Меню

Гигрометр для почвы своими руками

СХЕМА ДАТЧИКА ВЛАЖНОСТИ ПОЧВЫ

Поэт Андрей Вознесенский однажды сказал так: «лень – двигатель прогресса». Пожалуй, трудно не согласиться с этой фразой, ведь большинство электронных устройств создаются именно с той целью, чтобы облегчить нашу с вами повседневную жизнь, полную забот и всяких разных суетных дел.

Если вы сейчас читаете эту статью, то вас, наверное, очень утомляет процесс полива цветов. Ведь цветы – существа нежные, чуть их перельёшь, недовольны, забудешь полить на денёк, так всё, они вот-вот увянут. А сколько цветов в мире погибло лишь от того, что их хозяева уехали в отпуск на недельку, оставив зелёных бедолаг чахнуть в сухом горшке! Страшно представить.

Именно для предотвращения таких ужасных ситуаций придуманы системы автоматического полива. На горшок устанавливается датчик, замеряющий влажность почвы – он представляет собой для металлических прутка из нержавеющей стали, воткнутые в землю на расстоянии сантиметра друг от друга.

По проводам они подключаются к схеме, задача которой открывать реле только тогда, когда влажность упадёт ниже заданной и закрывать реле в тот момент, когда почва вновь насытится влагой. Реле, в своё очередь, управляет насосом, который качает воду из резервуара прямо под корень растению.

Схема датчика

Как известно, электропроводимость сухой и влажной почвы отличается довольно значительно, именно этот факт лежит в основе работы датчика. Резистор номиналом 10 кОм и участок почвы между прутками образуют делитель напряжения, их средняя точка подключается напрямую на вход ОУ. На другой вход ОУ напряжение подаётся со средней точки переменного резистора, т.е. его можно настраивать от нуля до напряжения питания. С его помощью выставляется порог переключения компаратора, в роли которого и работает ОУ. Как только напряжение на одном его входе превысит напряжение на другом – на выходе окажется логическая «1», загорится светодиод, транзистор откроется и включит реле. Транзистор можно применить любой, структуры PNP, подходящий по току и напряжению, например, КТ3107 или КТ814. Операционный усилитель TL072 или любой аналогичный, например, RC4558. Параллельно обмотке реле следует поставить маломощный диод, например, 1n4148. Напряжение питания схемы – 12 вольт.

Из-за длинных проводов от горшка до самой платы может возникнуть такая ситуация, что реле переключается не чётко, а начинает щёлкать с частотой переменного тока в сети, и только спустя какое-то время устанавливается в открытом положении. Для устранения этого нехорошего явления следует поставить электролитический конденсатор ёмкостью 10-100 мкФ параллельно датчику. Архив с платой тут. Удачной сборки! Автор – Дмитрий С.

Форум по обсуждению материала СХЕМА ДАТЧИКА ВЛАЖНОСТИ ПОЧВЫ

Справочная информация по микросхеме 555 — характеристики, схема подключения, распиновка и аналоги таймера.

Бесколлекторный двигатель постоянного тока — занимательная теория работы мотор-колеса.

Ещё один самодельный стереоусилитель на TDA2030, TDA2050, TDA2040 или LM1875T, с возможностью мостового включения.

Простой переходник для корпусов TQFP с самоцентрированием микросхемы, собранный своими руками.

Источник

Самодельные приборы для садовода

Предлагаю измерители влажности почвы и её температуры. Схема первого показана на рис. 1. Как показали опыты, более-менее объективными результаты измерения влажности почвы получаются при довольно большом токе через неё — несколько миллиампер.

Самодельная схема измерителя влажности почвы

Чтобы получить его, напряжение питания прибора выбрано равным 9 В (батарея “Крона”). Для предотвращения поляризации электродов направление тока должно быть переменным. Прибор представляет собой обычный симметричный мультивибратор на транзисторах VT1 и VT2 с эмиттерным повторителем на транзисторе VT3.

Читайте также:  Удобрения для выращивания цветов

Частота генерируемых импульсов 400…500 Гц. Через конденсаторы СЗ и С4, металлические щупы и сопротивление почвы, зависящее от его влажности, генерируемые импульсы поступают на выпрямитель из диодов VD2 и VD3, нагруженный микроамперметром РА1 — М476 от переносного магнитофона.

Миллиамперметр зашунтирован диодом VD1, что приближает к линейной зависимость угла отклонения стрелки микроамперметра от влажности почвы. Подстроечным резистором R2 регулируют чувствительность прибора. Оценить влажность почвы можно и по громкости звучания пьезоизлучателя звука BQ1.

Погружаемые в грунт щупы длиной 20…25 см сделаны из шампуров из нержавеющей стали. Они согнуты в виде буквы Г и закреплены параллельно на пластине из изоляционного материала. Расстояние между щупами — 10…15 см. Большая их часть покрыта слоем эпоксидной смолы.

Оставлены незащищёнными лишь острые концы длиной 3…5 см. Это позволяет измерять влажность почвы на разной глубине. Перед использованием прибора его щупы нужно погрузить в грязную воду (например, в лужу) и подстроенным резистором R2 установить стрелку микроамперметра РА1 на последнее деление шкалы.

Контролировать влажность почвы обязательно нужно у влаголюбивых растений — капусты, огурцов, кабачков. Следует учитывать, что растения могут поглощать так называемую связанную влагу, при этом грунт кажется сухим на ощупь. Второй прибор — измеритель температуры грунта. Его схема — на рис. 2.

Он представляет собой резистивный мост, в одно из плеч которого включён терморезистор RK1, сопротивление которого зависит от температуры. На схеме указано его сопротивление при температуре 25 °С. При О °С оно возрастает приблизительно до 5 кОм. Питается прибор от двух гальванических элементов с общим напряжением 3 В.

Терморезистор имеет вид таблетки диаметром около 8 мм. Он приклеен у заострённого конца пластмассовой трубки, погружаемой в почву на глубину до 25…30 см. Для удобства отсчёта глубины погружения на стержень через каждые 1…3см нанесены риски. Провода от терморезистора проходят внутри трубки и заканчиваются штыревой частью разъёма Х1.

Для налаживания изготовленного прибора подключённый к нему терморезистор помещают в тающий лёд. Установив движок подстроенного резистора R3 в крайнее правое положение, подстроенным резистором R2 устанавливают стрелку микроамперметра РА1 на нулевое деление.

Затем берут терморезистор в руку и после его прогрева до температуры тела, не трогая подстроенный резистор R2, устанавливают подстроенным резистором R3 стрелку микроамперметра РА1 на последнее деление шкалы. Отрегулированный таким образом прибор будет с достаточной точностью измерять температуру от О °С до +37 °С.

Оптимальная температура почвы неодинакова для разных растений. Например, при её температуре менее +8 °С картофель может не взойти. Однако для всех садовых и огородных растений крайне низкая (ниже О °С) и крайне высокая (выше +30 °С) температура почвы опасна.

Источник

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Когда вы слышите термин «умный сад», вам приходит в голову система, которая измеряет влажность почвы и автоматически поливает ваши растения.

С этим типом системы вы можете поливать растения только при необходимости и избегать чрезмерного или недостаточного полива.

Если вы хотите построить такую систему, вам обязательно понадобится датчик влажности почвы.

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Как работает датчик влажности почвы?

Работа датчика влажности почвы довольно проста.

Вилка в форме зонда с двумя открытыми проводниками действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от содержания воды в почве.

Читайте также:  Когда можно садить урожай

Рисунок 1 – Работа датчика влажности почвы

Это сопротивление обратно пропорционально влажности почвы:

  • большее количество воды в почве означает лучшую проводимость и приводит к снижению сопротивления;
  • меньшее количество воды в почве означает худшую проводимость и приводит к повышению сопротивления.

Датчик выдает выходное напряжение в соответствии с сопротивлением, измеряя которое мы можем определить уровень влажности.

Обзор аппаратного обеспечения

Типовой датчик влажности почвы состоит из двух компонентов.

Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.

Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.

Рисунок 2 – Зонд датчика влажности почвы

Модуль

Датчик также содержит электронный модуль, который соединяет датчик с Arduino.

В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).

Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).

Рисунок 3 – Регулировка чувствительности датчика влажности почвы

Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.

С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.

Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!

Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.

Рисунок 4 – Светодиодные индикаторы питания и состояния почвы

Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.

Распиновка датчика влажности почвы

Датчик влажности почвы очень прост в использовании и содержит только 4 вывода для связи с внешним миром.

Рисунок 5 – Распиновка датчика влажности почвы

AO (аналоговый выход) выдает аналоговый сигнал с напряжением в диапазоне между напряжением питания и 0 В и будет подключен к одному из аналоговых входов нашей платы Arduino.

Вывод DO (цифровой выход) выдает цифровой выходной сигнал со схемы встроенного компаратора. Вы можете подключить его к любому цифровому выводу на Arduino или напрямую к 5-вольтовому реле или подобному устройству.

Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В. Обратите внимание, что сигнал на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.

GND для подключения земли.

Измерение влажности почвы с помощью аналогового выхода

Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.

Подключение

Давайте подключим наш датчик влажности почвы к плате Arduino.

Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.

Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.

Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.

Читайте также:  Для чего нужно удобрение монофосфат калия

Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.

Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.

Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.

И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.

Схема соединений показана на рисунке ниже.

Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе

Калибровка

Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.

Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.

Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.

Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.

Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:

850, когда почва сухая;

400, когда почва полностью насыщена влагой.

Рисунок 7 – Калибровка датчика влажности почвы

Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.

Финальная сборка

Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:

  • 750 – достаточно сухая для полива.

Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.

Рисунок 8 – Вывод аналоговых показаний датчика влажности почвы

Измерение влажности почвы с помощью цифрового выхода

Для нашего второго эксперимента мы определим состояние почвы с помощью цифрового выхода.

Подключение

Мы будем использовать схему из предыдущего примера. На этот раз нам просто нужно удалить подключение к выводу аналого-цифрового преобразователя и подключить вывод DO модуля к цифровому выводу 8 Arduino.

Соберите схему, как показано ниже:

Рисунок 9 – Подключение датчика влажности почвы к Arduino для считывания показаний на цифровом выходе

Калибровка

Для калибровки цифрового выхода (DO) модуль имеет встроенный потенциометр.

Вращая движок этого потенциометра, вы можете установить пороговое значение. Таким образом, когда уровень влажности превысит пороговое значение, светодиод состояния загорится, и модуль выдаст низкий логический уровень.

Рисунок 10 – Состояния цифрового выхода датчика влажности почвы

Теперь, чтобы откалибровать датчик, вставьте зонд в почву, когда ваше растение будет готово к поливу, и подстройте потенциометр по часовой стрелке так, чтобы светодиод состояния горел, а затем подстройте потенциометр обратно против часовой стрелки, пока светодиод не погаснет.

Теперь ваш датчик откалиброван и готов к использованию.

Код Arduino

После того, как схема будет собрана, загрузите в Arduino следующий скетч.

Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.

Рисунок 11 – Вывод цифровых показаний датчика влажности почвы

Источник

Adblock
detector