Меню

Годовой ход температуры поверхности почвы это

Суточный и годовой ход температуры почвы и водоемов.

Температура на поверхности почвы имеет отчетливо выраженный суточный ход. Кривая суточного хода на графике время – температура имеет вид синусоиды (рис.6.3). Минимум ее наблюдается примерно через полчаса после восхода солнца, когда радиационный баланс становится положительным и отдача тепла из верхнего слоя почвы эффективным излучением перекрывается потоком суммарной радиации. Максимум температуры почвы наступает от 13 до 14 часов, при максимуме радиационного баланса. После этого происходит падение температуры до минимума. Понижение температуры в послеполуденное время при положительном радиационном балансе связано с возросшими расходами тепла не только за счет эффективного изучения, но и путем теплопроводности и увеличившегося испарения воды. Происходит отдача тепла и вглубь почвы. Эти потери оказываются большими, чем радиационный приток, и температура после полудня начинает понижаться до утреннего минимума. Следует отметить, что утренние минимумы температуры на поверхности почвы бывают ниже, чем в воздухе, что и объясняет заморозки на почве в переходные сезоны в умеренных широтах.

Кривая суточного хода температуры в отдельные сутки может существенно отклоняться от правильной синусоиды в зависимости от изменений облачности, осадков, или адвективных изменений температуры воздуха.

Разница между минимальной и максимальной суточными температурами называется суточной амплитудой температуры.

Рис. 6.2. Средний суточный ход температуры на поверхности почвы (П) и в воздухе на вы­соте 2 м (В).

В Московской области суточные амплитуды летом составляют 10-20 0 С, зимние 5-10°С. Суточные амплитуды температуры почвы зависят от ряда факторов:

· облачности (в безоблачную погоду наблюдается большой дневной приход солнечной радиации и большое эффективное излучение ночью);

· экспозиции склонов (склоны южной экспозиции, обращенные к солнцу, получают больше радиации, чем склоны северной экспозиции, а ночное излучение не зависит от экспозиции).

· характера почвенного покрова (растительный покров, в общем, охлаждает почву, препятствуя ее радиационному нагреву, и снижает суточные амплитуды). Снежный покров предохраняет почву зимой от чрезмерной потери тепла, суточная амплитуда почвы под снегом также уменьшается. В умеренных широтах при высоте снежного покрова в 40-50 см температура поверхности почвы под ним на 6-7° выше, чем температура обнаженной почвы. Совместное действие растительного покрова летом и снежного покрова зимой уменьшает годовую амплитуду температуры на поверхности почвы примерно на 10° по сравнению с амплитудой температуры обнаженной почвы.

Годовая амплитуда температуры почвы, т.е. разность многолетних средних температур самого теплого и самого холодного месяца, в значительной степени зависит от географической широты. В северном полушарии на широте 10° она составляет около 3°С, на широте 30° — около 10°С, на широте 50° — в среднем около 25°С.

Суточные и годовые колебания температуры наблюдаются и по профилю почвы (рис. 6.4, 6.5). Наблюдениями установлено, что период колебаний температуры не изменяется с глубиной, происходит лишь уменьшение амплитуды.

Рис. 6.4. Годовой ход температуры в почве на разных глубинах от 3 до 753 см .

Экспериментальные данные свидетельствуют, что изменения температуры с глубиной в почвах достаточно близко описываются законами теории молекулярной теплопроводности, предложенной Фурье и получившими название законов Фурье.

Рис. 6.5. Суточный ход температуры в почве на разных глубинах от 1 до 80 см.

Первый закон Фурье — период колебаний температуры не изменяется с глубиной. Это значит, что на любой глубине (до слоя постоянных температур) в почвах сохраняется суточный и годовой ход температуры.

Второй закон Фурье — возрастание глубины в арифметической прогрессии приводит к уменьшению амплитуды в прогрессии геометрической.

Убывание амплитуды с глубиной приводит к тому, что на некоторой глубине (меньшей для суточных и большей для годовых амплитуд) колебания температуры практически прекращаются. Это слой суточной или годовой постоянной температуры. В зависимости от конкретных условий (типа почвы, ее влажности) слой постоянной суточной температуры располагается на глубине 70-100 см. Слой постоянной годовой температуры располагается на глубинах около 30 м в полярных широтах, 15-20 м — в средних широтах и около 10 м — в тропиках.

Третий закон Фурье гласит, что сроки наступления максимальных и минимальных температур, как в суточном, так и в годовом ходе запаздывают с глубиной пропорционально увеличению глубины.

Суточные экстремумы запаздывают на 2.5-3.5 часа, а годовые — на 20-30 дней. В соответствии с этим законом распределение температуры в почве по вертикали в разные сезоны меняется. Летом температура от поверхности почвы в глубину падает (режим инсоляции), зимой растет (режим излучения), весной она сначала растет, потом падает (промежуточный весенний), осенью, наоборот, сначала убывает, потом растет (промежуточный осенний).

Согласно четвертому закону Фурье глубины слоев постоянной суточной (1 день) и годовой (365 дней) температур соотносятся между собой как корни квадратные из периодов колебаний, т.е. как 1:19.

В водоемах нагревание и охлаждение распространяется на более толстый слой, чем в почвах, но амплитуды колебаний температуры (и суточные, и годовые) значительно меньше. Суточные амплитуды температуры составляют 0,1° — 0,2° в умеренных широтах и около 0,5° в тропиках. Годовые амплитуды колебаний температуры на поверхности океана значительно больше суточных, но меньше, чем на поверхности почв. В тропиках она составляет 2-3 0 , под 40° с.ш. — 10°, а под 40° ю.ш. — 5°. Суточные колебания температуры обнаруживаются до глубин 15-20 м, годовые — до 150-400 м.

Источник

ТЕМА: ТЕМПЕРАТУРНЫЙ РЕЖИМ ПОЧВЫ

1. Процессы нагревания и охлаждения почвы.

2. Теплофизические характеристики почвы

3. Суточный и годовой ход температуры почвы. Законы Фурье.

4. Зависимость температуры почвы от рельефа, снежного и растительного покрова.

Читайте также:  Показатели химического анализа почвы

5. Замерзание и оттаивание почвы

6. Значение температуры почвы для растений. Оптимизация температурного режима почвы.

1. Процессы нагревания и охлаждения почвы

Солнечная радиация, поглощенная сушей, преобразуется в тепло, и часть этого тепла идет на нагревание почвы.

Температурный режим почвы зависит от радиационного баланса. Если он положительный, то поверхность почвы нагревается; а если он отрицательный, то она охлаждается.

Кроме того, на температурный режим почвы влияют процессы испарения и конденсации водяного пара на поверхности почвы:

-При конденсации выделяется тепло, нагревающее почву.

-При испарении тепло затрачивается и почва охлаждается.

Между поверхностью почвы и ее нижними слоями происходит непрерывный обмен теплом.

Если радиационный баланс положительный, поток тепла направлен от поверхности почвы вглубь.

РБ +

Если радиационный баланс отрицательный и поверхность почвы холоднее нижележащих слоев, то поток тепла направлен вертикально вверх.

2. Теплофизические характеристики почвы

Температурный режим почвы зависит от ее теплофизических характеристик:

1) Теплоемкость почвы объемная

Объемная теплоемкость (Соб) –количество тепло, необходимое для того, чтобы нагреть 1 м³ почвы на 1ºС [Дж/м³ · Сº]

Удельная теплоемкость (Суд) –количество тепла, необходимое для нагревания

1 килограмма почвы на 1ºС. Измеряется удельная теплоемкость (Суд) в [Дж/кг· ºС].

С об = Суд · d

где d – плотность почвы в кг/м³.

Теплоемкость различных почв зависит не от их минерального состава, а от соотношения воды и воздуха в их порах. Так как теплоемкость воды, примерно, в 3,5 тысячи раз больше, чем воздуха, следовательно, сухие почвы имеют меньшую теплоемкость; то есть при одинаковом поступлении тепла они нагреваются, а при отдаче тепла, охлаждаются сильнее, чем влажные почвы.

4. Теплопроводность почвы –это способность почвы передавать тепло от слоя к слою.

λ — коэффициент теплопроводности [Дж· сек/м ·ºС].

Наиболее высокая теплопроводность у минеральной части почвы (то есть песка, глины), меньше – почвенной воды и минимальная – у почвенного воздуха.

5.

К = λ Соб

Коэффициент температуропроводности – характеризует скорость распространения тепла в почве (чем он больше, тем скорость выше).

Измеряется в [м²/сек]

Теплофизические характеристики почвы зависят от ее влажности. С увеличением влажности почвы теплоемкость постоянно растет.

Теплопроводность почвы возрастает до тех пор, пока она не станет равной теплопроводности воды [≈ 5,5∙ 10 4 Дж/сек] и после этого не изменяется

В связи с этим коэффициент температуропроводности с увеличением влажности почвы сначала резко возрастает, а затем снижается.

Кроме того, температурный режим почвы зависит от:

1. Цвета почв (темные лучше нагреваются).

2. Плотности почв ( плотные имеют большую теплоемкость и теплопроводность, чем рыхлые).

3. Полив и осадки увеличивают затраты тепла на испарение и, таким образом, охлаждают почву.

3. Суточный и годовой ход температуры почвы. Закон Фурье

«Изменение температуры почвы в течении суток , называют суточным ходом температуры почвы».

Максимальная температура почвы в течении суток наблюдается, примерно, в 13 часов местного времени; минимальная – перед восходом Солнца. Но, под влиянием осадков, облачности и других факторов максимум и минимум могут смещаться.

«Изменение температуры почвы в течении года – годовой ход температуры почвы».

максимум – в июле, минимум в январе, феврале.

«Разница между максимальным и минимальным значением в суточном или годовом ходе, называется амплитудой хода температуры почвы»

Амплитуда суточного и годового хода температуры почвы зависит от:

1. Рельефа (северные склоны нагреваются меньше южных, и, поэтому, имеют меньшую амплитуду).

2. Растительность с снежный покров уменьшают амплитуду, так как снижают нагрев и охлаждение почвы под ними.

3. Чем больше теплоемкость и теплопроводность почвы, тем меньше ее амплитуда.

4. Облачность – уменьшает амплитуду температуры почвы.

5. Темные почвы имеют большую амплитуду, чем светлые, так как лучше поглощают и излучают радиацию

6. Кроме того, амплитуда суточного хода температуры почвы зависит от времени года (летом она максимальна, зимой минимальна).

Распространение тепла вглубь почвы происходит в соответствии с законами Фурье:

1).Период колебания температуры почвы с глубиной не изменяется (то есть интервал между двумя последовательными максимумом и минимумом, 24 часа , 12 месяцев)

2). Амплитуда колебания с глубиной уменьшается.

«Слой почвы, в котором температура в течение суток не изменяется, называется

слоем постоянной суточной температуры почвы».

(в наших широтах он начинается с глубины 70 – 100 см)

«Слой земной коры, в котором температура в течении года не изменяется – слой постоянной годовой температуры».(у нас он начинается с глубины 15 – 20 метров)

«Слой почвы, в котором наблюдается, как суточный, так и годовой ход температуры, называется активный слой, или

3).Максимумы и минимумы температуры на глубинах запаздывают по сравнению с поверхностью почвы.

Суточные максимумы и минимумы запаздывают, примерно, на 2,5 – 3,5 часа на каждые 10 сантиметров глубины. Годовые максимумы и минимумы, примерно,

на 20-30 суток на 1 метр глубины.

4. Зависимость температуры почвы от рельефа, снежного и растительного покрова

1. По сравнению с горизонтальными участками, южные склоны нагреваются сильнее, а северные слабее. Западные склоны немного теплее восточных (хотя они освещаются Солнцем одинаково, но на восточных часть тепла затрачивается на испарение росы, так как они освещаются в первую половину дня, а западные во вторую, когда росы уже нет).

2. Оголенная почва днем нагревается сильнее, чем покрытая растениями, которые поглощают часть солнечной радиации. Но в тоже время, растения уменьшают ночное охлаждение почвы, вызванное тепловым излучением Земли. Поэтому ночью почва под растительным покровом теплее, чем оголенная.

Читайте также:  Через сколько лет ореховое дерево дает урожай

3. Снежный покров имеет очень низкую теплопроводность. Это снижает обмен теплом между почвой и атмосферой, и предохраняет почву от глубокого промерзания. (Чем больше высота снежного покрова, тем меньше глубина промерзания почвы. При высоте снега более 30 сантиметров, озимые не вымерзают в самые сильные морозы).

5. Замерзание и оттаивание почвы

Почва содержит различные соли, поэтому замерзает не при 0ºС, а при –0,5; -1,5ºС.

Промерзание начинается с верхних слоев, и в течение зимы продвигается вглубь почвы.

Глубина промерзания зависит от:

1. Суровости и продолжительности зимы.

2. Высоты снежного покрова

3. Наличия или отсутствия растительного покрова.

4. Влажности почвы (сухие промерзают глубже)

В Северном полушарии есть районы, где почва не оттаивает полностью даже летом. Это районы вечной (многолетней) мерзлоты. Мощность мерзлого слоя почвы от 1 – 2 метров на юге, до 500 и более метров на севере. Летом верхний слой мерзлоты оттаивает на несколько десятков сантиметров глубины, и здесь можно возделывать некоторые овощные и зерновые культуры. Но так как мерзлый грунт не пропускает влагу, то оттаявшая почва обычно избыточно влажная. Поэтому на Севере нашей области много болот (формируются гидроморфные почвы).

6. Значение температуры почвы для растений

-Прорастание семян происходит только при определенной температуре.

-Поглощение минеральных веществ увеличивается с увеличением температуры почвы.

-Охлаждение почвы ниже оптимальной, задерживает рост подземных органов и снижает урожай.

-Но слишком высокая температура (выше оптимальной) действует отрицательно (например: замедляется развитие семян).

Оптимизация температурного режима почвы.

1. Использование теплоизоляционных и укрывных материалов (полиэтилен, стеклянные рамы и т. д.)

2. Изменение альбедо почвы путем мульчирования (покрывают торфом, каменноугольной пылью, известью)

3. Увлажнение или осушение почвы (при этом изменяется расход тепла на испарение).

ТЕМА: ТЕМПЕРАТУРНЫЙ РЕЖИМ ВОЗДУХА

1. Процессы нагревания и охлаждения воздуха.

2. Изменение температуры воздуха с высотой.

3. Устойчивость атмосферы.

4. Температурные инверсии.

5. Суточный и годовой ход воздуха.

6. Характеристики температурного режима воздуха.

1.Процессы нагревания и охлаждения воздуха

Нижние слои атмосферы плохо поглощают солнечную радиацию, поэтому воздух нагревается, главным образом, за счет тепла земной поверхности.

Днем, когда радиационный баланс положительный, наибольшую температуру имеет суша, более низкая температура у воздуха, а еще холоднее вода; которая обладает очень высокой теплоемкостью.

Ночью суша охлаждается быстро и имеет наиболее низкую температуру, более теплым оказывается воздух, а самую высокую температуру имеет вода, которая охлаждается медленно.

День: tº суши > tº воздуха > tº воды Ночь: tº воды > tº воздуха > tº суши

Перенос тепла в атмосфере, а также между атмосферой и подстилающей поверхностью происходит благодаря следующим процессам:

1. Тепловая конвекция – перенос отдельных объемов воздуха по вертикали. Над более прогретыми участками, воздух становится теплее и, следовательно, легче окружающего. Поэтому он поднимается вверх. А его место занимает более холодный соседний воздух, который также нагревается и поднимается.

Над сушей тепловая конвекция возникает днем в теплое время года, а над морями ночью и в холодное время года; когда водная поверхность теплее, чем прилегающие к ней слои воздуха.

2. Турбулентность – вихревые хаотические движения, небольших объемов воздуха в общем потоке ветра. Возникает потому, что отдельные объемы воздуха имеют неодинаковую скорость движения в общем потоке ветра. Следствием турбулентности является интенсивное перемешивание воздуха.

3. Молекулярный теплообмен – обмен теплом между земной поверхностью и прилегающим слоем атмосферы, за счет молекулярной теплопроводности неподвижного воздуха. Это очень медленный процесс.

4. Радиационная теплопроводность – перенос тепла потоками длинноволновой радиации от земной поверхности в атмосферу (Е3) или в обратном направлении (Еа).

5. Конденсация водяного пара – при этом выделяется тепло, нагревающее воздух. Особенно это характерно для тех слоев атмосферы, где образуются облака.

2. Изменение температуры воздуха с высотой

«Изменение температуры воздуха на сто метров высоты, называется вертикальным градиентом температуры (ВГТ)»

ВГТ = t н — tв . . 100 Zв -Zн

tн — tв –разность температуры воздуха на нижнем и верхнем уровнях (в градусах Цельсия).

Zв — Zн – разность высот двух уровней (в метрах).

1. Если температура на верхнем уровне меньше, температуры на нижнем уровне, то температура с высотой уменьшается и ВГТ положительный. Это нормальное состояние тропосферы. (тропосфера – это самый нижний слой атмосферы до высоты равной 10 –12 километров от земной поверхности).

2. Если температура на верхнем уровне равна температуре на нижнем уровне, то ВГТ равно 0ºС/100м, то есть температура с высотой не изменяется. Такое состояние называется изотермия.

3. Если температура на верхнем уровне больше, чем температура на нижнем уровне, то температура с высотой повышается. Такое состояние называется температурная инверсия. ВГТ при этом отрицательный.

Максимальное значение ВГТ достигается над сушей в ясные, летние дни, когда температура воздуха у поверхности почвы может на 10 и более градусов превышать температуру на высоте 2 метра; то есть в данном, двухметровом слое воздуха, в пересчете на 100 метров, составляет более 500ºС/100м.

Выше этого слоя ВГТ значительно уменьшается. Кроме того, в любом слое воздуха облачность, осадки, а также, ветер, перемешивающий массы воздуха, способствует заметному снижению ВГТ.

Среднее значение ВГТ в тропосфере ≈ 0,6 ºС/100м.

3. Устойчивость атмосферы

Устойчивость атмосферы — способность атмосферы вызывать перемещение объемов воздуха в вертикальном направлении.

Если большой объем воздуха поднимается вверх, он попадает в слои с меньшим атмосферным давлением. В результате данный воздух расширяется, и его давление и температура уменьшаются. При опускании воздуха происходит обратный процесс.

1. Если ВГТ окружающего воздуха будет меньше 1ºС/100м, то поднимающийся воздух на всех высотах будет холоднее окружающего и, следовательно – тяжелее. Поэтому, он вскоре начнет опускаться. Такое состояние называется устойчивое равновесие атмосферы.

2. Если ВГТ окружающего воздуха

равен 1ºС/100м, то поднимающийся

воздух будет всегда иметь такую же

температуру, как и окружающий его

воздух. Поэтому вскоре он прекратит

подъем, но и опускаться, также, не

будет. Такое состояние атмосферы

называется безразличное. Устойчивое равновесия атмосфер.

3. Если ВГТ окружающего воздуха больше 1ºС/100м, что часто случается летом, при

сильном нагревании земной поверхности, то поднимающийся воздух на всех высотах окажется теплее окружающего и он будет постоянно подниматься, вплоть до верхних границ тропосферы; где в нем, обычно, образуются облака, главным образом, кучево-дождевые, из которых выпадают ливневые дожди, град.

Такое состояние атмосферы называется неустойчивое равновесие. Оно чаще наблюдается в жаркую, солнечную погоду.

Безразличные состояние атмосферы. Неустойчивое равновесие атмосферы

4. Температурные инверсии

Инверсия — возрастание температуры воздуха с высотой.

В зависимости от условий образования бывают:

1. Радиационные инверсии – возникают при радиационном выхолаживании земной поверхности.

Выделяют два вида радиационных инверсий:

А). Ночные -образуются в теплое время года при ясной, безветренной погоде. Усиливаются в течение ночи и достигают максимума на рассвете. После восхода Солнца, инверсия начинает разрушаться. Высота слоя инверсии – несколько десятков метров, в замкнутых горных долинах – до 200 метров.

Б). Зимние – образуются, как ночью, так и днем; но только в холодное время года, когда в антициклональную погоду происходит длительное (часто – несколько недель подряд) выхолаживание земной поверхности. Высота слоя инверсии – до 2-3 километров. Особенно сильные инверсии наблюдаются в замкнутых котловинах, где застаивается холодный воздух. Это характерно для Восточной Сибири (например: Оймякон и Верхоянский –до -71ºС – полюс холода Северного полушария).

2. Адвективные инверсии – образуются при адвекции, (то есть горизонтальном надвижении) теплого воздуха на холодную поверхность, которая и охлаждает нижние слои этого воздуха.

Если происходит движение теплого воздуха над поверхностью снега, то такие адвективные инверсии, называются снежные.

5. Суточный и годовой ход температуры воздуха

В суточном ходе температуры воздуха (на высоте 2 метра) – максимум в 14 – 15 часов, местного времени; минимум перед восходом Солнца.

Амплитуда суточного хода температуры воздуха зависит от времени года и облачности так же, как и амплитуда температуры почвы.

Кроме того, на амплитуду суточного хода температуры воздуха, влияет характер подстилающей поверхности; во-первых, сюда относят рельеф поверхности:

А). В вогнутых формах рельефа (котловины, горные долины, овраги) днем воздух застаивается и прогревается; а ночью, охлажденный воздух стекает со склонов на дно. В результате, амплитуда увеличивается, максимум и минимум выражены более резко.

Б). Выпуклые формы рельефа (холмы, возвышенности) свободно обдуваются ветром, воздух над ними не застаивается. Днем воздух прогревается меньше, чем в котловине, а ночью, охлажденный, он стекает вниз.

То максимум и минимум выражены здесь слабее, амплитуда, следовательно, меньше.

Кроме того, на амплитуду суточного хода температуры воздуха влияет снежный и растительный покров – он уменьшает амплитуду, по сравнению с оголенной почвой; потому что такая почва лучше нагревается и больше охлаждается, а от нее – и нижний слой воздуха.

В годовом ходе температуры воздуха в наших широтах максимум наблюдается в июле, минимум в январе.

Амплитуда годового хода температуры воздуха зависит, главным образом, от географической широты места (от экватора к полюсам она увеличивается), а так же от расстояния местности до моря (чем ближе к морю, тем меньше амплитуда даже на одинаковой широте).

Чем больше амплитуда годового хода температуры воздуха, тем континентальнее климат.

6. Характеристики температурного режима воздуха

а). Средняя суточная температура – среднее арифметическое из температур, измеренных во все сроки наблюдения в течение суток (это 8 измерений).

б). Средняя месячная температура — среднее арифметическое из средних суточных температур за весь месяц.

в). Средняя годовая температура –среднее арифметическое из средних месячных температур за весь год.

(но, средняя годовая температура не может полностью охарактеризовать климат; например: в Ирландии и Калмыкии она +10ºС, но в Ирландии средняя температура января +7ºС, а в Калмыкии -6ºС. Средняя температура июля +15ºС, а в Калмыкии +24ºС. Поэтому в географии чаще всего используют средние температуры января и июля, как самого холодного и теплого месяцев).

2. Существенно дополняют сведения о средних температурах, максимальные и минимальные температуры.

а). Есть просто максимальные и минимальные температуры.

(например: максимальная и минимальная суточная температура, декадная температура и т. д.)то есть это максимальная или минимальная температура за весь период измерения (сутки, месяц, год и т. д.

б). И существуют абсолютные максимальные и минимальные температуры –это самая низкая или высокая температура, наблюдаемая за многолетний период в данный день, месяц, или в целом за год (например: 24 июля, или в феврале, или за год в целом).

3. Суммы температур – показатель, условно характеризующий количество тепла в данной местности за определенный период.

а). Сумма активных температур — сумма средних суточных температур выше +10ºС

б). Сумма эффективных температур – сумма средних суточных температур, отсчитанных от биологического минимума данной культуры.

Биологический минимум минимальная среднесуточная температура, при которой способны развиваться растения данной культуры. (например: у яровой пшеницы +5ºС; кукурузы, огурцов +10ºС).

Дата добавления: 2015-08-11 ; просмотров: 5960 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Adblock
detector