руками О бюджетном решении технических, и не только, задач.

Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://oldoctober.com/

Самые интересные ролики на Youtube

Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.

Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней. электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.

Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.

Читайте также:  Навоз как удобрение приготовление

Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в «аккумулятор».

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.

R1 = 22MΩ
R2, R9 = 12kΩ
R3 = 470kΩ
R4 = 30kΩ
R5 = 47kΩ
R6 = 1MΩ
R7 = 5,1MΩ
R8 = 22MΩ
C1 = 1µF
C2 = 1µF
C3, C4 = 0,1µF
C5 = 10µF
DD1 = К561ЛЕ5

R9 = из расчёта 1kΩ на каждый Вольт
напряжения питания.

Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://oldoctober.com/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.

Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В реальной конструкции автомата для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

Как это работает?

Прямоугольные импульсы большой длительности (поз.1), проходя через делитель напряжения, образованного элементами C2, R2, R3, Rпочвы, R4, C3, превращаются в короткие импульсы (поз.2). Эти импульсы через конденсатор С4 поступают на вход элемента DD1.3. Туда же, через резистор R6, поступает некоторый уровень постоянного напряжения (поз.3) с делителя напряжения R5.

Когда общий уровень напряжения на входе DD1.3 (поз.4) достигает порога срабатывания компаратора (отмечено красной точкой), запускается одновибратор на DD1.3, DD1.4. Длительность управляющего импульса на выходе DD1.4 определяется постоянной времени R7, C5.

Конструкция электродов.

Конструкция электродов должна обеспечить возможность измерения влажности почвы возле корней растения. Это особенно актуально для кактусов, полив которых осуществляется мизерным количеством воды.

Для изготовления электродов я сначала выбрал стальную углеродистую проволоку, но она слишком быстро заржавела, и её пришлось заменить на нержавеющею.

Для уменьшения уровня внешних электромагнитных помех, электроды соединяются со схемой экранированным кабелем, оплётка которого подключена к корпусу прибора.

А это детали, из которых были собраны электроды.

  1. Винт М3х8.
  2. Гровер М3.
  3. Шайба М3.
  4. Лепесток М3.
  5. Втулка – сталь, Ø8х10мм.
  6. Винт М3х6.
  7. Пластина – стеклотекстолит S = 2мм.
  8. Электрод – нерж. сталь Ø1,6х300мм.

Наверное, можно было бы выбрать и другой способ крепления электродов. Но, я выбрал такое крепление, чтобы можно было оперативно регулировать глубину погружения тридцатисантиметровых электродов в почву, а кабель, при этом, не создавал слишком большую нагрузку при погружении электродов в неглубокий горшок.

Источник

СХЕМА ДАТЧИКА ВЛАЖНОСТИ ПОЧВЫ

Поэт Андрей Вознесенский однажды сказал так: «лень – двигатель прогресса». Пожалуй, трудно не согласиться с этой фразой, ведь большинство электронных устройств создаются именно с той целью, чтобы облегчить нашу с вами повседневную жизнь, полную забот и всяких разных суетных дел.

Если вы сейчас читаете эту статью, то вас, наверное, очень утомляет процесс полива цветов. Ведь цветы – существа нежные, чуть их перельёшь, недовольны, забудешь полить на денёк, так всё, они вот-вот увянут. А сколько цветов в мире погибло лишь от того, что их хозяева уехали в отпуск на недельку, оставив зелёных бедолаг чахнуть в сухом горшке! Страшно представить.

Именно для предотвращения таких ужасных ситуаций придуманы системы автоматического полива. На горшок устанавливается датчик, замеряющий влажность почвы – он представляет собой для металлических прутка из нержавеющей стали, воткнутые в землю на расстоянии сантиметра друг от друга.

По проводам они подключаются к схеме, задача которой открывать реле только тогда, когда влажность упадёт ниже заданной и закрывать реле в тот момент, когда почва вновь насытится влагой. Реле, в своё очередь, управляет насосом, который качает воду из резервуара прямо под корень растению.

Схема датчика

Как известно, электропроводимость сухой и влажной почвы отличается довольно значительно, именно этот факт лежит в основе работы датчика. Резистор номиналом 10 кОм и участок почвы между прутками образуют делитель напряжения, их средняя точка подключается напрямую на вход ОУ. На другой вход ОУ напряжение подаётся со средней точки переменного резистора, т.е. его можно настраивать от нуля до напряжения питания. С его помощью выставляется порог переключения компаратора, в роли которого и работает ОУ. Как только напряжение на одном его входе превысит напряжение на другом – на выходе окажется логическая «1», загорится светодиод, транзистор откроется и включит реле. Транзистор можно применить любой, структуры PNP, подходящий по току и напряжению, например, КТ3107 или КТ814. Операционный усилитель TL072 или любой аналогичный, например, RC4558. Параллельно обмотке реле следует поставить маломощный диод, например, 1n4148. Напряжение питания схемы – 12 вольт.

Из-за длинных проводов от горшка до самой платы может возникнуть такая ситуация, что реле переключается не чётко, а начинает щёлкать с частотой переменного тока в сети, и только спустя какое-то время устанавливается в открытом положении. Для устранения этого нехорошего явления следует поставить электролитический конденсатор ёмкостью 10-100 мкФ параллельно датчику. Архив с платой тут. Удачной сборки! Автор – Дмитрий С.

Форум по обсуждению материала СХЕМА ДАТЧИКА ВЛАЖНОСТИ ПОЧВЫ

Схема простого кварцованного передатчика FM диапазона на мощность до 0,2 Вт, при питании от 12 В.

Умный аварийный резервный светодиодный источник света — простая схема автоматически включающейся LED подсветки.

Лазерные светодиоды, люминисцентные и диоды для накачки твердотельных лазеров DPSSL.

Делаем цифровой TLIA-тестер Li-Ion аккумуляторов (измеритель емкости) на Atmega8 и дисплее WH1602.

Источник

Adblock
detector