Азотистая кислота: получение и свойства
Азотистая кислота HNO2 — слабая, одноосновная, химически неустойчивая кислота.
Получение азотистой кислоты
Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.
Например , соляная кислота вытесняет азотистую кислоту из нитрита серебра:
AgNO2 + HCl → HNO2 + AgCl
Химические свойства
1. Азотистая кислота HNO 2 существует только в разбавленных растворах, при нагревании она разлагается :
без нагревания азотистая кислота также разлагается :
2. Азотистая кислота взаимодействует с сильными основаниями .
Например , с гидроксидом натрия:
3. За счет азота в степени окисления +3 азотистая кислота проявляет слабые окислительные свойства . Окислительные свойства HNO2 проявляет только при взаимодействии с сильными восстановителями.
Например , HNO2 окисляет иодоводород:
2HNO2 + 2HI → 2NO + I2 + 2H2O
Азотистая кислота также окисляет иодиды в кислой среде:
Азотистая кислота окисляет соединения железа (II):
4. За счет азота в степени окисления +3 азотистая кислота проявляет сильные восстановительные свойства . Под действием окислителей азотистая кислота переходит в азотную.
Например , хлор окисляет азотистую кислоту до азотной кислоты:
Кислород и пероксид водорода также окисляют азотистую кислоту:
Соединения марганца (VII) окисляют HNO2:
Источник
Азотистый обмен почвы
Азотистый обмен почвы — это круговорот в почве азота, который присутствует там не только в виде простого вещества (газа — N2), но и в виде ионов: нитритов (NO2-), нитратов (NO3-) и аммония (NH4+).Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние атмосферы, вымывание из почвы различных веществ. Очень большую роль в круговороте азота играют почвенные микроорганизмы. Они способны снижать концентрации азотсодержащих веществ, губительные для других живых организмов. Они могут переводить токсичный для живых существ аммиак в менее токсичные нитраты и в биологически инертный атмосферный азот. Таким образом, микрофлора почвы способствует поддержанию стабильности её химических показателей.
Содержание
Роль почвенных микроорганизмов в круговороте азота
Запасы азота в природе очень велики. Общее содержание этого элемента в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. В воздухе азот присутствует в виде газа N2. Однако газ азот (N2), содержание которого в атмосфере достигает 78 % по объёму, эукариоты сами по себе ассимилировать не могут. А уникальной способностью превращать N2 в азотсодержащие соединения обладают некоторые бактерии, которые называют азотфиксирующими, или азотфиксаторами. Фиксация азота возможна многими бактериями и цианобактериями. Они живут или в почве, или в симбиозе с растениями, или с несколькими разновидностями животных. Например, семья бобовых растений (Fabaceae) содержит такие бактерии на своих корнях. Типичным представителем свободноживущих азотфиксирующих микроорганизмов является Azotobacter — грамотрицательная бактерия, связывающая азот воздуха. Продукты фиксации азота — аммиак (NH3), нитриты.
Нитрификация
Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов. Этот процесс носит название нитрификации, он осуществляется нитрифицирующими бактериями. Однако нет такой бактерии, которая бы прямо превращала аммиак в нитрат. В его окислении всегда участвуют две группы бактерий : одни окисляют аммиак, образуя нитрит, а другие окисляют нитрит в нитрат. Наиболее известные виды нитрифицирующих бактерий- это Nitrosomonas и Nitrobacter. Nitrosomonas окисляет аммиак:
Nitrobacter окисляют нитрит:
Бактерии, окисляющие аммиак, поставляют субстрат для бактерий, окисляющих нитрит. Поскольку высокие концентрации аммиака оказывают на Nitrobacter токсическое действие, Nitrosomonas, используя аммиак и образуя кислоту, тем самым улучшает и условия существования для Nitrobacter.
Нитрификаторы- грамотрицательные бактерии, принадлежащие к семейству Nitrobacteracea. Им не нужны восстановленные соединения углерода для нормального роста и размножения, они способны восстанавливать CO2 до органических соединений, используя для этого энергию окисления минеральных соединений азота- аммиака и нитритов. То есть нитрификаторы- бактерии, которые способны питаться исключительно неорганическими соединениями и осуществляют процесс хемосинтеза, синтеза органических соединений из минеральных. Хемосинтез- путь усвоения живыми существами неорганического углерода, альтернативный фотосинтезу. Растения используют нитраты для образования разных органических веществ. Животные потребляют с пищей растительные белки, аминокислоты и др. азотсодержащие вещества. Таким образом, растения делают органический азот доступным для других организмов-консументов.
Все живые организмы поставляют азот в окружающую среду. С одной стороны, все они выделяют в ходе жизнедеятельности продукты азотистого обмена: аммиак, мочевину и мочевую кислоту. Последние два соединения разлагаются в почве с образованием аммиака (который при растворении в воде дает ионы аммония).
Аммонификация
Мочевая кислота, выделяемая птицами и рептилиями, также быстро минерализуется особыми группами микроорганизмов с образованием NH3 и СО2. С другой стороны, азот, включённый в состав живых существ, после их гибели подвергается аммонификации (разложение содержащих азот сложных соединений с выделением аммиака и ионов аммония(NH4 + )) и нитрификации.
Денитрификация
Продукты нитрификации — NO3— и (NO2-) в дальнейшем подвергаются денитрификации. Этот процесс целиком происходят благодаря деятельности денитрифицирующих бактерий, которые обладают способностью восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2). Эти газы свободно переходят в атмосферу.
В отсутствии кислорода нитрат служит конечным акцептором водорода. Способность получать энергию путем использования нитрата как конечного акцептора водорода с образованием молекулы азота широко распространена у бактерий. Временные потери азота на ограниченных участках почвы, несомненно, связаны с деятельностью денитрифицирующих бактерий. Таким образом, круговорот азота невозможен без участия почвенной микрофлоры.
Ассимиляция
Усваиваемые соединения азота могут накапливаться в почве в неорганической форме (нитрат) или могут быть включены в живой организм как органический азот. Ассимиляция и минерализация определяет поглощение соединений азота из почвы, объединение их в биомолекулы растений и конверсию в неорганический азот после отмирания растений, соответственно. Ассимиляция — переход неорганического азота (типа нитрата) в органическую форму азота как, например, аминокислоты. Нитрат переходит с помощью ферментов сначала в нитрит (редуктаза нитрата), затем в аммиак (редуктаза нитрита). Аммиак входит в состав аминокислот.
Факторы, влияющие на круговорот азота в антропогенных биоценозах
В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство. Но в настоящее время на круговорот азота влияют много факторов, вызванных человеком. Во-первых, это кислотные дожди — явление, при котором наблюдается понижение pH дождевых осадков и снега из-за загрязнений воздуха кислотными оксидами (например, оксидами азота). Химизм этого явления состоит в следующем. Для сжигания органического топлива в двигатели внутреннего сгорания и котлы подается воздух или смесь топлива с воздухом. Почти на 4/5 воздух состоит из газа азота и на 1/5 — из кислорода. При высоких температурах, создаваемых внутри установок, неизбежно происходит реакция азота с кислородом и образуется оксид азота:
Эта реакция эндотермическая и в естественных условиях происходит при грозовых разрядах, а также сопутствует другим подобным магнитным явлениях в атмосфере. В наши дни человек в результате своей деятельности сильно увеличивает накопление оксида азота (II) на планете. Оксид азота (II) легко окисляется до оксида азота (IV) уже при нормальных условиях:
Далее оксид азота реагирует с атмосферной водой с образованием кислот :
образуются азотная и азотистая кислоты. В капельках атмосферной воды эти кислоты диссоциируют с образованием, соответственно нитрат- и нитрит-ионов, а ионы попадают с кислотными дождями в почву. Вторая группа антропогенных факторов, влияющих на азотистый обмен почв, — это технологические выбросы. Оксиды азота- одни из самых распространенных загрязнителей воздуха. А неуклонный рост производства аммиака, серной и азотной кислоты напрямую связан с увеличением объёма отходящих газов, а следовательно, с увеличением количества выбрасываемых в атмосферу оксидов азота. Третья группа факторов — переудобрение почв нитритами, нитратами (селитрой) и органическими удобрениями. И наконец, на азотистый обмен почв отрицательно влияет повышенный уровень биологического загрязнения. Возможные его причины: сброс сточных вод, несоблюдение санитарных норм (выгул собак, неконтролируемые свалки органических отходов, плохое функционирование канализационных систем и др.). Как следствие почва загрязняется аммиаком, солями аммония, мочевиной, индолом, меркаптанами и другими продуктами разложения органики. В почве образуется дополнительное количество аммиака, который затем перерабатывается бактерииями в нитраты.
Актуальность изучения круговорота азота в антропогенных биоценозах
Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние.
Антропогенные биоценозы — это особые природные сообщества, сформировавшиеся под непосредственным влиянием человека, который сам может создавать новые ландшафты и серьёзным образом изменять экологическое равновесие. Кроме того, деятельность человека оказывает огромное влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие, потому что произошли серьёзные изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате вызванных человеком воздействий. Азот является элементом, необходимым для существования животных и растений, он входит в состав белков, аминокислот, нуклеиновых кислот, хлорофилла, гемов и др. В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов.
Очень важно изучать и контролировать круговорот азота, особенно в антропогенных биоценозах, потому что небольшой сбой в какой-либо части цикла может привести к серьёзным последствиям: сильным химическим загрязнениям почв, зарастанию водоемов и загрязнению их продуктами разложения отмершей органики (аммиак, амины и др.), высокому содержанию растворимых соединений азота в питьевой воде.
Для изучения особенностей круговорота азота можно использовать комплексную методику по изучению содержания ионов нитритов (NO2-), нитратов (NO3-) и аммония (NH4+)в почве и её микробиологических показателях.
Источник
9. Соединения азота в почве
Основное количество соединений азота сосредоточено в верхнем почвенном горизонте и представлено главным образом органическими соединениями. В среднем на долю азота приходится около 5% от массы органического вещества почвы, что составляет обычно 0,02-0,4% от массы пахотного слоя почв. Помимо органических соединений (гумусовые вещества и растительные остатки), азот в почве присутствует в виде неорганических компонентов в почвенном воздухе, почвенном растворе и в обменном или фиксированном состоянии входит в состав твердой фазы почв.
Среди органических соединений азота от 20 до 50% составляют аминокислоты, присутствуют также амиды, аминосахара и гетероциклические соединения. Около 50% органических соединений азота остаются неидентифицированными. Все органические соединения азота можно разделить на легко разлагаемую и стабильную фракции. На долю первой приходится обычно менее одной трети всего органического азота почвы.
Органические соединения азота, содержащиеся в почве, являются основным резервом для питания растений. В результате процессов химической и, преимущественно, биохимической трансформации этих соединений происходит образование доступных для растений веществ, протекает так называемый процесс мобилизации азота. Даже бедные почвы, например дерново-подзолистые, содержат в пахотном слое до 4 г/га азота. Этого количества при его полной мобилизации было бы достаточно для созревания урожая в течение 50-60 лет. Однако такая мобилизация азота привела бы к полному разрушению гумусовых веществ, и почвы утратили бы все свои агрономически ценные свойства.
Соединения азота всегда содержатся в поступающих в почву растительных остатках и мобилизуются в процессе их разложения. Особенно интенсивно этот процесс протекает на ранних стадиях распада растительных остатков, когда соотношение массы углерода и азота в них ниже 20. В дальнейшем скорость поступления соединений азота определяется скоростью разложения органического вещества почвы. Обычно в полевых условиях в результате процессов разложения в почву ежегодно переходит от 1 до 3% азота, содержащегося в органическом веществе почв.
В почвенном воздухе соединения азота представлены молекулярным азотом, аммиаком, гемиоксидом, оксидом и диоксидом азота.
При газовом обмене с атмосферным воздухом часть почвенного азота теряется. Так, по данным Б. Н. Макарова, например на дерново-подзолистых и суглинистых почвах, в среднем за период с мая по август на полях без внесения азотных удобрений теряется только в виде NO2 до 0,2 т азота на каждом гектаре. Внесение азотных удобрений увеличивает количество соединений азота, поступающих в атмосферу, что особенно заметно в первый год. В целом, если принять во внимание данные о возможном переходе 27% азота из удобрений в газовую фазу и считать доли молекулярного азота и N2O в газовой фазе одинаковыми, при внесении 90 кг азота на гектар почв в атмосферу может выделиться 12 кг N2, 19 кг N2O и 0,8 кг NO2.
Экспериментальные измерения состава приземного воздуха, проведенные Б. Н. Макаровым, показали, что в зависимости от гидротермических условий содержание диоксида азота в приземном слое колеблется от 0 до 8 · 10 –7 %(об.) и в среднем составляет 4 · 10 –7 %(об.), доля аммиака изменяется от 0 до 9 · 10 –6 %(об.).
Главными источниками образования газообразных соединений азота в почве являются протекающие при участии микроорганизмов процессы аммонификации, нитрификации и денитрификации.
Аммонификация – это процесс разложения органических веществ, протекающий с участием специфических аммонифицирующих микроорганизмов. В результате этого процесса в почвенном воздухе появляется газообразный аммиак, а в почвенном растворе – ионы аммония.
Ионы аммония вступают во взаимодействие с почвеннопоглощающим комплексом, причем часть ионов NH в результате такого взаимодействия может потерять подвижность. Обычно в почвах содержание связанного с ППК обменного аммония на порядок выше, чем свободного. Поэтому концентрация ионов NH
в почвенном растворе невелика.
Процесс фиксации ионов аммония можно рассмотреть на примере связывания ионов аммония минералом иллитом. Расположенные на внешней поверхности кристалла и его сколах ионы NH могут легко вступать в реакции замещения и являются обменными катионами. Ионы аммония и калия способны проникать и в области межпакетных промежутков. В этом случае они теряют способность к обмену и превращаются в катионы, фиксированные твердой фазой почв. Способность минералов фиксировать ионы NH
определяется их строением, степенью выветривания и степенью насыщения решетки катионами К + и меняется от нескольких смоль (р + )/кг до 10-12 смоль (р + )/кг.
Неорганические соединения азота присутствуют в почве в виде NH и NO
, лишь в некоторых щелочных почвах могут встречаться небольшие количества ионов NO
. Соотношение NH
/NO
в почве определяется наличием условий для нитрификации, которая угнетается при низких значениях рН и анаэробных условиях в почве. Там, где нет препятствий для нитрификации, большая часть азота представлена нитратами, и их содержание в почвенном растворе изменяется от 50 до 150 мг/л.
Окисление аммиака микроорганизмами протекает в два этапа. На первом этапе под воздействием бактерий Nitromonas происходит окисление ионов NH до ионов NO
. Образующиеся на этой стадии соли азотистой кислоты подвергаются дальнейшему окислению, которое протекает с участием бактерий Nitrobacter. При этом ионы NO
переходят в NO
.
В процессе нитрификации в почву поступают ионы водорода:
NH+ 2O2 NO
+ H2O + 2H +
Поэтому процессы нитрификации сопровождаются закислением почв, и при длительном применении аммонийных удобрений необходимо предусматривать компенсирующее известкование почв. При рН 7, Т = 25°С и достаточной аэрации почвы, когда окислительно-восстановительный потенциал почвенного раствора составляет 0,4-0,5 В, скорость нитрификации аммония может достигать 10-20 кг/(га · сут). Если аэрация почв затруднена и окислительно-восстановительный потенциал ниже 0,35 В, нитрификация может прекратиться, и в почве начнутся процессы денитрификации.
Денитрификация – процесс восстановления, в результате которого происходит образование газообразных соединений азота, выделяющихся в атмосферу. Различают два пути денитрификации: косвенный, или химический, и прямой, или биологический. Косвенный процесс денитрификации связан с протеканием химических реакций:
2HNO3 NО + NO2 + Н2О + О2 (20)
3HNO2 2NO + HNO3 + H2O, (21)
где R – органические радикалы.
Разложение азотной и азотистой кислот следует отнести к основным процессам косвенной денитрификации в кислых почвах при рН 2+ , Fe 2+ , Mn 2+ и увеличение содержания органических компонентов с фенольными ОН-группами. В некоторых предварительно стерилизованных почвах в течение 10 дней содержание нитритного азота уменьшалось в результате процессов косвенной динитрификации в 3 раза. Однако, как отмечается многими исследователями, косвенная денитрификация играет значительно меньшую роль в процессах восстановления соединений азота, чем биохимическая денитрификация.
Различают два типа процессов биохимической денитрификации: специфическую, или диссимиляторную, и неспецифическую денитрификацию. В процессе диссимиляторной денитрификации происходит восстановление нитратов до молекулярного азота в результате переноса электронов с субстрата (донора электронов) на нитраты, при этом высвобождается необходимая для микроорганизмов энергия. Неспецифическая денитрификация не выполняет энергетических функций. В этом процессе нитраты восстанавливаются преимущественно до нитритов. К неспецифической относят и ассимиляторную денитрификацию, при которой нитраты восстанавливаются до аммония. Неспецифическую денитрификацию часто рассматривают как первую стадию процесса денитрификации, при которой нитраты восстанавливаются до нитритов. Дальнейшее восстановление происходит в результате диссимиляторной денитрификации и протекает при участии микроорганизмов из родов Pseudomonos, Achromobacter, Micrococcus, Bacillus, Thiobacillus. Эти бактерии используют нитраты как источник энергии в отсутствие кислорода. Энергетический эффект этого процесса оценивается в 1760 кДж/моль. Суммарно процесс можно представить уравнением:
С6Н12Об + 4NO 6СО2 + 6Н2О + 2N2. (22)
Подавляющее большинство денитрифицирующих бактерий при высокой концентрации кислорода могут перейти на обычное дыхание. Поэтому процесс денитрификации протекает и в аэробных, и в анаэробных условиях. Однако наиболее интенсивно этот процесс протекает в плохо дренированных почвах при величине рН раствора, близкой к нейтральной, температуре около 25°С и окислительно-восстанови-тельном потенциале почвенного раствора Eh
где k1, k2, k3, k4 – константы скоростей соответствующих реакций нитрификации и денитрификации;
Скорости соответствующих реакций зависят от температуры почв, рН, степени аэрации и, следовательно, окислительно-восстановитель-ного потенциала почвенного раствора, содержания влаги, органических веществ и ингибиторов. Реакции нитрификации относятся к реакциям первого порядка, а реакции денитрификации имеют нулевой порядок, поэтому можно записать:
(24)
(25)
(26)
(27)
Для средних условий почв соответствующие константы скоростей реакций равны: k1 = 0,02 ч –1 , k2 = 0,04 ч –1 , k3 = 0,015 мг · кг –1 (N) · ч –1 , k4 = 0,01 мг · кг –1 (N) · ч –1 . Константа скорости процесса окисления ионов NO в нитрат-ионы k2 в 2 раза превосходят константу скорости образования нитрит-ионов k1, поэтому нитриты, как уже отмечалось, практически не накапливаются в почве. Значения констант k3 и k4 в значительной степени зависят от окислительно-восстановительных условий и присутствия ингибиторов в почве.
Общие потери азота, удаляемого из почв в виде газообразных соединений, только с пахотных почв РФ составляют около 1,5 млн т азота в год. Для уменьшения потерь азота в некоторых случаях используют ингибиторы скорости процессов денитрификации. В качестве ингибиторов применяют такие соединения, как 2-хлор-6-трихлорметил-пиридин (торговое название N-serve) и 2-амино-4-хлор-6-метил-пиридин (торговая марка «Ам»). В общем виде литосферную ветвь глобального кругооборота азота можно представить схемой, предложенной Д. С. Орловым (рисунок 6). Природными источниками поступления соединений азота в почву являются соединения азота, присутствующие в атмосфере и поступающие с атмосферными осадками, азот атмосферы, фиксируемый бактериями, и азот, содержащийся в остатках живых организмов. К этим источникам все в больших количествах добавляются антропогенные поступления.
Органические остатки живых организмов подвергаются гумификации и аммонификации. Ионы NH частично усваиваются растениями, частично участвуют в процессах гумификации или связываются почвенно-поглощающим комплексом. Часть ионов вымывается с инфильтрационной влагой или подвергается процессу нитрификации. Нитрат-ион активно поглощается растениями, частично подвергается денитрификации, замыкая тем самым биохимический цикл азота, а частично переходит в подземные воды, что во многих случаях приводит к их загрязнению.
Рис. 6. Схема литосферной части глобального кругооборота азота
Источник