Гранулометрический состав почвы способы определения
Гранулометрический состав почвы — фундаментальное свойство почвы, т.е. от него зависят многие другие почвенные свойства (физические, химические, биологические, физико-химические и др.).
Твердая фаза почв формируются при выветривании горных пород. Она представлена частицами (обломками) первичных и вторичных минералов, органического вещества (гумуса) и органо-минеральных соединений
Все эти частицы называются механическими элементами
В почве они находятся в раздельно-частичном состоянии, либо в виде агрегатов разной величины и формы. Размеры механических элементов различаются, что связано с особенностями почвообразовательных процессов
Частицы разного размера определяют и особые свойства почвы. Эти свойства меняются довольно отчетливо, а, иногда, и резко, что послужило основанием для разделения их на группы или фракции.Такая группировка называется КЛАССИФИКАЦИЕЙ МЕХАНИЧЕСКИХ ЭЛЕМЕНТОВ
В России наибольшее распространение и признание получила классификация Н.А. Качинского. Эта классификация играет такое же большое значение, как периодическая система Менделеева в химии. Можно, даже сказать, что суть их в принципе одинакова.
Рассмотрим несколько клаасификаций механических элементов по размерам:
Первая классификациядостаточно простая –
частицы размером более 1 мм: СКЕЛЕТ почвы
частицы размером менее 1 мм: МЕЛКОЗЕМ
Вторая классификациянаиболее важная, на ее основе почвы классифицируются по гранулометрическому составу –
частицы размером более 0,01 мм называют: ФИЗИЧЕСКИЙ ПЕСОК
частицы размером менее 0,01 мм: ФИЗИЧЕСКАЯ ГЛИНА
Все главнейшие свойства почв особенно резко изменяются на переходе размера частиц через 0,01 мм.
Третья классификация – Н.А. Качинского:
Классификация механических элементов почвы
Название фракций механических элементов | Размер фракций, мм | Группы фракций | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Камни | > 3 | СКЕЛЕТ | |||||||||||||||||
Гравий | 3-1 | СКЕЛЕТ | |||||||||||||||||
Песок крупный | 1-0,5 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Песок средний | 0,5-0,25 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Песок мелкий | 0,25-0,05 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Пыль крупная | 0,05-0,01 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Пыль средняя | 0,01-0,005 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
Пыль мелкая | 0,005-0,001 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
Ил грубый | 0,001-0,0005 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
Ил тонкий | 0,0005-0,0001 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
КОЛЛОИДЫ | ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ ПОЧВЫ это относительное содержание в почве частиц разного размера или, по-другому, процентное соотношение между физическим песком и физической глиной Далее в таблице представлена классификация почв по гранулометрическому составу (Н.А. Качинский) Классификация почв по гранулометрическому составу
Чем больше физической глины в твердой фазе почв, тем тяжелее их обрабатывать, поэтому в агрономии различают тяжелые и легкие почвы. Песчаные и супесчаные почвы легко поддаются обработке, поэтому издавна их называют легкими, характеризуются хорошей водопроницаемостью и благоприятным воздушным режимом, быстро прогреваются, но также быстро остывают и имеют низкую влагоемкость. Поэтому на песчаных и супесчаных почвах даже во влажных районах растения страдают от недостатка влаги. Легкие почвы бедны гумусом и элементами питания растений, обладают незначительной поглотительной способностью, подвергаются ветровой эрозии. Физико-механические свойства, например, пластичность, липкость, набухаемость, сопротивление при обработке на легких почвах отличаются от тяжелых, а от этого зависят сроки проведения полевых работ, нормы выработка, расход горючего и т.д. Суглинистые и глинистые почвы отличаются более высокой связностью и влагоемкостью, хорошо обеспечены питательными веществами и гумусом по сравнению с песчаными почвами. Запасы влаги и питательных веществ в этих почвах способны обеспечить хорошие урожаи сельскохозяйственных культур, особенно на тяжелосуглинистых и глинистых почвах, которые обладают выраженной структурой и содержат достаточное количество водопрочных агрегатов. Однако, обработка этих почв требует больших энергетических затрат, поэтому их принято называть тяжелыми. Тяжелые почвы подвергаются водной эрозии в большой степени, нежели ветровой. При нерациональном использовании эти почвы могут терять свою структуру. Тяжелые бесструктурные почвы обладают характерными свойствами глинистых частиц, с чем связаны неблагоприятные физические и физико-механические свойства. В зависимости от влажности глина резко меняет свои свойства: она тверда в сухом состоянии, при избытке воды – текуча, а при умеренном содержании воды – пластична. В связи с этим бесструктурные глинистые почвы имеют слабую водопроницаемость, легко заплывают, образуют корку, отличаются большой плотностью, липкостью, вязкостью, часто неблагоприятным воздушным и тепловым режимами. Различают несколько методов гранулометрического анализа почвы: полевые и лабораторные (ситовый анализ, гранулометрический анализ почвы в воде). «Сухой» метод легко используется в полевых условиях. Зерно почвы, величиною с зерно гречихи, испытывают на ощупь между пальцами. Раздавливают ногтем на ладони и втирают в кожу. Чем зерно более угловато, жестко, прочно и чем большая часть его после полного раздавливания втирается в кожу, тем почва тяжелее по гранулометрическому составу. «Мокрый» метод используется как в поле, так и в лаборатории. Почву смачивают и разминают между пальцами до такого состояния, чтобы не ощущались ее структурные зерна, до консистенции теста. Хорошо размятая почва раскатывается на ладони «ребром» второй кисти руки в шнур и сворачивается в колечко. Толщина шнура около 3 мм, диаметр кольца — около 3 см. (таблица) Источник Определение гранулометрического состава грунта
Отборы конкретных образцов осуществляют согласно требований ГОСТа 12071-2000, где микроагрегатный состав определяется по весовому содержанию твердых водостойких составляющих частиц. Методы анализа гранулометрического состава изложены в межгосударственном стандарте — ГОСТе 12536-79. Цели исследованияАктуальность определения гранулометрического состава грунта обуславливается широким спектром работ, для выполнения которых необходимы сведения о водорастворяемых частицах. Такой анализ проводится для решения следующих вопросов:
Виды обломочных несцементированных грунтовИсходя из неоднородного состава, существует определенная классификация, позволяющая соотносить исследуемые образцы к одной из категорий. Выделяют такие виды обломочных несцементированных грунтов: В основе данной классификации лежит принцип фракционного размера обломков, от чего напрямую зависят свойства, в том числе степени водопоглощения и водорастворения. Крупнообломочные
В их составе свыше 50% частиц, диаметр которых превышает 2 мм. Подразделяются на два вида: с высоким содержанием песчаных (свыше 40%) и глинистых (свыше 30%) частиц. Они могут быть достаточно однородными, однако все они характеризуются степенью водонасыщения, текучестью и уровнем влажности. Такие грунты образуются в результате сильного выветривания горных пород. ЩебенистыеРазновидность галечниковых грунтов плотностью от 1,2 до 3 г/см3, представляющие собой раздробленную в результате естественных причин скальную породу. Частицы в виде щебеночных обломков, имеют размеры от 10 до 200 мм, причем разной формы (игловатая, пластинчатая). Данные грунты в сухом состоянии обладают крайне низкой способностью связываться между собой. Грунт характеризуется низкой способностью к сжатию, давая эффективную основу для фундамента строений. Дресвяные/гравийныеДресвяные и гравийные грунты – это обломочная категория грунтовых составов, имеющая частицы окатанного типа, размером от 3 до 70 мм. Чаще всего такие грунты располагаются в поймах рек, рядом с озерами, прудами и морями.
Различный минералогический состав частиц, составляющих такие грунты, придает ему определенную скелетность, неплохую прочность и устойчивость. ПесчаныеПесчаные грунты – это смесевые частицы разрушенных твердых (горных) пород, включающих в себя зерна кварца и ряда других минералов. В зависимости от особенностей входящих в состав такого грунта элементов он может иметь высокую, среднюю или низкую плотность. По характеристикам он относится к несвязному минеральному типу, размеры частиц которого составляют от 0,05 до 2 мм в объеме, не больше 50%. Крупный и гравелистый песок
Достаточно схожими свойствами обладает крупный песок, где размеры песчинок составляют от 0,30 до 2 мм. В состав обоих типов песка входят такие минералы, как полевой шпат (8%), кварц (70%), кальцит (3%) и прочие (11%). Примечательно, что свойство грунта в плане хорошей несущей способности не зависит от объема влаги, присутствующей в составе гравелистого и крупного песка. Средний и мелкий песокМелкий песок состоит из песчинок, размерами от 1,5 до 2,0, а средний – от 2,0 до 3,0 мм. Такие песчаные составы имеют в среднем плотность порядка 3-5 кг/см2, которая дает им высокую несущую способность. В отличие от крупного и среднего, мелкий песок при насыщении влагой теряет свои прочностные свойства, которые уменьшаются в 2 раза. Пылеватые частицыПо своему минеральному составу пылеватые частицы – это практически чистый кварц, реже — полевые шпаты с примесью других минералов. Размеры таких составов от 0,050 до 0,001 мм. В сухом состоянии они обладают крайне слабой связанностью, имеют низкий уровень пластичности. Хороший капиллярный состав позволяет поднимать воду на высоту до 2,5-3 м.
Суглинок и глинистые частицыСуглинок – рыхлая порода осадочного типа, содержащая в среднем от 10 до 30% глинистых веществ, размером менее 0,005 мм. В таком грунте может присутствовать супесь – песчаные частицы с содержанием глинистых примесей в объеме до 10%, которые по своим характеристикам очень схожи с песчаными грунтами. В песчаных суглинках содержится в основном кварц с воднорастворимыми солями, а в глинистых – минералы монтмориллонит, иллит и каолинит. Методы определения состава грунтовой смесиДля определения состава используется принцип расчленения грунтовой смеси на определенные группы, схожие по своему составу и специально отобранные для пробы. Размеры частиц определяется в миллиметрах, а вес – в граммах. Существуют различные методики определения такого состава, главными из которых являются ситовой, ареометрический, пипеточный и отмучивание. СитовойВ его основе – использование набора сит с отверстиями, размерами 0,25; 0,1; 1; 0,5; 5; 2; 10 мм, а также специальной машины для просеивания с поддоном. Благодаря такому просеиванию удается определить и визуально увидеть состав грунта, а также процентное соотношение имеющихся в нем минералов и компонентов. Для получения объективного анализа следует внимательно отнестись к вычислению массы средней пробы грунта, которая должна иметь следующие значения:
АреометрическийОснован на учете изменения плотности суспензии, которая замеряется по мере отстаивания с помощью специального прибора – ареометра. Предварительно отбирается проба, где используется метод квартования, при котором смесь проходит дополнительно через сито, с диаметром отверстий до 1 мм. Масса средней пробы составляет:
После определения процентного содержания смесей грунта при помощи ареометра, вычисляют содержание каждой отдельной фракции. Здесь используют метод последовательного вычитания меньшей величины из большей. Пробу отбирают с учетом природной влажности. Метод отмучиванияСуть методики заключается в определении содержания пылеобразных и глинистых частиц по изменению масса песка после предварительного отмучивания частиц. Для выполнения испытания используется сушильный шкаф, цилиндрическое ведро или сосуд и секундомер. В ходе проведения испытания просеянный и высушенный до постоянной массы песок (1000 г) помещают в ведро и заливают водой, после чего выдерживают так 2 часа. Цилиндрическое ведроПараллельно из воды удаляются все посторонние частицы и глинистые примеси. Промывку производят несколько раз. После того, как вода в ходе промывки станет чистой, можно приступать к сливу суспензии через нижнее отверстие в сосуде. Далее остается только вычислить содержание в песке отмучиваемых глинистых частиц по формуле:
ПипеточныйПри таком способе содержание глинистых и пылеобразных частиц определяется путем выпаривания суспензии (получаемой при промывке песка и взвешивании сухого остатка), отобранной с помощью пипетки.
Металлический цилиндр с пипеткой мерного типаСпустя 1,5-2 минуты, когда осадок ляжет на дно. С помощью мерной пипетки берут пробу и выливают все содержимое на предварительно взвешенный стакан. Полученную суспензию выпаривают в специальном сушильном шкафу. Результат обрабатывается по формуле:
Расчет степени неоднородности гранулометрического состава песчаного грунтаС целью определения пригодности песчаного грунта для выполнения тех или иных работ часто требуется просчет степени неоднородности его гранулометрического состава. Для этого существует специальная формула:
Если получившееся в результате расчета значение Сu≥3, то к наименованию песчаного грунта добавляют такое слово, как «неоднородный». Если же Сu Полезное видео Смотрите интересный видеоматериал, в котором наглядно показан один из методов определения гранулометрического состава грунта. ЗаключениеЧтобы получить объективные данные относительно гранулометрического состава исследуемого грунта используют разные методы расчета. Это позволяет исключить вероятность ошибок при получении результатов, добившись максимальной точности в плане выявления процентного соотношения сухого остатка, плотности и размера внутренних фракций. Источник ➤ Adblockdetector |