ПРАКТИКУМ АГРОПОЧВОВЕДЕНИЕ. Практикум по агропочвоведению Учебное пособие
Название
Практикум по агропочвоведению Учебное пособие
Анкор
ПРАКТИКУМ АГРОПОЧВОВЕДЕНИЕ.doc
Дата
09.05.2017
Размер
17.78 Mb.
Формат файла
Имя файла
ПРАКТИКУМ АГРОПОЧВОВЕДЕНИЕ.doc
Тип
Практикум #7361
страница
7 из 27
Подборка по базе: Теория и методика физического воспитания с практикумом.rtf, Лабораторный практикум.doc, 4 практикум .docx, Основы химии нефти и газа [учебное пособие].doc, ГЛАГОЛ пособие сивакова.pdf, УЧ. ПОСОБИЕ по истории философии МАТЮЩЕНКО В.С., АСТАШОВА Н.М. (, Учебное пособие_Вопросы клинической ревматологии_Исаева БГ (пере, Учебное пособие СИК (1).doc, Методическое пособие по практ. занятиям для БГГ, БГШ, БГР.pdf, учебное пособие ОДУ.docx
Буквенные индексы горизонтов и их свойства
По Б.Г. Розанову, почвенный профиль — это определенное сочетание генетических горизонтов в пределах почвенного тела (педона), специфическое для каждого типа почвообразования. Строение почвенного профиля — наиболее значимая характеристика почвы. Тип профиля определяется сочетанием факторов почвообразования и процессами, ими обусловленными, и соответствует типу почвы как наивысшей номенклатурной единице в почвоведении. Выделяют два типа строения почвенного профиля: Первый характерен для автоморфных почв (рис. 12).
Формирование происходит в условиях элювиальных (промывание) ландшафтов под влиянием атмосферной влаги. Систематические нисходящие токи осадков обусловливают закономерное перемещение химических элементов и частиц вниз. Тип водного режима в этих условиях может быть как промывным, так и непромывным. Профиль автоморфной почвы схематично выглядит следующим образом:
Рисунок 12 — Строение профиля автоморфных почв
Вторым типом строения профиля обладают почвы, формирование которых происходит в условиях избыточного увлажнения. Здесь процесс почвообразования протекает под воздействием грунтовых вод, которые периодически или постоянно обогащают почвенную толщу определенными химическими элементами. Тип водного режима в этих условиях будет соответствовать выпотному, а почвы этого ряда называться гидроморфными (рис. 13).
Рисунок 13 — Строение профиля гидроморфных почв
Итак, почвенный профиль разделяется на генетические горизонты, формирование которых обусловлено факторами почвообразования и макропроцессами. Диагностику почвенных горизонтов осуществляют на основе морфологических признаков. Для удобства распознавания и характеристики горизонтов еще Докучаев предложил кодировать их латинскими буквами (символами или индексами). Каждый горизонт имеет свой буквенный символ. Так как горизонты могут подразделяться на подгоризонты, используют дополнительные цифровые и буквенные индексы. Система символов генетических горизонтов и подгоризонтов называется формулой строения почвы.
В России (по классификации 1977г.) приняты следующие символы генетических горизонтов:
Рассмотрим первостепенные свойства, морфологию и генезис основных горизонтов:
А0– лесная подстилка (в лесных почвах), это органогенный горизонт; представлен листьями, хвоей, шишками, мхом, ветками с разной степенью разложения. Морфологические признаки здесь не определяются;
или – степной «войлок» (в степных почвах) также является органогенным; состоит из опавших листьев, стеблей растений и переплетенных между собой узлов кущения.
Т – торфяный (в болотных почвах) в зависимости от степени разложения подразделяется на Т1, Т2, Т3.
Ад – дерновый (дернина), поверхностный минеральный гумусово-аккумулятивный поверхностный горизонт, сильно переплетенный и скрепленный корнями травянистой растительности (преимущественно луговой и лугово-степной). Их количество обычно более 50 %.
А – гумусово-аккумулятивный: формируется в верхней части профиля при черноземном (степном) типе почвообразовательного процесса. Диагностируется в черноземных почвах. В нем накапливается наибольшее количество гумуса (органического вещества), тесно связанного с минеральной частью почвы. Окраска – от черной, темно-серой, бурой, коричневой до светло-серой. В этом горизонте растения находят себе пищу, здесь обитают черви, насекомые и микроорганизмы. Биологически активный горизонт с зернистой водопрочной структурой. Характерны мелкие округлые структурные образования, повисающие как четки или бусы на корневых волосках.
А1– гумусово-элювиальный: формируется при дерновом почвообразовательном процессе. Диагностируется в серых лесных, дерново-подзолистых почвах, черноземе оподзоленном и солонцах. В нем выражены не только процессы накопления гумуса и элементов питания, но и разрушение минеральной части, частичный вынос подвижных органических и неорганических соединений. Окраска – темно-серая, серая, светло-серая с едва заметным белесоватым налетом кремнеземистой присыпки (SiO2). Характерным признаком данного горизонта является комковато-зернистая, пороховидная, комковато-пылеватая, особенно на пашне структура.
А2– элювиальный, горизонт вымывания (подзолистый – в подзолистых и дерново-подзолистых почвах, осолоделый – в солодях): формируется при подзолистом почвообразовательном процессе и промывном типе водного режима. Диагностируется в подзолистых почвах (или солодях). Располагается под гумусово-элювиальном горизонтом. Здесь происходит кислотное или щелочное разрушение минеральной части почвы. Из него вымываются вниз по профилю продукты разрушения минералов, а также илистые, коллоидные частицы. В результате горизонт А2 приобретает легкий (песчаный, супесчаный) гранулометрический состав, обедняется оксидами железа, гумусом, элементами питания. Окраска светло-серая, белесая, цвета печной золы благодаря присутствию устойчивого к разрушению минерала кварца (новообразование – кремнеземистая присыпка). Горизонт может иметь листовато-чешуйчатую структуру, либо быть бесструктурным.
В – возможны два варианта в названии этого горизонта:
иллювиальный, горизонт вмывания: формируется в почвах с хорошо выраженными признаками элювиирования (вымывания) — серые лесные, дерново-подзолистые, подзолистые, солоди, а также чернозем оподзоленный и выщелоченный. Располагается под элювиальным горизонтом. В этот горизонт вмываются глинистые частицы, оксиды железа, марганца и другие коллоидные вещества из вышележащих горизонтов. Поэтому горизонт более тяжелого гранулометрического состава, в сравнении А2, а также более темной окраски: бурой, коричневой, красно-бурой и т.д. Горизонт В — наиболее уплотненный, ореховатой или призмовидно-ореховатой структуры.
В зависимости от вида вмытых веществ различают следующие символы иллювиальных горизонтов: ВFe – иллювиально-железистый, Вh – иллювиально-гумусовый, Вi – горизонт, обогащенный илистыми частицами, Вк — иллювиально-карбонатный
переходный от гумусово-аккумулятивного горизонта (А) к почвообразующей породе (С): формируется в почвах без элювиального горизонта, при непромывном типе водного режима (каштановые, чернозем обыкновенный, южный). Здесь не наблюдается перемещения минеральной алюмосиликатной основы. По характеру сложения, структуре и интенсивности темной окраски горизонт В подразделяется на подгоризонты В1 (подгоризонт с преобладанием гумусовой окраски), В2 (подгоризонт неравномерной гумусовой окраски), В3 (подгоризонт окончания гумусовых затеков).
С – почвообразующая порода: та предполагаемая горная порода, из которой сформировалась данная почва; не затронутый или слабо затронутый почвообразовательным процессом слой почвы. Выделяется как наиболее глубокий горизонт почвенного профиля, не имеющий свойств органогенных, элювиальных горизонтов. В ходе почвообразования передает почве свой минералогический, химический и гранулометрический состав. Содержание работы
1. Выделите генетические горизонты почвы на монолите. Каждый горизонт (предварительно) последовательно пронумеруйте, как показано на схеме:
1
2
3
4
5
монолитный ящик
2. Измерьте мощность каждого горизонта и запишите в виде следующей дроби (пример):
0-20
20
1 * где в числителе «0 см» — начало горизонта, «20 см» — окончание горизонта, в знаменателе «20 см» — мощность горизонта
20-30
10
2 в числителе «20 см» — начало горизонта, «30 см» — окончание горизонта, в знаменателе «10 см» — мощность горизонта
* — на месте цифр, после определения морфологических признаков и диагностики почв необходимо указать буквенные индексы! 3. Каждый горизонт опишите по морфологическим признакам.
4. Используя материалы учебников, методических указаний по классификации и диагностике почв, практического занятия по данной теме, определите полное название почвы по следующим таксономическим единицам: тип, подтип, род, вид, разновидность и, по-возможности, разряд. Параллельно с этим определите тип почвообразовательного процесса (макропроцесса).
Пример названия почвы: чернозем(тип)обыкновенный(подтип)карбонатный(род)маломощный малогумусный(вид)среднесуглинистый(разновидность)на карбонатном легкосуглинистом делювии(разряд).
Преподаватель контролирует правильность выделения почвенных горизонтов, их мощности, морфологические признаки, название почвы. В ходе проверки обсуждаются наиболее важные вопросы: вероятные условия формирования исследуемой почвы (генезис); морфологические признаки, подтверждающие правильность диагностики типа почвообразовательного процесса. 4. Органическое вещество почв
На почвах с большим содержанием гумуса растения лучше переносят избыток минеральных удобрений
Источники органического вещества и гумуса
К основным источникам относят:
Опад зеленых растений (наземный и подземный — корневой)
Биомасса микроорганизмов
Биомасса беспозвоночных
Поступление органических остатков – процесс привноса органического вещества на поверхность почвы или в почву в виде свежих отмерших растительных и животных остатков, экскрементов животных, органических удобрений. Интенсивность и характер процесса зависит от климата, рельефа и главным образом от функционирования структуры биогеоценоза или агроценоза.
Поверхностное поступление органических остатков, как правило, преобладает в лесных экосистемах. Здесь основная биомасса сосредоточена в надземном ярусе. Корневой опад в 3-5 раз меньше, чем надземный. В составе микроорганизмов преобладают грибы.
Внутрипрофильное поступление органических остатков преобладает в травянистых экосистемах, в т.ч. степи. Основная часть биомассы сосредоточена в минеральной толще почвы. Корневой опад в 3-6 раз превышает наземный. В составе микроорганизмов преобладают бактерии.
В агроценозах органические остатки поступают в виде:
корневых систем культурных растений, пожнивных остатков, соломы
сидератов (зеленых удобрений)
органических удобрений (основной источник навоз), при этом 50 % фитомассы отчуждается с урожаем.
Важнейшими факторами являются количество, качественный состав опада и обогащение его элементами питания, азотом, биофильными элементами.
Химический состав органических остатков
Химический состав представлен различными по устойчивости к микробиологическому воздействию классами сложными органическими соединениями.
Сухое вещество представлено: углеводы (целлюлоза, гемицеллюлоза), белки, лигнин, липиды, воска и смолы, дубильные вещества, различные пигменты, ферменты и витамины.
С, H, O, N (на них приходится 90-99 %), зольные элементы (1-10 %) – Ca, K, Si, P, Mg; С : N
Минимальная зольность характерна для древесных остатков. Максимальная зольность для травянистых остатков.
Структура органического вещества. Состав и свойства гумуса
Всю совокупность органических соединений углерода, присутствующих в почве, называют органическим веществом. По Д.С. Орлову (1985) органическое вещество почвы подразделяется на следующие структурные элементы (рис. 14).
Рисунок 14 — Номенклатурная схема подразделения органических веществ почвы (Орлов, 1985)
Это органические остатки (ткани растений и животных, частично сохранившие исходное анатомическое строение), продукты трансформации и распада, органические соединения специфической и неспецифической природы (рис 15).
Гумусом называют сложный динамический комплекс органических соединений, образующихся при разложении и гумификации органических остатков и продуктов жизнедеятельности живых организмов. Набор органических веществ в почве очень велик. Содержание отдельных соединений меняется от целых процентов до следовых количеств. Однако ни перечень соединений, ни их соотношение в разных почвах нельзя считать случайными.
Неспецифические органические соединения – это соединения, синтезируемые живыми организмами и поступающие в почву после их отмирания. Значит, источником неспецифических соединений служат растительные и животные остатки. Химический состав различных органических остатков имеет общие черты. Преобладают углеводы, лигнин, белки, липиды.
полная минерализация вымывание
Рисунок 15 — Функционально-генезисная классификация органического вещества почв: – основные пути трансформации органического материала;
– возможные направления трансформации органического материала;
* – образование обусловлено деятельностью дождевых червей;
** – образование происходит в основном за счет сорбции
По данным Л.А. Гришиной (1986), запасы моно- и олигосахаридов в надземной массе фитоценозов тундры составляют 9-50 г/м 2 , хвойных лесов -500-1000, степей – 11-17 г/м 2 . Запасы целлюлозы в тундровых сообществах достигают 26-119 г/м 2 , хвойных лесах -8,5 – 9,5, разнотравно-злаковых лугах -115, зерновых агроценозах -75-100 г/м 2 . Моно- и олигосахаридов в корнях тундровых сообществ накапливается больше, чем в надземной массе. В корнях травянистых растений степей их примерно столько же, сколько в надземных органах. Наибольшее количество целлюлозы отмечается в корнях хвойных лесов (более 2,5 кг/м 2 ).
Значение лигнина определяется следующими свойствами:
Это одно из наиболее устойчивых к разложению органических соединений, поступающих в почву с растительным опадом;
Содержит бензольные ядра, несущие гидроксильные и метоксильные группы. Углеродный скелет такого ядра сходен со скелетом ароматических продуктов деструкции гумусовых кислот;
Хорошо гумифицируется;
Служит источником для образования гуминовых веществ.
Лигнин в максимальных количествах содержится в одревесневших частях растений (до 20%), много его в составе лишайников (до 10%) и почти нет во мхах. В надземной массе травянистой растительности луговых степей и агроценозов содержание лигнина не превышает 8%. Запасы лигнина в надземной биомассе хвойных лесов составляют 4-6 кг/м 2 , тундровых фитоценозов – до 90, луговых степей -30 г/м 2 .
Белки, полипептиды, аминокислоты, аминосахара, нуклеиновые кислоты и их производные, хлорофилл, амины – важнейшие неспецифические азотсодержащие вещества. Белки составляют 90% этой группы веществ и имеют следующее значение:
Потребляются микроорганизмами;
Подвергаются быстрому разложению до пептидов или аминокислот;
Минерализуются до воды и аммиака;
Совместно с пептидами и аминокислотами входят в состав гуминовых веществ.
Содержание белков и других азотсодержащих соединений в различных организмах колеблется в широких пределах. Запасы белков в надземной части фитоценозов тундры меняются от 12-46 г/м 2 , в хвойных лесах – от 300 до 400, луговых степях до 50 г/м 2 . В подземной биомассе кустарничково-осоко-моховой тундры они равняются 80 г/м 2 , хвойных лесах 180-280, луговых степях – 70-130 г/м 2 . В растительных остатках бобовых культурных растений запасается в 2-3 раза больше белков, чем в пожнивно-корневых остатках злаковых полевых культур.
В остатках растений, животных и микроорганизмов есть и другие углеродсодержащие соединения, например, воски, смолы, дубильные вещества, пигменты, ферменты. Они также выполняют определенную роль в почвенных процессах.
Специфические органические соединения углерода представлены гумусовыми кислотами (гуминовые и фульвокислоты) и гумином.
Гуминовые кислоты (ГК) – высокомолекулярные аморфные темноокрашенные органические вещества, строение которых окончательно не установлено. Различные группы ГК образуются в результате постмортального (посмертного) превращения органических остатков. Образуемые в результате сложных биосинтетических процессов из продуктов деструкции отмерших растительных организмов и бактериальных метаболитов, гуминовые кислоты стабилизируют органическое вещество в коре выветривания, предохраняя его, в известной мере, от тотальной минерализации. Гуминовые кислоты хорошо растворяются в щелочных растворах, слабо растворяются в воде и не растворяются в кислотах. ГК извлекаются из биокосных тел различными водными растворами, например растворами едкого натра (NaOH), едкого калия (KOH), аммония (NH4OH), гидрокарбоната натрия (NaHCO3), пирофосфата натрия (Na4P2O7), фторида натрия (NaF), щавелевокислого натрия, мочевины (карбамида) и др. и осаждаются из полученных растворов при подкислении минеральными кислотами (до pH
1. ГК, выделенные из почвы в виде сухого препарата, имеют темно-коричневый или черный цвет, среднюю плотность 1,5 г/см³. Гуминовые кислоты относятся к классу веществ, характеризующихся высоким содержанием углерода и объединяемых названием органических высокомолекулярных азотсодержащих карбонизованных. Принципиально общий тип строения этих веществ представляет собой плоскую атомную сетку циклически полимеризованного углерода с боковыми радикалами в виде разветвленных цепей линейно полимеризованных атомов углерода. Несомненным является аморфный характер ГК. Характерными особенностями ГК является их полидисперсность (разнообразие величин их частиц) и гетерогенность (неоднородность) по деталям их строения.
Фульвокислоты (от лат. fulvus – желтый) в современном понимании – кислоторастворимая часть гуминовых веществ. Чаще всего к ним относят всю совокупность кислоторастворимых органических веществ, остающихся в растворе после осаждения гуминовых кислот. Истинные ФК – это те органические соединения, которые находятся в кислом фильтрате после осаждения гуминовых кислот и отделяются из него посредством сорбции на активированном угле. Существует мнение, что фульвокислоты появляются аналитически в результате щелочного и/или кислотного гидролиза различных органических веществ, входящих в состав биокосных тел, т. е. ФК – артефакт. Термин «фульвокислоты» ввел в конце 1930-х гг. XIX столетия С. Оден вместо терминов «креновые (ключевые)» и «апокреновые (осадочно-ключевые) кислоты» Я. Берцелиуса, выделившего их из железных охр и болотных руд. Из почвы и торфа их впервые выделили Р. Герман и Г. Мульдер. Выделенные из почвы препараты фульвокислот окрашены в светло-бурые тона, а растворы их в зависимости от концентрации и степени фракционирования имеют соломенно-желтую, светло-бурую и оранжево-вишневую окраску. Они хорошо растворимы в воде, в ряде органических растворителей, причем водные растворы их характеризуются резкой кислой реакцией (рН 2,8–5,5). Фульвокислоты, как и гуминовые кислоты, представляют собой высокомолекулярные азотсодержащие органические кислоты. От ГК отличаются более светлой окраской, большей окисленностью и меньшим содержанием углерода, повышенным количеством водорода, а также большей гидрофильностью. Элементный состав их заметно отличается от элементного состава гуминовых кислот и колеблется в следующих пределах ( %): С – 40–52, Н – 4–6, N – 2–6, O – 42–52. В молекуле фульвокислот доминирует алифатическая часть, представленная аминокислотными и углеводными компонентами. Ароматические и алифатические компоненты ФК аналогичны тем, что и в ГК, но их ароматическая часть выражена менее ярко. Молекулярная масса различных фракций ФК колеблется от 200–300 до 30 000–50 000 дальтон, что также подтверждает высокую степень их гетерогенности. Кислотная природа фульвокислот обусловлена карбоксильными и фенолгидроксильными группами, водород которых способен к обменным реакциям. Эти группы в ФК составляют 800–1000 мг-экв на 100 г препарата. Фульвокислоты хорошо растворимы в воде и способны образовывать сильно кислые весьма концентрированные водные растворы (например, pH 0,01 н. раствора фульвокислот соответствует 2,5–2,6, а 0,005 н. раствора – 3,0). С одно- и двухвалентными катионами (например, с K + , Na + , NH4 + , Ca 2+ , Mg 2+ ). ФК образуют водорастворимые соли, однако в сильнощелочной среде (pH > 10) часть ФК (более сильно окрашенная) может осаждаться ионами кальция и бария. С трехвалентными катионами (например, с Fe 3+ и Al 3+ ) ФК в зависимости от условий, при которых протекает реакция, могут выпадать в осадок или образовывать водорастворимые комплексные соединения.
Благодаря сильнокислой реакции и хорошей растворимости в воде ФК энергично разрушают минеральную часть почвы. При этом степень разрушительного действия ФК на минералы зависит также от содержания ГК в данной почве; чем меньше в ней ГК, тем сильнее действие ФК. Таким образом, раствор ФК представляет собой свободнодисперсную агрегативно устойчивую систему гуминовых веществ, менее всего зависящую от концентрации, величины водородного показателя (pH) и ионной силы раствора. По степени подвижности выделяют две фракции органического вещества: легкоминерализуемая (ЛМОВ) и стабильная (Сстаб. гумус). ЛМОВ служит одновременно источником синтеза гумуса и источником формирования минерализационного потока углерода в атмосферу; рассматривается как сумма лабильного (ЛОВ) и подвижного (ПОВ) органического вещества.
Компонентами ЛОВ являются растительные и животные остатки, микробная биомасса, корневые выделения; ПОВ – органические продукты растительных остатков и гумуса, легко переходящие в растворимую форму. Стабильный гумус – устойчивое к разложению органическое вещество.
Разделение органического вещества по степени подвижности необходимо не только для изучения теоретических вопросов, но и практики земледелия. Дефицит легкоминерализуемого органического вещества в почвах определяет ухудшение питательного режима и структурного состояния почв. Поэтому задача земледельца заключается в поддержании в почве определенного количества легкоминерализуемого органического вещества. В.В.Чупровой (1997), установлено, что запашка 8 т/га пожнивно-корневых остатков люцерны или 12т/га фитомассы донникового сидерата в пахотный слой выщелоченного чернозема обеспечивает положительный баланс углерода и азота в почве и существенную прибавку урожайности культур в севообороте.
Следовательно, увеличивая и поддерживая на определенном уровне количество легкоминерализуемых веществ, можно повышать потенциал почвенного плодородия, в том числе и эффективного.
Процессы превращения органических остатков в почве
Совокупность процессов трансформации органических веществ в почвах составляют процесс гумусообразования, который определяет формирование и эволюцию гумусового профиля почв. К процессам трансформации органических веществ относят: поступление в почву растительных остатков, их разложение, минерализацию и гумификацию, минерализацию гумусовых веществ, взаимодействие органических веществ с минеральной частью почвы, миграцию и аккумуляцию органических и органо-минеральных соединений.
Любые органические остатки, попадающие в почву или находящиеся на ее поверхности, разлагаются под воздействием микроорганизмов и почвенной фауны, для которых они служат строительным и энергетическим материалом. Процесс разложения органических остатков слагается из двух звеньев – минерализации и гумификации.
Минерализация – распад органических остатков до конечных продуктов – воды, диоксида углерода и простых солей. В результате минерализации происходит сравнительно быстрый переход различных элементов (азот, фосфор, сера, кальций, магний, калий, железо и др.), закрепленных в органических остатках, в минеральные формы и потребление их живыми организмами следующих поколений.
Гумификация– совокупность биохимических и физико-химических процессов трансформации продуктов разложения органических остатков в гумусовые кислоты почвы. Итог гумификации – закрепление органического вещества в почве в форме новых продуктов, устойчивых к микробиологическому разложению, служащих аккумуляторами огромных запасов энергии и элементов питания.
Факторы минерализации
Наиболее интенсивно распад органических остатков до конечных продуктов идет при оптимальной влажности почвы (60 — 80% от полной влагоемкости) и температуре (20-25 0 С). При увеличении влажности и температуры или их снижении уменьшается скорость разложения остатков. При постоянном и резком недостатке влаги и высоких температурах в почву поступает мало растительных остатков, разложение их замедлено и осуществляется в виде процессов «тления». Темп разложения растительных остатков в значительной степени зависят от типа биогеоценоза и типа почвы.
Большое влияние на интенсивность разложения опада оказывает и химический состав растительных остатков. При высоком содержании в составе растительных остатков соединений, устойчивых к микробиологическому воздействию, они накапливаются на поверхности почвы в количествах, значительно превышающих масштабы ежегодного опада (почвы тундры и таежно-лесной зоны). По этой причине древесина, хвоя и другие компоненты растительного опада, содержащие много лигнина, смол, дубильных веществ, но мало азотистых белковых соединений, разлагаются медленно. Надземная масса трав, особенно бобовых, разлагается быстрее, а корневые остатки минерализуются с меньшей скоростью вследствие увеличения в них доли лигнино-целлюлозного компонента. Когда же растительные остатки обогащены белковыми соединениями, то их разложение протекает весьма интенсивно (почвы лесостепи).
Важно учитывать особенности климатических условий, которые определяют характер функционирования почвенной фауны и микроорганизмов. Значительное влияние на скорость минерализации оказывают минералогический и гранулометрический составы почвы. При оптимальных условиях разложения в почвах тяжелого гранулометрического состава, богатых высокодисперсными глинистыми минералами, минерализационные процессы тормозятся. Это обусловлено высокими величинами свободной поверхности минералов, благодаря чему на них сорбируются промежуточные продукты разложения и новообразованные гумусовые вещества, что предохраняет их дальнейшей минерализации. В почвах с преобладанием первичных минералов, сорбция практически не выражена, поэтому процесс минерализации протекает очень активно. Это свойственно почвам легкого гранулометрического состава, в связи с чем они всегда содержат мало гумуса. В почвах с кислой реакцией среды процессы разложения остатков тормозятся вследствие угнетения бактериальной микрофлоры. При наличии в почве поливалентных металлов (железо, марганец, алюминий), образуются комплексные органо-минеральные соединения, устойчивые к действию микроорганизмов. Одновалентные катионы и щелочная реакция среды способствуют образованию подвижных водорастворимых органических соединений, что благоприятствует их последующей минерализации.
Таким образом, свойства почвы прямо или косвенно влияют на скорость разложения органических остатков. Прямое влияние выражается в степени развития процессов взаимодействия продуктов распада с компонентами почвы, косвенное – в регулировании интенсивности жизнедеятельности микроорганизмов и их состава.
Гумусное состояние почв и приемы его регулирования
Гумусное состояние почв – важнейший показатель количественной оценки плодородия. Характеризуется набором показателей, отражающих уровень накопления гумуса в почве; его профильное распределение; качественный состав; миграционную способность (табл. 7).