Меню

Химическим составом почвы это

Вопрос 26. Химический состав почв и пород.

Почва состоит из минеральных, органических и органо-минеральных веществ. По химическому составу она существенно отличается от исходных почвообразующих пород. Главные особенности химического состава почвы – присутствие органических веществ и в их составе специфической группы гумусовых веществ, разнообразие форм соединений отдельных элементов и непосредственно состава во времени.

Источник минеральных соединений почвы – горные породы, из которых слагается твёрдая оболочка земной коры – литосфера. Органические вещества поступают в почву в результате жизнедеятельности растительных и животных организмов, населяющих почву. Взаимодействие минеральных и органических веществ создаёт сложный комплекс органоминеральных соединений почв.

В составе почв обнаружены все известные химические элементы. Содержание отдельных химических элементов в литосфере и почве колеблется в % содержании.

Литосфера состоит почти наполовину из кислорода (47.2%), более чем на четверть из кремния (27.6%), далее идут Al, Fe, Ca, Na, K, Mg. Восемь названных элементов составляют более 99% общей массы литосферы. Такие важнейшие для питания растений элементы, как C, N, S, P занимают десятые и сотые доли процента. Поскольку минеральная часть почвы в значительной степени обусловлена химическим составом горных пород литосферы, имеется сходство почвы с литосферой по относительному содержанию отдельных химических элементов. Как в литосфере, так и в почве на первом месте стоит кислород, на втором – кремний, затем алюминий, железо и т.д.

Однако в почве по сравнению с литосферой в 20 раз больше углерода и в 10 раз больше азота. Накопление этих элементов в почве связано с жизнедеятельностью организмов. В почве больше, чем в литосфере, кислорода, водорода (как элементов воды), кремния и меньше алюминия, железа, кальция, магния, натрия и других элементов, что является следствием процессов выветривания и почвообразования.

Процессы выветривания горных пород, переотложения их продуктов приводят к образованию рыхлых пород различного химического состава, покрывающих большую часть суши и являющихся главными почвообразующими породами. По содержанию щелочноземельных и щелочных оснований почвообразующие породы делятся на засоленные, карбонатные и выщелоченные.

Химический состав почвообразующей породы отражает, в известной мере, её гранулометрический и минералогический состав. Песчаные породы, богатые кварцем, состоят преимущественно из кремнезема. Чем тяжелее гранулометрический состав породы, тем больше в ней вторичных минералов, а, следовательно, меньше кремнезема, больше полутора окисей алюминия, железа. Почвы наследуют геохимические черты исходного материала почвообразующих пород. На песчаных породах, богатых кварцем, почвы обогащены кремнеземом, на лессе — кальцием, на засоленных породах – солями и т. д.

Итак, в почве преобладают окись кремния (SiO2) и органогенные элементы C, H, O, N, P, S, K, Ca, Mg. Последние являются источником питания растений и от их содержания зависит плодородие почвы. Особую роль в питании растений играет N, P и K. Азот в почве представлен нитратами, аммонийными солями, входит в состав почвенного воздуха и гумуса. Многие соединения азота подвижны, легко вымываются. Недостаток азота, а также фосфора и калия в почве компенсируют органическими и минеральными удобрениями. В почвах элементы питания растений находятся в составе минералов, органических и органоминеральных соединений твердой фазы почв, в почвенных растворах (в основном в ионной форме) и в газовой фазе почв. В результате поглощения питательных элементов растения формируют корневые и надземные массы.

В почвах содержатся практически все элементы периодической системы д. И. Менделеева, но для питания растениям наиболее необходимы 19 элементов: С, Н, О, N, Р, S, К, Са, Мg, Fе, Мn, Сu, Zn, Мо, В, С1, Nа, Si, Со. Из них 16 элементов, кроме С, Н, О, относятся к минеральным. Углерод, водород и кислород поступают в растения преимущественно в виде СО2, О2 и Н2О. Необходимость натрия, кремния и кобальта не для всех растений установлена.

Углерод, водород, кислород и азот называют органогенными элементами, так как в основном из них состоит организм растений. Углерода содержится в среднем 45 % от сухой массы тканей растений, кислорода —42, водорода — 6,5, азота — 1,5 %. Их сумма составляет 95 %. Оставшиеся 5 % приходятся на зольные элементы: Р, S, К, Са, Мg, Fе, Si, Na и др. Они называются так потому, что преобладают в золе растений.

Химический состав золы является показателем валового количества усвоенных растениями из почвы зольных элементов питания. Их выражают в оксидах или в элементах по отношению к массе сухого вещества, или к массе золы в процентах.

Валовой химический состав растений значительно отличается от валового состава почвы вследствие избирательности растений к поглощению отдельных элементов для формирования урожая. Кроме азота и зольных элементов, называемых в агрономической практике макроэлементами, в составе растений присутствуют микроэлементы, содержание которых составляет приблизительно 0,001 % сухой массы тканей (В, Сu, Со, Zn, Мо и др.). Они играют очень важную роль в обмене веществ растительного организма.

Читайте также:  Выращивание привитых саженцев это

Азот и зольные элементы растения поглощают преимущественно в виде ионов из почвенного раствора и твердой фазы почв (Са, К, А1, Fe, НРО4, С1, SО4 и др.). Питательные вещества растения извлекают избирательно из почвенного раствора физико-химической адсорбцией их на внешней поверхности корней или в результате контактного ионного обмена с твердой фазой почв. Валовое количество азота в почвах составляет 0,1—0,5 % (от 2 до 10 т/га в пахотном слое 0—20 см). В почвообразующих породах азота почти нет. Почвенный азот находится в основном в составе органического вещества — гумуса (часть его процентного содержания). Этот азот растениям недоступен. Однако в течение теплого времени года часть гумуса (1—2 % его содержания) разлагается микроорганизмами и азот высвобождается в доступной для растений форме.

Основную роль в азотном питании растений играют минеральные формы азота: окисленная (NO3 и восстановленная (NH4). Минерального азота содержится в среднем от 50 кг/га в пахотном слое дерново-подзолистых суглинистых почв, до 100 кг/га и более — в черноземах, что составляет 0,5—1 % валового количества азота в почвах. За вегетационный период растениями усваивается около 40 % минерального азота.

Аммонийный азот образуется в почвах в результате жизнедеятельности аммонифицирующих гетеротрофных микроорганизмов, превращающих органический азот растительных и животных остатков, а также азот гумуса в NH4.

Образование нитратного азота в почвах обязано биологическому окислению NH3 (NН4) до NO3 в результате микробиологического процесса нитрификации, осуществляемого двумя группами автотрофных бактерий. Бактерии окисляют аммиак до азотистой кислоты, а — азотистую кислоту до азотной.

В лесных почвах процесс нитрификации подавлен; в них преобладает аммонийный азот. При распашке лесных почв процесс нитрификации активизируется, количество нитратного азота в пахотных почвах, как правило, преобладает над аммонийным. Содержание нитратного азота в пахотных почвах зависит от типа почв, степени их окультуренности и состава глинных минералов. Наиболее полное представление о содержании минерального азота в почвах перед посевом дает сумма всех трех групп азота нитратного и аммонийного в слое 0—100 см в западных районах России, 0—60 см — в восточных районах европейской части России и 0—40 см — в Средней Сибири, так как в слоях этой мощности наблюдается большей частью миграция нитратов в суглинистых почвах. Из этих слоев наиболее вероятно также усвоение минерального азота корнями растений.

Фосфор является «дефицитным» элементом, так как в мире запасы фосфатного сырья (апатитов и фосфоритов) для производства фосфорных удобрений невелики. Наряду с этим содержание валового фосфора (Р2О5) в почвах низкое — 0,05—0,25 % (от 1 до 5 т/га в пахотном слое 0—20 см). Основное его количество растениям труднодоступно, а фосфор удобрений сильнее, чем азот и калий, закрепляется почвами в неподвижные формы. Естественных путей возобновления запасов фосфора в отличие от азота в почвах нет.

Содержание разных форм соединений фосфора в почвах, их количество зависит от типа почв, минералогического и гранулометрического составов, содержания гумуса, изменяется по генетическим горизонтам и в динамике. Часть фосфора содержится в твердой фазе почв в адсорбированном состоянии, в почвенных растворах (0,1—0,3 мг/л) в виде фосфат-ионов (в основном Н2PO4) и которые входят в состав групп фосфатов, наиболее доступных растениям.

Валового калия (К в почвах больше, чем азота и фосфора, вместе взятых, — 1,5—2,5 % (30—50 т/га в пахотном слое), что зависит от минералогического, гранулометрического составов и содержания гумуса. Основное количество калия находится в трудно доступных для питания растения формах. Главным источником усвояемого калия служат обменно-поглощенные и водорастворимосолевые его формы. Обменный калий составляет 0,5—1,5 % валового. В почвенных растворах Нечерноземной зоны России содержится 30—40 мг/л калия (К2О). Количество обменного калия изменяется по генетическим горизонтам почв. Растения усваивают 10—20 % калия от его обменных форм.

Микроэлементы (бор, марганец, медь, цинк, кобальт, молибден, йод и др.)играют важную биохимическую и физиологическую роль в жизни растений, а также животных и человека. Неблагоприятным является как недостаток микроэлементов в питании, так и их избыток.

Недостаток в кормах кобальта вызывает беломышечную болезнь у овец, недостаток йода в пище человека — заболевание щитовидной железы, цинка — кожные заболевания. Недостаток в почве подвижного бора приводит к сердцевинной гнили корнеплода сахарной свеклы, а у капусты — к рыхлости кочана, недостаток меди — к недоразвитию метелки у овса и пустозерности. Высокая концентрация в почве меди и низкая — цинка способствует заболеванию яблони розеточностью. Избыток в пище человека молибдена приводит к развитию подагры, бора в кормах — к пневмонии и нервным расстройствам овец, бора в почвах — к побурению листьев люцерны.

Читайте также:  Свой бизнес по выращиванию табака

Известна приуроченность микроэлементов к первичным минералам: Со, Zn — к авгиту, биотиту, ильмениту, роговой обманке; Сu — к биотиту, апатиту, гранату, авгиту, полевым шпатам; В — к турмалину и т. д.

В географическом плане содержание микроэлементов в почвах и материнских породах европейской территории России в целом повышается в южном направлении от зоны подзолистых почв к каштановым. В Нечерноземной зоне отмечается повышение количеств меди, кобальта и марганца от центральных областей к Уралу.

В почве содержатся также токсичные для растений элементы: хлор, натрий, марганец, алюминий.Повышенное их содержание делает почву засоленной. В небольших количествах в почве представлены радиоактивные элементы, обуславливающие её природную и искусственную радиоактивность. Природная радиоактивность почвы зависит от содержания в ней урана, тория, радия и др. Искусственная радиоактивность вызвана использованием человеком атомной энергии, средств химической защиты и пр.

Минеральные вещества в почвах составляют 90-95 % в гумусовых горизонтах и более 99% в минеральных горизонтах. Исключением являются торфяные горизонты, лесные подстилки и ветошь. Минеральная часть в основном наследуется от почвообразующих пород. По мере развития почвообразовательного процесса минералы претерпевают ряд изменений.

В рыхлых почвообразующих породах и в почвах минеральная часть слагается из минералов, по своему происхождению относящимся к двум группам:

Источник

Химический состав почвы

Наиболее распространенными в почве являются следующие элементы: кислород (49 %), кремний (33 %), алюминий (7,13%), железо (3,80 %), углерод (2,0 %), кальций (1,37 %), калий (1,36 %), натрий (0,63 %), магний (0,63%), азот (0,10%).

Кроме того, в почве находится большая группа химических элементов, содержание которых невысокое (10-2–10-5 %), но они играют биологическую роль, это – бор, медь, марганец, цинк, кобальт, фтор и др.

По валовому химическому составу можно судить о направлении процессов почвообразования, Так, например, накопление кремнезема в верхних горизонтах, а железа и алюминия в средней части профиля свидетельствует о разрушении алюмосиликатов и выносе из верхних горизонтов подвижных продуктов разрушения.

Формы нахождения химических элементов в почве могут быть иными – в составе минералов, органического вещества, в форме гидроксндов и оксидов, солей, в составе почвенных коллоидов и др., а значит, доступность их растениям разная. Поэтому часто важно определить не валовое содержание элемента в почве, а его доступные растениям количества. С этой целью используют различные растворители (растворы солеслабых кислот, щелочей), в вытяжках которых и определяют содержание элементов питания растений. Таким образом, химический состав почвы можно рассматривать как показатель экологического состояния почвы. Часто это состояние оказывается неудовлетворительным с точки зрения минерального питания растений, земледелец оптимизирует эту экологическую функцию почвы с помощью внесения удобрений.

Культурные растения по-разному реагируют на один и тот же уровень содержания в почве доступных (легкорастворимых) элементов питания. Так, наиболее требовательными к пищевому режиму почвы являются овощные и плодово-ягодные культуры, менее требовательны яровые зерновые, лен, травы, промежуточное положение занимают пропашные – картофель, кукуруза.

Источник

Mse-Online.Ru

Химический состав почв

Химический состав почвы является отражением элементарного состава всех геосфер, принимающих участие в формировании поч­вы. Поэтому в состав всякой почвы входят те элементы, которые распространены или встречаются как в литосфере, так и в гидро-, атмо- и биосфере.

В состав почв входят почти все элементы периодической систе­мы Менделеева. Однако подавляющее их большинство встречает­ся в почвах в очень малых количествах, поэтому в практике при­ходится иметь дело всего с 15 элементами. К ним при­надлежат прежде всего четыре элемента органогена, т. е. С, N, О и Н, как входящие в состав органических веществ, затем из неме­таллов S, Р, Si и С1, а из металлов Na, К, Са, Mg, AI, Fe и Мn.

Перечисленные 15 элементов, составляя основу химического со­става литосферы в целом, в то же время входят в зольную часть растительных и животных остатков, которая, в свою очередь, образуется за счет элементов, рассеянных в массе почвы. Количе­ственное содержание в почве этих элементов различно: на первое место надо поставить О и Si, на второе — А1 и Fe, на третье — Са и Mg, а затем — К и все остальные.

Нормальный рост растений обусловлен содержанием в почве доступных форм зольных элементов и азота. Обычно растения усваивают из почвы N, Р, К, S, Са, Mg, Fe, Na, Si в достаточно больших количествах и эти элементы называются макроэлемента­ми, а В, Mn, Mo, Сu, Zn, Со, F используются в ничтожных коли­чествах и называются микроэлементами. К важнейшим из них относятся элементы, без которых невозможно образование бел­ков,— N, Р, S, Fe, Mg; такие элементы, как К, Сu, Mg, Na, оказывают огромное влияние на регуляцию работы клеток и форми­рование различных тканей растений.

Читайте также:  Подкормка томатов по листу перед цветением

Элементы питания, содержащиеся в почвах, находятся в различных минеральных и органических соединениях, и запасы их обычно значительно превышают ежегодную потребность. Одна­ко большая часть их находится в форме, не доступной для расте­ний: азот — в органическом веществе, фосфор — в фосфатах, же­лезо, алюминий, кальций, калий — в поглощенном состоянии, кальций и магний — в форме карбонатов, т. е. в не растворимой в воде форме. Процесс усвоения растениями элементов питания происходит благодаря обменному поглощению. Формы соединений и биологическое значение химических элементов различны. Эле­менты входят в состав почв в форме различных химических со­единений, характеризующих тип почвы, и имеют разное биологи­ческое значение.

Кислород в свободном состоянии находится в почвенном воз­духе, а в связанном входит в состав воды, окислов, гидратов, кис­лородных кислот и их солей. Он имеет важное значение, как эле­мент, необходимый для дыхания растений и животных, и как эле­мент-органоген.

Кремний входит в состав силикатов, т. е. солей кремниевых, алюмокремниевых и феррокремниевых кислот, а также встречает­ся в виде кремнезема, как кристаллического (кварц), так и аморфного. Биологическое значение кремния не выяснено, но он всегда содержится в золе растений (в особенности камыша и тростника) и, по-видимому, необходим для образования клеток и тканей более твердых частей организмов.

Алюминий входит в состав алюмосиликатов, глинозема и ги­дратов глинозема. Биологического значения он не имеет.

Железо входит в состав ферросиликатов и других солей, как окисных, так и закисных, а также в состав гидратов железа. Био­логическое значение его велико: с ним связано образование хло­рофилла в зеленых растениях.

Кальций встречается преимущественно в виде солей разных кислот, чаще всего угольной. Он очень важен для растений, так как входит в состав стеблей, и обычно находится в раститель­ных клетках в виде кристаллов щавелевокислого кальция.

Магний, как и кальций, встречается в виде аналогичных со­единений. Он важен для растений, так как входит в состав хлоро­филла.

Натрий и калий входят в состав солей различных кислот, при­чем натрий биологического значения не имеет, тогда как калий является одним из основных элементов питания растений и, в частности, играет большую роль в крахмалообразовании.

Фосфор входит в состав почвы в виде фосфатов и в виде раз­личных органических соединений. Он содержится в ядре расти­тельных клеток. Известно, что недостаток в почве фосфора отра­жается на качестве зерна. Он является одним из основных пита­тельных элементов и необходим для развития растений так же, как и азот.

Азот — исключительно важный для питания растений, элемент- органоген, входящий в состав молекулы белков основы расти­тельной и животной клетки, Встречается в почве в форме различ­ных органических соединений, аммиачных солей и солей азотной и азотистой кислот.

Сера также входит в состав молекулы белков. В почвах встре­чается в форме сульфатов, сернистых солей, сероводорода и раз­личных органических соединений.

Водород важен для растений как органоген. Входит в состав воды, гидратов, разнообразных свободных кислот и их кислых солей.

Хлор биологического значения не имеет. В почве встречается в виде хлористых солей.

Углерод входит в состав растительных остатков и составляет в среднем 45 % их массы. Как основа всех органических соедине­ний он имеет исключительно большое значение. Встречается в поч­ве также и в форме минеральных соединений углекислого газа и солей угольной кислоты.

Марганец, как предполагают, играет роль катализатора. Опре­деленное биологическое значение имеют также и многие другие химические элементы, встречающиеся в почвах в очень малых ко­личествах (например, медь, цинк, фтор, бор и другие), так назы­ваемые микроэлементы. Некоторые из них используются в качест­ве минеральных удобрений. Однако наибольшее значение для пи­тания растений имеют соли калия, кальция, магния, железа и кислот — азотной, фосфорной, серной и угольной.

Для характеристики плодородия почвы наибольшее значение имеет содержание гумуса, азота, фосфора и калия. Определение содержания в почве тех или других химических элементов и форм их соединений является задачей химического анализа почв.

Содержание гумуса в верхнем горизонте почв разного типа колеблется в широких пределах, но для каждого типа и подтипа почвы оно является достаточно устойчивым и поэтому характер­ным показателем. Для остальных элементов, наряду с их валовым содержанием (которое свидетельствует о той или иной степени плодородия почвы), необходимо знать содержание их форм рас­тениями.

Валовое содержание в почвах азота и фосфора (в верхнем го­ризонте) обычно выражается в десятых долях процента, калия содержится до двух и более процентов. Содержание же их усвоя­емых форм не превышает тысячных долей процента и его принято выражать в миллиграммах на 100 г почвы.

Источник

Adblock
detector