Геохимия почв
Геохимические идеи проникли в почвоведение в начале XX века. Основоположниками геохимии почв были В.И. Вернадский и К.К. Гедройц. Почва – верхний горизонт литосферы, вовлечённый в биологический круговорот при участии растений, животных и микроорганизмов, область наивысшей геохимической, энергии живого вещества. Именно в почвах наиболее сосредоточена геологическая работа живого вещества; именно в почвах готовится тот материал континентальных и морских отложений, из которого в дальнейшем образуются новые породы. Но в то же время в почвах сосредоточены и те процессы, совокупность которых обусловливает эволюцию органического мира. Здесь разыгрываются многообразные формы борьбы за существование и приспособления организмов к изменяющимся условиям их жизни, создаются многообразные сообщества (биоценозы) и формируются новые виды многочисленных низших организмов и высших растений.
Геохимическая сущность почвообразования заключается в разложении органических веществ микроорганизмами. Эти процессы интенсивны во влажных тропиках, слабы в тундре. Разлагая остатки растений и животных, микроорганизмы поставляют в почву растворы CO2, органические кислоты и другие химические высокоактивные соединения. Чем больше разлагается органического вещества, тем богаче почва химически работоспособной энергией, тем дальше она от равновесия. Почвы – это особо неравновесные, чрезвычайно динамичные биокосные системы.
Корни растений, как насос, «перекачивают» элементы из нижних горизонтов почвы в верхние. Это относится к P, S, Ca, K, многим микроэлементам. В результате такой биогенной аккумуляции создаётся возможность обогащения этими элементами верхних горизонтов почв, улучшения среды существования растений. Биогенное накопление Be, Co, Ni, Zn, Ge, As, Cd, Sn и других редких элементов в гумусовом горизонте лесной почвы впервые обнаружил в 30-х годах В.М. Гольдшмидт. Позднее эти явления были установлены и в других почвах. Поглощая катионы, корни выделяют H + , а поглощая анионы – ОН — . Возможно, что в результате минерального питания растений в почву непрерывно поступает H + – важный фактор выветривания.
Наряду с биогенной аккумуляцией, направленной снизу вверх, в почвах наблюдается и нисходящая миграция водных растворов. Поэтому реальное распределение элементов в почвах определяется не только биогенной аккумуляцией, но и выщелачиванием. В результате почва расчленяется на горизонты с особыми физико-химическими условиями. Имеются почвы, в которых верхний горизонт кислый, нижний – щелочной, в верхнем горизонте господствует окислительная среда, в нижнем – восстановительная и т. д.
Таким образом, почвообразование приводит к дифференциации элементов – однородная горная порода превращается в неоднородный почвенный профиль со многими горизонтами. Поэтому в почве накапливается не только энергия, но и информация.
Разложение органических веществ – это окислительно-восстановительный процесс, так как C, H и другие элементы, входящие в состав органических соединении, при их разложении окисляются до простых минеральных соединений, а главный окислитель O2 восстанавливается. Окислителями и восстановителями могут быть и Fe, Mn и другие элементы, но суть процесса от этого не меняется. С геохимических позиций сущность почвообразования состоит в окислительно-восстановительных реакциях. Поэтому и главные различия между почвами связаны с этими реакциями. Для всех почв характерна окислительно-восстановительная зональность, которая наиболее наглядна, когда в почве окислительная обстановка сменяется восстановительной, – глеевой или сероводородной.
Геохимический анализ почвообразования позволяет выделить три основных ряда почв. Почвы первого ряда – с окислительной обстановкой. Они образуются там, где атмосферный воздух легко проникает в почву, где глубоко залегают грунтовые воды. Это горные почвы, многие водораздельные почвы равнин. К ним относятся чернозёмы, краснозёмы, каштановые почвы, бурозёмы, большинство почв пустынь и т.д. Почвы второго ряда – с глеевой обстановкой распространены на заболоченных равнинах в районах влажного климата. В глеевых почвах часто содержится растворимое органическое вещество, в том числе различные органические кислоты, которые образуются при неполном окислении растительных остатков. Почвы третьего рода – с восстановительной сероводородной обстановкой распространены не столь широко. К ним относятся многие солончаки и некоторые другие почвы. В пределах рядов выделяются чернозёмные, подзолистые, бурые лесные, коричневые, серозёмные, краснозёмные и другие типы почв. Размещение их подчиняется климатической зональности. Типы почв – это, прежде всего, типы разложения органических веществ, типы биогенной аккумуляции химических элементов, типы окислительно-восстановительной зональности.
Илы.
В.И. Вернадский писал, что ил – это природное тело, аналогичное почве, где гидросфера занимает место атмосферы. Как и почвы, илы – неравновесные динамические биокосные системы, богатые свободной энергией. Сущность илообразования заключается в разложений органических веществ, в окислительно-восстановительных реакциях. И для илов характерен профиль, расчленяющийся на горизонты, окислительно-восстановительная зональность, геохимические барьеры. Однако в отличие от почв илы растут снизу вверх и, следовательно, не имеют «материнской природы». Для них характерно, постоянное увлажнение. В образовании илов, как правило, не принимают участие, высшие растения. Всё это определяет меньшее разнообразие илов, их большую однородность в пространстве. Выделяют три ряда илов. Окислительные илы образуются в океанах, морях, озёрах и реках – всюду, где господствуют кислородные воды, создаются условия для перемешивания вод. В морях и океанах окислительная среда характерна для. прибрежных песков, зоны волнений, а также для больших глубин, где мало органических остатков, а холодная вода богата растворённым O2. Около 50% дна Тихoгo океана покрыто красной глубоководной глиной, которая осаждается на глубинах более 4500 м с очень малой скоростью (за 1000 лет образуется лишь несколько миллиметров ила). Окислительные илы имеют преимущественно жёлтую, бурую, красную окраску, обусловленную гидроксидом трёхвалентного железа.
Глеевые илы особенно характерны для озёр районов влажного климата. Здесь разлагается много органического вещества, сульфатов в водах мало. В результате развивается глеевая обстановка, Fe 3+ , Mn 4+ восстанавливаются, илы приобретают сизую, зеленоватую, серую окраску. В глеевых илах не хватает O2 дляокисления органических веществ, их разложение замедляется. В лесной зоне постепенно на дне накапливается «гнилой озёрный ил». Он богат органическими соединениями (до 29%), среди которых обнаружены витамины и другие биологически активные вещества. Он используется как удобрение, подкормка для животных (белок, витамин В12), как лечебная грязь.
Сероводородные (сульфидные) илы широко распространены в морях и океанах, озёрах степей и пустынь, где преобладают сульфатные воды, развивается десульфуризация, продуцируется HgS, образуются сульфиды железа. Илы имеют серый, чёрный и синеватый цвет (за счёт сульфидов). Сульфидные илы солёных озёр степей и пустынь представляют большую ценность в бальнеологическом отношении и используются как лечебные грязи. Процессы превращения ила (осадка) в осадочную породу называются диагенезом.
Источник
Геохимический состав и токсикологическое значение почвы
Химический состав почвы сложен и представлен минеральными (неорганическими) и органическими веществами. Минеральные вещества на 60-80 % представлены кристаллическим кремнеземом или кварцем. Значительное место в минералогическом составе почвы занимают алюмосиликаты (природные глины), способные к ионному обмену.
Органические вещества почвы представлены как собственными органическими веществами, синтезированными почвенными микроорганизмами (гуммус), так и чужеродными, поступившими в почву извне.
В минеральный состав почвы входят в меньшем или большем количестве практически все элементы таблицы Д.И. Менделеева. Это обстоятельство обусловливает изменение минерального состава воды и многих растений, что сказывается на обеспеченности микроэлементами организма человека. Большая часть микроэлементов поступает в организм с растительными пищевыми продуктами, в молочных и мясных продуктах содержание их незначительно.
Разнообразие ландшафтов и природных зон определяет особенности круговорота и накопление тех или иных химических элементов в почве. Данное обстоятельство позволило А.П. Виноградову обосновать учение о биогеохимических провинциях — неравномерности распределения химических элементов на земном шаре в соответствии с геологическими и почвообразовательными факторами. Так, в одних районах отмечается дефицит некоторых элементов, в других, наоборот, — избыток. Это может приводить к развитию у населения отдельных территорий специфических болезней — эндемических заболеваний (геохимических эндемий).
В настоящее время достаточно хорошо изучены такие эндемические заболевания, как гипофтороз и флюороз, — связанные с недостатком или избытком фтора, эндемический зоб — обусловленный дефицитом йода. Высокое содержание в почве молибдена вызывает молибденоз (эндемическая подагра), свинца — поражение нервной системы, стронция хондро- и остеодистрофию, бора — борные энтериты. Крупные биогеохимические регионы дефицита селена на территории России обнаружены в Забайкалье, Читинской, Ярославской областях, Удмуртии и Карелии.
Эталоном почвы в России по содержанию микроэлементов считается черноземная почва центрального заповедника Курской области. Содержание химических веществ в почве оценивают в кларках, представляющих среднее содержание вещества в эталонных (незагрязненных) почвах.
Загрязнения почвы — это появление в ней химических соединений, не свойственных почве. Поступление в почву огромного количества промышленных отходов, химических удобрений, пестицидов и т.п. способствует образованию искусственных биогеохимических провинций с измененным составом и свойствами почвы. Около промышленных предприятий образуются техногенные биохимические провинции с повышенным содержанием в биосфере свинца, мышьяка, фтора, ртути, кадмия, марганца, никеля, молибдена и других элементов, представляющих реальную опасность прямого и косвенного влияния на организм человека (канцерогенное, мутагенное, аллергенное, эмбриотоксическое и др.).
Множество исследований свидетельствуют о токсикологической опасности загрязненной почвы. Вредное воздействие может передаваться по пищевым цепочкам, т.е. через воду, растения, а также через молоко и мясо животных, питающихся загрязненным кормом.
Установлено, что пылегазовые выбросы промышленных предприятий загрязняют почву в радиусе до 60-100 км. Так, вокруг предприятий цветной металлургии содержание в почве свинца, мышьяка, цинка, меди и серы может превышать нормативы в 2,5-200 раз. Загрязнение почвы тяжелыми металлами обусловливает загрязнение грунтовых вод в радиусе 5 км от этих заводов с превышением ПДК от 1,2 до 8,3 раза, а также приводит к накоплению этих металлов в растениях и продуктах питания. Население, проживающее вблизи данных предприятий, с пищей систематически получают повышенные количества свинца — в среднем 0,7 мг, цинка — более 16 мг, меди — около 2,3 мг и мышьяка — до 0,5 мг. Это приводит к различным заболеваниям. Так, в результате поступления свинца из почвы в организм человека наблюдаются изменения со стороны кроветворной и репродуктивной системы, а также злокачественные новообразования. Установлена связь между уровнем мышьяка в почвах и случаями заболеваний раком желудка, между содержанием молибдена и случаями заболеваний молибденовой подагрой и раком пищевода и др.
В почве вокруг нефтехимических и коксохимических предприятий резко увеличивается концентрация канцерогенного углеводорода бенз(а)пирена. Употребление овощей, выращенных на этих почвах, значительно повышает риск возникновения онкологических заболеваний.
В почве вокруг ртутных комбинатов в радиусе 2 км превышение фоновой концентрации ртути (0,15 мг/кг) составляет до 330 раз. Установлено, что при содержании ртути в почве около 30-40 мг/кг, ее количество в овощах (картофеле, моркови и др.) достигает 0,4-1,4 мг/кг и превышает предельно допустимый уровень в 25-87 раз. Длительное поступление повышенных количеств ртути в организм человека снижает иммунобиологическую реактивность, повышает общую заболеваемость, увеличивает частоту заболеваний нервной и эндокринной систем, снижает фертильность (способности производить потомство).
Почва вдоль дорог загрязняется выхлопными газами автотранспорта. Загрязнение почв тяжелыми металлами в придорожной полосе зависит от интенсивности движения и продолжительности эксплуатации дорог. Показано, что в поверхностном слое почвы (до 5 см) в 7-16-метровой придорожной зоне и интенсивности движения до 10000 транспортных средств сутки содержание железа составляет 600-1000 мг/кг, цинка — 20 мг/кг, свинца — 10 мг/кг, кадмия — 0,2 мг/кг.
Большое влияние на состав почвы оказывает широкомасштабная химизация сельского хозяйства. В гигиеническом отношении особое значение имеют устойчивые пестициды, которые накапливаются в почве, воде, продуктах растительного и животного происхождения, а также в организме человека. Они приводят к существенным сдвигам биохимических, микробиологических процессов и тяжелым нарушениям состояния здоровья населения. К таким пестицидам в первую очередь относят ДДТ и его производные.
Таким образом, загрязнения почвы включаются в «пищевую цепь», и представляют большую опасность для здоровья человека.
Гигиеническое нормирование экзогенных химических веществ в почве включает установление ПДК вещества в мг/кг почвы, которое проводится в несколько этапов.
На первом этапе осуществляется изучение физико-химических свойств вещества и его стабильности в почве.
Вторым этапом является обоснование объема экспериментальных исследований и ориентировочных пороговых концентраций по каждому показателю вредности.
На третьем этапе исследований осуществляется лабораторный эксперимент по обоснованию подпороговых концентраций по 6 показателям вредности:
· органолептический показатель вредности характеризует степень изменения пищевой ценности продуктов растительного происхождения, а также запаха атмосферного воздуха, вкуса, цвета, запаха воды и пищевых продуктов;
· общесанитарный показатель вредности характеризует влияние экзогенного вещества на самоочищающуюся способность почвы и ее биологическую активность;
· фитоаккумуляционный показатель характеризует способность нормируемого химического вещества переходить из почвы через корневую систему в растение и накапливаться в нем;
· миграционный водный показатель характеризует процесс миграции изучаемого вещества в поверхностные и подземные воды;
· миграционный воздушный показатель вредности характеризует процессы поступления химического вещества из почвы в атмосферный воздух путем испарения;
· токсикологический показатель характеризует степень токсичности экзогенного химического вещества при поступлении в организм экспериментальных животных с водой, пищей и т.д.
На четвертом этапе рассчитываются величины ПДУВ (предельно допустимый уровень внесения) и БОК (безопасное остаточное количество) для химических веществ конкретных почвенно-климатических условий.
На пятом этапе проводится изучение влияния загрязненной экзогенными химическими веществами почвы на состояние здоровья населения с целью корректировки гигиенических нормативов содержания в ней химических загрязнителей (ПДК, ПДУВ, БОК).
В настоящее время утверждены ПДК для 30 химических веществ, ПДК и ориентировочные допустимые количества для 111 пестицидов в почве.
Источник