Экологические аспекты применения фосфорных удобрений.
Повышение концентрации фосфора в водоёмах вызывает их эвтрофикацию. Фосфор слабо передвигается по профилю почвы и практически не вымывается в грунтовые воды, поэтому может попадать в водоёмы либо в результате потерь удобрений при хранении и транспортировке, либо при их неграмотном применении на эрозионно-опасных участках. Если же технологии хранения, транспортировки и внесения не нарушаются, загрязнение водоёмов фосфором маловероятно.
В составе фосфорных удобрений содержатся примеси фтора и тяжёлых металлов (кадмия, стронция, свинца, меди, цинка и т.д.), так как удобрения в определённой степени наследуют химический состав природных руд. Применение фосфорных удобрений приводит к постепенному накоплению фтора и тяжёлых металлов в почвах. Однако учёными доказано, что содержание токсичных веществ при этом растёт очень медленно и может превысить ПДК только в результате использования рекомендуемых доз фосфорных удобрений в течение нескольких десятков, а то и сотен лет. Вместе с тем, примеси токсикантов представляют потенциальную опасность для окружающей среды и их следует строго учитывать при внесении фосфорных удобрений. В будущем проблему примесей необходимо решать путём совершенствования технологии переработки фосфатного сырья.
Роль калия в жизни растений. Содержание и формы калия в почвах. Превращения калия в почвах. Содержание подвижного калия как показатель, характеризующий обеспеченность почв калием.
Калий в растениях.В отличие от азота и фосфора калий не входит в состав органических соединений, находится в растениях только в ионной форме (К+). Около 80 % калия содержится в клеточном соке, а остальные 20 % обменно адсорбируются коллоидами цитоплазмы.
Калий совместно с другими катионами регулирует физико-химическое состояние коллоидов протоплазмы, при этом повышает их гидрофильность. Поэтому способствует поступлению воды в клетку, повышает тургор, осмотическое давление и водоудерживающую способность растений. Только при оптимальном калийном питании обеспечивается нормальная жизнедеятельность биоколлоидов, необходимая для протекания всех процессов обмена веществ в клетке.
Калий активирует многие ферментные системы. Необходим для включения фосфора в органические соединения. Участвует в углеводном обмене: стимулирует процесс фотосинтеза, ускоряет передвижение углеводов из листьев в другие органы, усиливает синтез ди- и полисахаридов.
Калий играет важную роль в белковом обмене, особенно при питании растений аммонийным азотом: активизирует работу ферментов, участвующих в синтезе белков, тем самым способствует образованию белков из аминокислот, снижая в то же время содержание в растениях минеральных и низкомолекулярных органических соединений азота.
Содержание калия (К2О) в растениях и вынос урожаями сельскохозяйственных культур. Содержание в среднем составляет около 1 % на сухое вещество, варьируя от 0,5 до 5 % в зависимости от биологических особенностей растений, их органов и условий калийного питания.
Пропашные и овощные культуры (картофель, корнеплоды и т.д.) калиелюбивые, так как потребляют значительно больше калия на единицу сухого вещества, чем зерновые хлеба и многолетние травы. Например, зерновые характеризуются практически одинаковым содержанием азота и калия, в то время как в пропашных и овощных калия содержится примерно в 1,5 раза больше, чем азота.
Более высокая концентрация калия свойственна молодым жизнедеятельным органам растений, в которых интенсивно протекают процессы обмена веществ и деления клеток. Однако, в отличие от азота и фосфора, калия больше в вегетативных органах, чем в репродуктивных. Так, зерно злаковых культур содержит 0,5-0,6 % К2О, а солома – 0,8-1,5 %
Содержание калия в растениях зависит и от содержания его доступных форм в почве, повышаясь по мере улучшения условий питания.
Вынос калия с урожаями зависит от биологических особенностей культур. При средней урожайности зерновые культуры и многолетние травы выносят 40-90 кг/га калия, пропашные и овощные – 150-300 кг/га.
Динамика потребления калия во время вегетации. Критический период в потреблении калия растениями – первые 15 дней после всходов. Периоды максимального потребления отмечаются в разные фазы роста и развития: у зерновых – выхода в трубку и колошения, льна – во время цветения, хлопчатника – в период цветения и формирования волокна.
Признаки недостатка и избытка калия для растений. Калий реутилизируется, поэтому признаки его недостатка в первую очередь обнаруживаются на нижних листьях, края которых преждевременно желтеют, затем приобретают бурую окраску и отмирают («краевой ожог» листьев).
При избытке калия на листьях между жилками появляются бледные мозаичные пятна, которые со временем буреют. Затем листья опадают.
Калий в почвах. Содержание и запасы калия в почвах. Общее содержание варьирует от 0,01 до 3 % К2О, то есть калия, как правило, больше, чем азота и фосфора вместе взятых. Практически весь калий почв представлен минеральными соединениями. Соответственно, минимальное содержание калия характерно для торфяных почв – 0,01-0,05 % .
Содержание калия зависит в основном от гранулометрического и минералогического состава почв. Калийсодержащие минералы большей частью формируют мелкодисперсные фракции почвы. Поэтому мало содержат калия (до 1-1,2 %) песчаные и супесчаные разновидности. Суглинистые и глинистые почвы чаще всего содержат 2-2,5 % К2О.
Общий запас калия только в пахотном слое почв на 1 га огромен, может достигать 90 т . Кроме того, значительные его количества находятся в подпахотных горизонтах, содержащих обычно примерно столько же калия, как и пахотный слой.
Формы калия в почвах и его превращения. По доступности растениям выделяется 5 групп соединений калия в почвах:
1) Калий алюмосиликатов – входит в состав кристаллической решётки минералов – полевых шпатов (ортоклаз и др.), слюд (мусковит и т.д.), пироксенов, гидрослюд и т.д. Непосредственно растениями не усваивается, но в процессе выветривания минералов под влиянием воды, растворённых в ней кислот, в результате колебаний температуры и деятельности микроорганизмов может переходить в доступные соединения. В этой форме содержится основное количество калия – не менее 91 % от общего содержания его в почве;
2) Необменный калий – фиксирован в межпакетных пространствах трёхслойных глинистых минералов. Малодоступен для растений. В этой форме находится значительное количество калия – до 9 % общего содержания;
3) Обменный калий – поглощён ППК. Может переходить в почвенный раствор при обменных реакциях, поэтому является главным источником питания растений. Содержание его составляет 0,5-3 % от общего;
4) Водорастворимый калий – находится в почвенном растворе в виде солей минеральных и органических кислот. Легко усваивается растениями. Содержание незначительное – порядка 10-20 % от обменного калия. Между водорастворимым и обменным калием существует динамическое равновесие. Если содержание водорастворимой формы снижается вследствие потребления растениями, то количество её пополняется за счёт обменного калия;
5) Органический калий – входит в состав пожнивно-корневых остатков и плазмы микроорганизмов. Становится доступным после их минерализации. Органического калия в почвах очень мало – до 0,05 % от общего содержания.
Превращения калия – противоположно направленные процессы.
С одной стороны, недоступные для растений калий алюмосиликатов, а также необменный и органический постепенно переходят в водорастворимое и обменное состояние. Так, при выветривании минералов в дерново-подзолистых почвах ежегодно образуется 15-30 кг/га доступных соединений калия.
С другой стороны, водорастворимый и обменный могут потребляться микроорганизмами или подвергаться необменному поглощению, то есть переходить в недоступные растениям формы. Значительная часть калия удобрений может закрепляться в почве в результате необменной фиксации.
Содержание подвижного калия в почвах. Подвижный калий – это сумма водорастворимой и обменной форм. Содержание его принято определять в тех же вытяжках, что и содержание подвижного фосфора: дерново-подзолистые и серые лесные почвы обрабатываются 0,2 н. HCl (по Кирсанову), некарбонатные и карбонатные чернозёмы – соответственно 0,5 н. СН3СООН (по Чирикову) и 1 % (NH4)2CO3 (по Мачигину). При сопоставлении результатов анализов с эмпирически обоснованными группировками устанавливается степень обеспеченности почв калием.
Оптимальное содержание подвижного калия, обеспечивающее получение высоких урожаев, составляет в зернотравяных севооборотах Нечерноземной зоны 120-170, зернопропашных – 170-250, овощных – 250-300 мг/кг К2О.
Дата добавления: 2015-08-04 ; просмотров: 2884 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Воздействие удобрений на окружающую среду
Отрицательное действие удобрений на окружающую среду связано, прежде всего, с несовершенством свойств и химического состава удобрений. Существенными недостатками многих минеральных удобрений являются:
Æ Наличие остаточной кислоты (свободная кислотность) вследствие технологии их производства.
Æ Физиологическая кислотность и щелочность, образующаяся в результате преимущественного использования растениями из удобрений катионов или анионов. Длительное применение физиологически кислых или щелочных удобрений изменяет реакцию почвенного раствора, приводит к потерям гумуса, увеличивает подвижность и миграцию многих элементов.
Æ Высокая растворимость туков. В удобрениях, в отличие от природных фосфатных руд, фтор находится в виде растворимых соединений и легко поступает в растение. Повышенное накопление фтора в растениях нарушает обмен веществ, ферментативную активность (ингибирует действие фосфатазы), отрицательно действует на фото- и биосинтез белка, развитие плодов. Повышенные дозы фтора угнетают развитие животных, приводят к отравлению.
Æ Наличие тяжелых металлов (кадмия, свинца, никеля). Наиболее загрязнены тяжелыми металлами фосфорные и комплексные удобрения. Это связано с тем, что практически все фосфорные руды содержат большие количества стронция, редкоземельные и радиоактивные элементы. Расширение производства и применение фосфорных и комплексных удобрений ведет к загрязнению окружающей среды соединениями фтора, мышьяка.
При существующих кислотных способах переработки природного фосфатного сырья степень утилизации соединений фтора в производстве суперфосфата не превышает 20-50%, в производстве комплексных удобрений – еще меньше. Содержание фтора в суперфосфате достигает 1-1,5, в аммофосе 3-5 %. В среднем с каждой тонной необходимого растениям фосфора на поля поступает около 160 кг фтора.
Однако важно понимать, что не сами минеральные удобрения как источники биогенных элементов загрязняют окружающую среду, а их сопутствующие компоненты.
Внесенные в почву растворимые фосфорные удобренияв значительной степени поглощаются почвой и становятся малодоступными растениям и не передвигаются по почвенному профилю. Установлено, что первая культура использует из фосфорных удобрений всего 10-30% Р2О5, а остальное количество остается в почве и претерпевает всевозможные превращения. Например, в кислых почвах фосфор суперфосфата в большей части превращается в фосфаты железа и алюминия, а в черноземных и во всех карбонатных почвах – в нерастворимые фосфаты кальция. Систематическое и длительное применение фосфорных удобрений сопровождается постепенным окультуриванием почв.
Известно, что длительное применение больших доз фосфорных удобрений может привести к так называемому «зафосфачиванию», когда почва обогащается усвояемыми фосфатами и новые порции удобрений не оказывают эффекта. В этом случае избыток фосфора в почве может нарушить соотношение между питательными веществами и иногда снижает доступность растениям цинка и железа. Так, в условиях Краснодарского края на обыкновенных карбонатных черноземах при обыкновенном внесении Р2О5 кукуруза неожиданно резко снижала урожайность. Приходилось изыскивать способы оптимизации элементного питания растений. Зафосфачивание почв является определенным этапом их окультуривания. Это результат неизбежного процесса накопления «остаточного» фосфора, когда удобрения вносятся в количестве, превышающем вынос фосфора с урожаем.
Как правило, этот «остаточный» фосфор удобрении отличается большей подвижностью, доступностью растениям, чем природные фосфаты почвы. При систематическом и длительном внесении этих удобрений необходимо изменять соотношения между питательными элементами с учетом их остаточного действия: дозу фосфора следует уменьшать, а дозу азотных удобрений увеличивать.
Калий удобрений, внесенный в почву, подобно фосфору, не остается в неизменном виде. Часть его находится в почвенном растворе, часть переходит в поглощено-обменное состояние, а часть превращается в необменную, малодоступную для растений форму. Накопление доступных форм калия в почве, а также превращение в недоступное состояние в результате длительного применения калийных удобрений зависит в основном от свойств почвы и погодных условий. Так, в черноземных почвах количество усвояемых форм калия под влиянием удобрения хотя и увеличивается, но в меньшей мере, чем на дерново-подзолистых почвах, так как в черноземах калий удобрений больше превращается в необменную форму. В зоне с большим количеством осадков и при поливном земледелии возможно вымывание калия удобрений за пределы корнеобитаемого слоя почвы.
В районах с недостаточным увлажнением, в условиях жаркого климата, где почвы периодически увлажняются и пересыхают, наблюдаются интенсивные процессы фиксации калия удобрений почвой. Под влиянием фиксации калий удобрений переходит в необменное, малодоступное растениям состояние. Большое значение на степень фиксации калия почвами имеет тип почвенных минералов, наличие минералов, обладающих высокой фиксирующей способностью. Таковыми являются глинные минералы. Большей способностью фиксировать калий удобрений обладают черноземы, чем дерново-подзолистые почвы.
Подщелачивание почвы, вызываемое внесением извести или естественными карбонатами, особенно содой, увеличивает фиксацию. Фиксация калия зависит от дозы удобрения: при повышении дозы вносимых удобрений процент фиксации калия уменьшается. В целях уменьшения фиксации почвами калия удобрений рекомендуется вносить калийные удобрения на достаточную глубину, чтобы исключить пересыхание и чаще вносить их в севообороте, так как почвы, систематически удобрявшиеся калием, при новом его добавлении фиксируют его слабее. Но и фиксированный калий удобрений, находящийся в необменном состоянии, также участвует в питании растений, так как со временем он может переходить в обменно-поглощенное состояние.
Азотные удобренияпо взаимодействию с почвой значительно отличаются от фосфорных и калийных. Нитратные формы азота почвой не поглощаются, поэтому они легко могут вымываться атмосферными осадками и поливными водами.
Аммиачные формы азота поглощаются почвой, но после их нитрификации приобретают свойства нитратных удобрений. Частично аммиак может поглощаться почвой необменно. Необменный, фиксированный аммоний, растениям доступен в малой степени. Кроме этого, потеря азота удобрений из почвы возможна в результате улетучивания азота в свободной форме или в виде окислов азота. При внесении азотных удобрений резко изменяется содержание нитратов в почве, так как с удобрениями поступают наиболее легко усвояемые растениями соединения. Динамика нитратов в почве в большей мере характеризует ее плодородие.
Весьма важным свойством азотных удобрений, особенно аммиачных, является их способность мобилизации почвенных запасов, что имеет большое значение в зоне черноземных почв. Под влиянием азотных удобрений органические соединения почвы быстрее подвергаются минерализации, превращаются в легкодоступные для растений формы.
Некоторое количество питательных веществ, особенно азота в виде нитратов, хлоридов и сульфатов, может проникнуть в грунтовые воды и реки. Следствием этого является превышение норм содержания этих веществ в воде колодцев, родников, что может быть вредным для людей и животных, а также ведет к нежелательному изменению гидробиоценозов и наносит ущерб рыбному хозяйству. Миграция питательных веществ из почв в грунтовые воды в разных почвенно-климатических условиях проходит неодинаково. Кроме этого, она зависит от видов, форм, доз и сроков применяемых удобрений.
В почвах Краснодарского края с периодически промывным водным режимом нитраты обнаруживаются до глубины 10 м и более и смыкаются с грунтовыми водами. Это свидетельствует о периодической глубокой миграции нитратов и включении их в биохимический круговорот, начальными звеньями которого являются почва, материнская порода, грунтовые воды. Такая миграция нитратов может наблюдаться во влажные годы, когда для почв характерен промывной водный режим. Именно в эти годы возникает опасность нитратного загрязнения окружающей среды при внесении больших доз азотных удобрений под зиму. В годы с непромывным водным режимом поступление нитратов в грунтовые воды полностью прекращается, хотя остаточные следы соединений азота наблюдаются по всему профилю материнской породы до грунтовой воды. Их сохранности способствует низкая биологическая активность этой части коры выветривания.
В почвах с непромывным водным режимом (южные черноземы, каштановые) загрязнение биосферы нитратами исключается. Они остаются замкнутыми в почвенном профиле и полностью включаются в биологический круговорот.
Вредное потенциальное влияние азота, вносимого с удобрениями, может быть сведено к минимуму путем максимального использования азота сельскохозяйствен-ными культурами. Итак, нужно заботиться, чтобы при повышении доз азотных удобрений увеличивалась эффективность использования их азота растениями; не оставалось большого количества неиспользованных растениями нитратов, которые не удерживаются почвами и могут вымываться осадками из корнеобитаемого слоя.
Растения имеют свойство накапливать в своих организмах нитраты, содержащиеся в почве в избыточных количествах. Урожайность растений растет, но продукция оказывается отравленной. Особенно интенсивно аккумулируют нитраты овощные культуры, арбузы и дыни.
В России приняты ПДК нитратов растительного происхождения (таблица 3). Допустимая суточная доза (ДСД) для человека составляет 5 мг на 1 кг веса.
Таблица 3 – Допустимые уровни содержания нитратов в продуктах
растительного происхождения, мг/кг