Тепловые свойства и тепловой режим почв
Тепло — необходимый фактор жизни и роста растения. С ним связаны важнейшие биологические и абиотические процессы, протекающие в почве и определяющие развитие почвообразования и плодородия:
- интенсивность химических реакций,
- процессы физического выветривания,
- деятельность микроорганизмов и почвенной фауны,
- прорастание семян и рост растений,
- процессы обмена веществом и энергией.
Знание закономерностей формирования теплового режима почв необходимо для его направленного регулирования с целью создания наиболее благоприятных условий для продуктивности возделываемых растений.
Источники тепла в почве
Главным источником тепла, поступающего в почву, является лучистая энергия Солнца (солнечная радиация). Небольшое количество тепла почва получает из глубинных слоев Земли и за счет химических, биологических и радиоактивных процессов, протекающих в верхних слоях литосферы.
Тепло, образующееся при разложении органических веществ (навоза, растительных остатков и др.), широко используют в овощеводстве закрытого грунта.
Часть поступающей к поверхности почвы лучистой солнечной энергии поглощается почвой и, преобразуясь в тепло, нагревает почву; часть отражается поверхностью почвы и напочвенным покровом.
Почва отдает тепло в атмосферу, если температура ее поверхности выше, чем температура приземного слоя воздуха.
В зависимости от соотношения количества поглощенной поверхностью почвы лучистой энергии и излучения почвой тепла в атмосферу почвенная поверхность будет или нагреваться, или охлаждаться.
Наряду с поглощением тепла почвенной поверхностью идут процессы перемещения тепла от слоев более нагретых к слоям с более низкой температурой.
Это сказывается на тепловом состоянии различных слоев почвы. Чем больше разность температур поверхности почвы и ее глубоких слоев, тем больше тепла уходит из почвы или поступает в нее.
Тепловые свойства почвы
Приток лучистой солнечной энергии к поверхности почвы зависит от широты и рельефа местности, состояния поверхности почвы (покрытие растительностью), а также времени года и суток и состояния атмосферы (ясно, пасмурно и пр.).
В Северном полушарии суммарный приток солнечной радиации увеличивается при движении с севера на юг. Наибольший приток солнечной радиации получают южные склоны, наименьший — северные.
Наряду с условиями, определяющими приток солнечной энергии, важное значение в формировании теплового режима почвы (поглощение тепла, нагревание и охлаждение) имеют тепловые свойства почвы.
К тепловым свойствам почвы относятся тепло-поглотительная способность, теплоемкость и теплопроводность.
Теплопоглотительная способность
Способность почвы поглощать лучистую энергию Солнца. Она характеризуется величиной альбедо (А). Альбедо — количество коротковолновой солнечной радиации, отраженной поверхностью почвы и выраженное в % общей величины солнечной радиации, достигающей поверхности почвы.
Чем меньше альбедо, тем больше поглощает почва солнечной радиации. Оно зависит от цвета, влажности, структурного состояния, выравненности поверхности почвы и растительного покрова.
Приведем альбедо (%) различных почв, пород и растительных покровов (Чудновский, 1959):
- чернозем сухой – 14,
- чернозем влажный – 8,
- серозем сухой – 25-30,
- серозем влажный – 10-12,
- глина сухая –23,
- глина влажная – 16,
- песок белый и желтый – 30-40,
- пшеница яровая – 10-25,
- пшеница озимая – 16-23,
- травы зеленые – 26,
- травы высохшие – 19,
- хлопчатник – 20-22,
- рис – 12, картофель – 19.
Темно-каштановая почва (черноземы и др.) поглощает больше солнечной радиации, чем светло-каштановые (подзолистые, сероземы и др.); влажная – больше, чем сухая.
Теплоемкость
Свойство почвы поглощать тепло. Характеризуется количеством тепла в джоулях (калориях), необходимого для нагревания единицы массы (1 г) на 1 °С — весовая (или удельная) теплоемкость или объемная — в 1 см 3 на 1 °С.
Зависит от минералогического, гранулометрического составов, содержания органического вещества, влажности, пористости почвы и содержания воздуха. Теплоемкость воды равна 1,000 кал, торфа – 0,477, глины – 0,233 и песка – 0,196 кал.
Из этих данных видно, что вода – наиболее теплоемкий компонент почвы по сравнению с минеральными и органическими ее частями. Поэтому для повышения температуры влажной почвы требуется больше тепла, чем для сухой.
Влажные почвы медленнее нагреваются и медленнее охлаждаются, чем сухие. Глинистые почвы как более теплоемкие во влажном состоянии нагреваются весной медленнее по сравнению с песчаными.
Осенью при большем увлажнении они медленнее охлаждаются и становятся теплее песчаных. В связи с этим, изменяя влажность и пористость почвы поливами и обработкой, можно в определенных пределах регулировать температуру почвы.
Теплопроводность
Способность почвы проводить тепло. От нее зависит скорость передачи тепла от одного слоя к другому, а следовательно, и способность почвы быстрее или медленнее нагреваться или охлаждаться в определенной толще ее профиля.
Она измеряется количеством тепла в джоулях (калориях), которое проходит за 1 с через 1 см 2 слоя почвы толщиной в 1 см. Отдельные составные части почвы имеют разную теплопроводность. Минимальной теплопроводностью обладает воздух (0,00006 кал), затем торф (0,00027 кал) и вода (0,00136 кал).
Теплопроводность минеральной части почвы в среднем в 100 раз выше, чем воздуха, и в 28 раз, чем воды.
Поскольку в почве наряду с ее твердой (органической и минеральной) фазой в порах присутствуют воздух и вода, то теплопроводность сильно зависит от влажности почвы и содержания в ее порах воздуха. Поэтому чем влажнее почва, тем выше ее теплопроводность, а чем рыхлее, тем ниже.
Тепловой режим почвы
Совокупность явлений поступления, переноса, аккумуляции и отдачи тепла называют тепловым режимом почвы. Основным показателем теплового режима почвы, который характеризует ее тепловое состояние, является температура генетических горизонтов почвенного профиля.
Поскольку приток лучистой солнечной энергии связан с его суточными и годовыми ритмами, то и для температуры почвы характерны суточные и годичные закономерности ее изменения (рис. 6 и 7).
Суточный ход температуры. Днем поверхность почвы нагревается и максимальная ее температура наблюдается около 13 ч. Затем происходит постепенное охлаждение почвенной поверхности, и минимум ее температуры отмечается перед восходом солнца.
По мере нагревания поверхности почвы происходит передача тепла и в более глубокие слои. При этом наиболее быстро изменяется температура на поверхности почвы. С глубиной скорость этих изменений заметно уменьшается в связи со слабой теплопроводностью почвы.
Поэтому максимум и минимум суточных температур на разных глубинах профиля почвы наступают в разное время, в среднем отмечено запаздывание на 2-3 ч на каждые 10 см глубины профиля.
Наибольшие суточные колебания температуры происходят на поверхности почвы, а с глубины 3—5 см они уже резко уменьшаются. На глубине 30 ния температуры затухают.
На фоне общих закономерностей каждому типу почвы свойствен свой суточный ход температуры, поскольку ее профильная суточная динамика зависит от свойств почвы (гранулометрического состава, плотности, окраски, влажности и др.), состояния атмосферы, растительного и снежного покровов.
Годовой ход температуры. Годовой ход температуры имеет два периода: летний — период нагревания почвы с потоком тепла от верхних горизонтов к нижним и зимний — период охлаждения почвы с потоком тепла от нижних слоев профиля к верхним.
Амплитуды колебаний температуры почвы между этими периодами определяются условиями атмосферного климата и свойствами почв. В умеренных широтах максимум среднесуточной температуры почвы наблюдается обычно в июле — августе, а минимум — в январе — феврале.
Летом самая высокая температура отмечается в верхних горизонтах, с глубиной она снижается. Зимой нижние слои профиля имеют более высокие температуры.
На годовые изменения температуры почвы большое влияние оказывает растительность, предохраняя поверхность почвы от резких колебаний температуры.
В регионах со снежными и холодными зимами сильное влияние на температурный режим оказывают промерзание, оттаивание почвы, мощность и продолжительность снежного покрова.
Почва начинает промерзать при температуре несколько ниже 0 °С, поскольку в почвенном растворе содержатся растворимые вещества, понижающие температуру замерзания.
На замерзание почвы влияют снежный и растительный покровы, рельеф местности, свойства почвы, ее влажность, а также хозяйственная деятельность человека.
Снежный покров предохраняет почву от промерзания: чем он меньше, рыхлее и длительнее сохраняется, тем больше утепляет почву и снижает глубину ее промерзания.
Сохранение и накопление снега имеет большое значение в предохранении от вымерзания посевов озимых, многолетних трав и посадок плодово-ягодных культур.
Растительный покров, задерживая и накапливая снег, ослабляет промерзание почвы.
Рельеф влияет на накопление снега и увлажнение почвы. Поэтому наибольшую глубину промерзания почвы наблюдают на выпуклых формах рельефа и наветренных склонах, где сдувается снег. Накопление снега в понижениях (лощинах, западинах) способствует меньшему промерзанию почвы.
Глубже промерзают склоны северной экспозиции, а на меньшую глубину — южной. Чем влажнее почва, тем меньше она промерзает. При промерзании почвы идет подток парообразной и жидкой влаги к фронту промерзания.
Замерзание почвы начинается до или после установления снежного покрова и продолжается до января — февраля. Затем она начинает постепенно оттаивать снизу за счет передачи тепла от нижних незамерзших слоев.
Влияние деятельности человека на промерзание почвы связано с применением растительного покрова (вырубка или посадка древесно-кустарниковой растительности, сохранение травянистой растительности и т. д.), что сказывается на накоплении снега или существенном изменении увлажнения (орошение, осушение).
Оттаивание почв происходит двумя способами. В первом оттаивание идет снизу и заканчивается до схода снега. При этом мерзлая прослойка исчезнет у поверхности почвы; талая вода в этом случае лучше проникает в почву.
Во втором оттаивание начинается снизу, а затем одновременно и сверху, и снизу. В этот период мерзлая прослойка почвы сохраняется на некоторой глубине, что приводит к значительной потере воды и смыву почвы за счет поверхностного стока.
Для оценки теплообеспеченности почв как важной обобщающей характеристики их температурного режима используют сумму активных температур (>10 °С) в почве на глубине 20 см.
Здесь расположена главная масса корней многих растений. Рост корневых систем растений активно происходит при температуре почвы выше 10 °С.
Источник
Температура почвы и воздуха. Тепловой режим почв
Популярные материалы
Today’s:
Температура почвы и воздуха. Тепловой режим почв
Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и годовой тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.
Тепловой режим обусловлен преимущественно радиационным балансом , который зависит от соотношения энергии солнечной радиации , поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.
Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126—167), в черноземной зоне — 30-50 (126—209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.
И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по её температурному режиму. Температурный режим графически изображается в виде термоизоплет — кривых, соединяющих точки одинаковых температур.
Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от −12 до +20°С. Выделяются 2 области — положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см в основном совпадает с областью распространения многолетнемерзлых пород.
Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:
Как определить температуру почвы для посадки. Все о температуре почвы
Разные культуры можно высаживать дедовским способом: в одно и то же время каждый год. Однако климат меняется, соответственно, и температура почвы становится другой. Каждому растению для развития требуются свои условия, и первое на что надо обращать внимание – это состояние почвы.
В нашей статье объясним подробно, когда семя готово прорасти в земле и как узнать, что пора заняться посадкой; что понадобится для измерения температуры почвы и как быть, если нет нужных приборов под рукой; по каким народным приметам можно ориентироваться, что пришло время высаживать растения.
Тепловые характеристики почвы
Температура почвы очень важна для посадки, поскольку от этого показателя зависит поступление влаги и минерального питания к корням, рост и дыхание растения. Зимой культуры не высаживают именно потому, что в мороз перестают происходить процессы почвообразования. В прогретой до определенного показателя почвенной среде вновь начинается передвижение воды, возобновляют свою деятельность микробы и так далее. На температуру почвы влияют географическое положение местности и высота над уровнем моря, также имеют значение и свойства самого грунта: его механический состав, состояние влажности, другие свойства.
Глинистая почва при влажном климате летом будет не такой теплой, как почва с легким механическим составом, а вот в зимний период песчаная земля промерзнет сильнее, нежели более связные почвы. Увлажненная земля летом холоднее, чем сухая. Структурный грунт за счет лучшего воздухообмена быстрее прогреется весной, чем бесструктурный. Температура наружного слоя земли всегда более высокая по сравнению с корнеобитаемым слоем.
Температура почвы на глубине 10 см. Геотермальные теплонасосные системы теплоснабжения и эффективность их применения в климатических условиях России
Г. П. Васильев , научный руководитель ОАО «ИНСОЛАР-ИНВЕСТ»
В отличие от «прямого» использования высокопотенциального геотермального тепла (гидротермальных ресурсов) использование грунта поверхностных слоев Земли как источника низкопотенциальной тепловой энергии для геотермальных теплонасосных систем теплоснабжения (ГТСТ) возможно практически повсеместно. В настоящее время в мире это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии.
Грунт поверхностных слоев Земли фактически является тепловым аккумулятором неограниченной мощности. Тепловой режим грунта формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потока радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м.
Тепловой режим слоев грунта, расположенных ниже этой глубины («нейтральной зоны»), формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата (рис. 1). С увеличением глубины температура грунта также увеличивается в соответствии с геотермическим градиентом (примерно 3 °С на каждые 100 м). Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. Как правило, эта величина составляет 0,05–0,12 Вт/м 2 .
При эксплуатации ГТСТ грунтовый массив, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. При этом в капиллярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые, прежде всего, связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. При наличии в толще грунтового массива температурного градиента молекулы водяного пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды.
При какой температуре воздуха почва прогреется до 10 градусов. Узнайте температуру вашей почвы
Вряд ли чтение прогноза погоды в местной газете отнимет у вас много времени: песчаная почва — 32 °C; глинистая почва — 27 °C… Температура почвы изменяется также, как и температура воздуха. Различие в одном: температура почвы не может меняться с той же интенсивностью, как температура воздуха. Наверное одна часть вашего сада прогревается больше (или меньше), чем другая, в зависимости от ее местоположения, химического и физического состава почвы.Сначала давайте выясним, как температура почвы влияет на результаты ваших посевов .
Приведем некоторые примеры:
- Прорастание семян зависит от степени прогрева почвы, так же и от степени прогрева воздуха.
- Посадка самых ранних культур, как только почва достаточно прогрелась весной, позволяет по истечении периода вегетации посадить на то же место поздние культуры.
- Мульчирование или выращивание культур в защищенном грунте позволяет измерять температуру почвы так, как это нужно вам.
- Мелкие животные типа кроликов выбирают для своих нор в саду только те места, где температура поверхности почвы более высокая, потому-что это защитит их от зимних морозов.
- Вам необходимо научиться спасать растения от повреждения низкими температурами.
- Вы можете помогать полезным бактериям почвы, если знаете, при какой температуре почвы условия для их жизнедеятельности оптимальны.
Люди, которые занимаются земледелием по органическому методу, хорошо знают, что их почва – живая, она является домом для миллионов полезных бактерий. Для наилучшего осуществления своей работы бактерии требуют особых условий по теплу, влажности и доступности почвенного воздуха.
Эти условия имеются только в верхнем (культурном) слое почвы; их легче достигнуть на супесчаных почвах, чем на глинистых, где влажность слишком высока и всегда имеет место недостаток кислорода.
Согласно Т. Бэдфорду Франклину, автору «Климата в миниатюре», «поля кукурузы желтеют, особенно в областях с глинистыми почвами, когда холод и сушь восточных ветров охлаждают почву весной, — это происходит от того, что в холодной почве бактерии производят слишком мало нитратов для того, чтобы почвы могли дать урожай; только при наступлении более теплого периода бактерии начинают активно работать – ярко-зеленый цвет возвращается к кукурузе.
Как определить температуру почвы по температуре воздуха. Расчёт температуры грунта на заданной глубине
Часто при проектированиидля моделирования температурных полей и для других расчётов необходимо узнать температуру грунта на заданной глубине.
Температуру грунта на глубине измеряют с помощью вытяжных почвенно- глубинных термометров. Это плановые исследования, которые регулярно проводят метеорологические станции. Данные исследований служат основой для климатических атласов и нормативной документации.
Для получения температуры грунта на заданной глубине можно попробовать, например, два простых способа. Оба способа заключаются в использовании справочной литературы:
- Для приближённого определения температуры можно использовать документ ЦПИ-22. «Переходы железных дорог трубопроводами». Здесь в рамках методики теплотехнического расчёта трубопроводов приводится таблица 1, где для определённых климатических районов приводятся величины температур грунта в зависимости от глубины измерения. Эту таблицу я привожу здесь ниже.
- Таблица температур грунта на различных глубинах из источника «в помощь работнику газовой промышленности» еще времён СССР
Нормативные глубины промерзания для некоторых городов:
Глубина промерзания грунта зависит от типа грунта:
Можно конечно попробовать рассчитать температуру грунта, например, по методике, изложенной в книге С.Н.Шорин «Теплопередача» М.1952. На стр.115. Но такой расчёт весьма сложный и не всегда оправдан.
Я думаю, что самый простой вариант, это воспользоваться вышеуказанными справочными данными, а затем интерполировать.
Самый надёжный вариант для точных расчётов с использованием температур грунта — воспользоваться данными метеорологических служб. На базе метеорологических служб работают некоторые онлайн справочники. Например, http://www.atlas-yakutia.ru/.
Здесь достаточно выбрать населённый пункт, тип грунта и можно получить температурную карту грунта или её данные в табличной форме. В принципе, удобно, но похоже этот ресурс платный.
Если Вы знаете ещё способы определения температуры грунта на заданной глубине, то, пожалуйста, пишите комментарии.
Источник