Меню

Емкостной датчик влажности почвы ne555

Датчик влажности почвы (ёмкостный): инструкция по использованию и примеры

Ёмкостный сенсор влажности почвы пригодиться для создания систем автоматического полива растений. Датчик не даст засохнуть комнатным цветкам и флоре на огороде.

Принцип работы

Ёмкостный датчик выполнен в виде штыря, которым погружается в грунт на расстояние до 80 мм. На штыре в виде дорожек расположены два электрода, но в отличии от резистивной модели, электроды ёмкостного сенсора защищены токоизолирующей маской и неподвержены коррозии.

Внутри ёмкостного датчика находится RC-генератор на таймере 555, частота которого зависит от ёмкости между двумя электродами, которые выполняю роль конденсатора. Изменение влажности грунта сказывается на его диэлектрических свойствах и меняет ёмкость, что приводит к повышению или понижению выходного сигнала датчика. Итоговое напряжение пропорционально степени влажности почвы.

Пример работы для Arduino и XOD

В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.

Схема устройства

Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».

Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.

Код для Arduino IDE

Прошейте платформу Arduino скетчем приведённым ниже.

После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.

Источник

Емкостной датчик влажности почвы

Общие сведения:

Trema-модуль емкостной датчик влажности почвы — в отличие от резистивных датчиков влажности не подвержен коррозии. Датчик является аналоговым, напряжение на выходе обратно пропорционально влажности почвы. Датчик идеально подходит для наблюдения изменений влажности почвы, для создания систем автоматического полива растений и для мониторинга целостности грунтового трубопровода.

Спецификация:

  • Напряжение питания Vcc: 5 В или 3,3 В
  • Напряжение на выходе датчика при Vcc 5В:

3 . 1,75 В; при Vcc 3,3В:

2 . 1 В

  • Выход датчика инверсный
  • Максимальный потребляемый ток:

    Способ — 2 : Используя проводной шлейф и Shield

    Используя 3-х проводной шлейф, к Trema Shield, Trema-Power Shield, Motor Shield, Trema Shield NANO

    Питание:

    Входное напряжение питания 5 В или 3,3 В, постоянного тока, подаётся на выводы Vcc (V) и GND (G) датчика. Датчик можно подключить к постоянному питанию (тип подключения 1), а можно управлять питанием датчика (тип подключения 2) если подавать питание на датчик с любого информационного вывода, тогда функцией digitalWrite() можно включать или выключать датчик. При таком подключении нужно дать датчику время для включения генератора частоты, примерно 50 миллисекунд.

    Питание датчика от информационного вывода (тип подключения 2), возможно, благодаря низкому энергопотреблению датчика (потребляемый ток

    Читайте также:  Грядок своими руками проекты

    В зависимости от влажности почвы, при питании 5 вольт показания датчика находятся в диапазоне от

    1.75 вольт; при питании 3,3 вольта от

    1. Соответственно, диапазон показаний функции analogRead() будет зависеть от напряжения питания датчика.

    График зависимости выходного напряжения датчика от влажности почвы при питании 5В

    Примеры:

    Считывание показаний с датчика:

    Показания датчика считываются вызовом функции analogRead(номер_вывода);

    Тип подключения 1:

    Тип подключения 2: датчик запитан от выводов A0 и A1.

    Так как датчик является инверсным, для удобства чтения данных можно воспользоваться встоенной функцией map(), которая в следующем скетче преобразует и инвертирует «сырые» показания датчка в диапазон от 0 до 100:

    Источник

    DIY датчик влажности почвы с E-Ink экраном

    Приветствую всех читателей Хабра! Сегодня хочу рассказать вам об одном из своих проектов, это датчиком влажности почвы с небольшим экраном на электронных чернилах, датчик работает от батарейки, умеет отправлять данные по воздуху в какую нибудь из систем Умного Дома. Данный проект это дальнейшее развитие другого моего DIY проекта датчика влажности почвы.
    Хронология:

    В этом проекте, как и в предшествующих ему для измерения влажности в почве используется 555-ый таймер. Так как в этом проекте не используется готовый китайский сенсор с АлиЭкспресс то для этого проекта я выбрал КМОП таймер LMC555CMX. Заявляется стабильная работа на низких напряжениях от 1.5в, сверх низкое потребление в районе 150мкА, частота 3 МГц (даташит). Таймер по ножкам совместим с NE555 и другими аналогами.

    Для вывода информации на самом датчике был использовать e-ink дисплей с диагональю 1.02 дюйма, который я уже ранее использовал в другом своем проекте миниатюрного датчика температуры и влажности.

    • модель: GDEW0102T4,
    • IC Driver: UC8175,
    • разрешение экрана: 128×80 пикселей (DPI 145),
    • напряжение питания: 2.3в — 3.6в,
    • потребление в режиме обновления изображения: 1.5мА,
    • потребление в режиме глубокого сна: 200нА,
    • время обновления экрана в стандартном режиме: 3сек,
    • время обновления экрана в режиме частичного обновления: 300мс.

    Было разработано две версии плат под два радио модуля разных производителей. Радио модули были выбраны таким образом, что бы полностью перекрыть всю линейку nRF52. Модуль MINEW MS50SFA имеет три модификации на которые устанавливаются nRF52810, nRF52811 и nRF52832. И второй модуль это EBYTE E73-2G4M08S1 который имеет две модификации C и E (на само деле уже три, в третьей вместо керамической антенны используется внешняя) на которые устанавливаются nRF52840 и nRF52833.

    Почему так много nRF? Просто мне хотелось минимизировать минусы при использовании датчиков в различных условиях. Например если сенсор находится недалеко от шлюза то будет достаточно мощности радиопередатчика в 4dBm, при этом получаем очень привлекательное потребление устройства когда оно находится в режиме сна(а это большая часть времени), примерно 2 мкА. Если шлюз находится на удалении, то можно будет использовать датчики на которых установлены радиомодули с nRF52833 или nRF52840, у которых максимальная мощность радиопередачи 8dBm. Ну и в мечтах есть планы на Тред и Зигби, а для этого нужно много места, которое есть только в nRF52833 и nRF52840.

    Читайте также:  Выращивание лимона с семян

    Изготовление плат заказывалось в Китае, из-за габаритов основной платы с сенсором влажности стоимость заказа была выше, так как плата не вписывалась в 10х10см, а это максимальные размеры которые можно сделать за $2. Вторая плата для дисплея естественно вписалась в двухдолларовые условия.

    Корпус устройства был отпечатан на FDM принтере PLA нитью, после печати корпус был отшлифован и отполирован.

    Работа устройства

    Устройство может быть сконфигурировано внешними командами отправляемыми через интерфейс контроллера Умного Дома. Внешними командами можно изменить интервал считывания сенсоров влажности почвы и температуры от 1 часа до 24 часов с шагом в один час. Можно изменить интервал считывания и отправки уровня заряда батарейки, от 1 часа до 3 суток с шагом в 1 час. Изменить порог оповещения о необходимости полива, в зависимости от модели вашего цветка 🙂 и типа почвы, шаг 1 %, по умолчанию установлен порог в 45%. Так же можно внешней командой сделать сброс устройства к первоначальным настройкам, происходит полное очищение памяти устройства, после устройство перезагружается и пытается зарегистрироваться в сети как новое устройство.

    Устройство имеет кнопку «меню», через меню можно инвертировать изображение на экране(черное\белое), вызвать презентацию(передача параметров в УД) устройства и доступных у него сенсоров, включить вручную одноразово режим поиска сети(при потере сети, минуя стандартный автоматический поиск с интервалом в 1 час), вызов режима конфигурации устройства внешними командами, сброс устройства к первоначальным настройкам.

    Источник

    Беспроводной DIY монитор влажности почвы

    Приветствую всех читателей Хабра! Сегодня хочу поделится с вами моим новым проектом — беспроводным датчиком влажности почвы, который построен на основе всем известного модуля влажности почвы с алиэкспрес. Новый датчик это логическое продолжение первого моего DIY проекта на эту тему. Но в новой реализации это уже не ардуино модуль, а законченный девайс с своим собственным корпусом. Итак, каша из топора, часть вторая! 🙂

    Китайский модуль измерения влажности почвы построен на таймере 555. Метод измерения — емкостной. Для моего проекта нужна была версия модуля с установленным стабилизатором напряжения XC6206P332 на 3.3В, который в дальнейшем придется удалить с платы модуля. Дело в том что в таких версиях используемся модификация таймера TLC555 с нижним порогом по питанию в 2В. В версиях без стабилизатора используются таймеры NE555 c нижним порогом по питанию в 5В. Но в любом случае что проще купить для повторения этого проекта дело повторяющего. В первом варианте выпаиваем стабилизатор напряжения, во втором меняем таймер например на такой — LMC555 (даташит) работающий даже от 1.5В. Для беспроводного модуля к китайскому датчику влажности почвы я выбрал радиомодуль от EBYTE E73C на котором установлен чип nRF52840. Аргументом стала цена модуля и имеющееся количество данных модулей у меня в запасах.

    Читайте также:  Емкость катионного обмена почвы таблица

    Беспроводной модуль получился очень простой, RGB светодиод, пара кнопок, полевой транзистор, батарейка. Собрать такой девайс сможет даже самый неопытный начинающий паяльщик. На датчике влажности помимо удаления стабилизатора напряжения так же необходимо выпаять разъем и впаять на его место штырьевую вилку 3P, шаг 2.54 мм.

    Размеры платы получились немного меньше чем в первом проекте — 42х29мм, определялись размером держателя батарейки.

    Корпус был напечатан на моем бытовом SLA принтере ANYCUBIC. Время печати деталей порядка пары часов. Последующая пост обработка заняла около получаса. Стоимость израсходованной полимерной смолы

    Потребление в режиме сна — 4.7мкА, в режиме передачи 8мА. Интервал замеров изменяемый, шаг 1 минута. Время измерения 50мс (5 замеров в тестовой программе), потребление во время измерения

    1 мА. Так же производятся измерение температуры чипа, измерение уровня заряда батарейки. Передача данных на контролер УД посредством сети Mysensors, передача данных на контролер УД посредством сети Zigbee.

    Код тестовых программ находится на моем Github

    Пример работы в сети Mysensors и УД Мажордомо

    Пример работы в сети ZigBee и УД Мажордомо

    Код настройки конвертора в модуле zigbee2mqtt для датчика влажности (пока не уверен, что это верное решение).

    Тестовую прошивку написал один из участников нашего DIY сообщества — Lenz, вот его GIthub.

    Стоимость компонентов которые пришлось добавить к китайскому влагомеру составила порядка 400-500 рублей. На мой взгляд вполне неплохо.

    Видео работы датчика

    Дальнейшие планы на этот проект. Хочется заменить МК на что то более простое, например на nRF52810 или nRF52811, но всё будет упирается в цену, скорее всего придется отказаться от радиомодулей и сделать просто на чипе. Возможно подумаю добавить зуммер, вполне вероятно стабилизатор питания, так как сейчас необходимо учитывать напряжение питания при замере. Довести до стабильного состояния Zigbee версию, сделать BLE версию, сделать мобильное приложение-показометр. Вообщем точно будет что-то еще.

    Если вас заинтересовал данный проект, предлагаю зайти в группу телеграмм, там всегда будет оказана помощь в освоении протокола Майсенсорс, Zigbee, BLE на nRF5, помогут освоить программирование nRF52 в Ардуино ИДЕ и не только в ней.

    Источник

  • Adblock
    detector