Меню

Использование растений для биотестирования почв

Использование растений для биотестирования почв

К ОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.

Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.

СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

На правах рукописи

Багдасарян Александр Сергеевич

БИОТЕСТИРОВАНИЕ ПОЧВ ТЕХНОГЕННЫХ

ГОРОДСКИХ ТЕРРИТОРИЙ С ИСПОЛЬЗОВАНИЕМ

на соискание ученой степени

кандидата биологических наук

Научный руководитель:

доктор ветеринарных наук, профессор И.М. Мануйлов Ставрополь 2005 1 СОДЕРЖАНИЕ ВВЕДЕНИЕ……………………………………………………………………. 3 ГЛАВА I. ОБЗОР ЛИТЕРАТУРЫ……………………………………………. 8 1.1 Почва как депонирующая среда техногенных загрязнителей…………. 8 1.1.1 Химическое загрязнение почвы………………………………………….. 1.2 Биотестирование как один из методов оценки состояния окружающей среды…………………………………………………………………………….. 1.2.1 Использование международных тест-систем для оценки состояния окружающей среды……………………………………………………………. 1.2.2 Растения как тест-системы биологического тестирования качества окружающей среды……………………………………………………………. 1.2.3 Биотестирование почв с помощью животных и растительных тест систем……………………………………………………………………………. 1.3 Эколого-географическая характеристика г. Ставрополя………………… 1.3.1 Географическое положение……………………………………………… 1.3.2 Климат……………………………………………………………………. 1.3.3 Почвы……………………………………………………………………. 1.3.4 Основные типы антропогенного воздействия в г. Ставрополе……….. ГЛАВА II. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЙ…………………. ГЛАВА III. ИЗУЧЕНИЕ ВЛИЯНИЯ ПОВЫШЕННОГО СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВАХ НА РАЗВИТИЕ ТЕСТ-ОТКЛИКОВ У МОДЕЛЬНЫХ РАСТЕНИЙ…………………………………………………… 3. 1 Содержание тяжелых металлов в почвах тестируемых пунктов……… 3. 2 Оценка загрязненности почв тестируемых пунктов тяжелыми металлами с помощью митотической активности………………………………………… 3. 3 Биотестирование почв по всхожести семян модельных растений……… 3. 4 Тестирование почв на проростках редиса и кресс-салата……………….. 3.5 Действие повышенного содержания тяжелых металлов почв тестируемых пунктов на активность каталазы проростков модельных растений…………. ГЛАВА IV. БИОТЕСТИРОВАНИЕ ВОДНЫХ ВЫТЯЖЕК ПОЧВ………… 4. 1 Содержание тяжелых металлов в водных вытяжках почв тестируемых пунктов………………………………………………………………………….. 4. 2 Чувствительность Allium-теста к присутствию ионов металлов в водных вытяжках почв тестируемых пунктов………………………………………… 4.

3 Действие водных вытяжек почв тестируемых пунктов на митотическую активность клеток меристемы корней Allium cepa…………………………. 4. 4 Биотестирование водных вытяжек почв по всхожести семян модельных растений……………………………………………………………………….. 4. 5 Биотестирование водных вытяжек почв на проростках редиса и кресс салата…………………………………………………………………………… 4. 6 Действие водных вытяжек почв на активность каталазы проростков модельных растений…………………………………………………………… 4. 7 Расчет индекса токсичности почв и водных вытяжек почв по результатам биотестирования……………………………………………………………….. ЗАКЛЮЧЕНИЕ ……………………………………………………………….. ВЫВОДЫ………………………………………………………………………. СПИСОК ЛИТЕРАТУРА……………………………………………………. ВВЕДЕНИЕ Актуальность проблемы. В современных условиях природная среда подвержена комбинированному техногенному загрязнению. Известно, что в связи с жизнедеятельностью человеческой цивилизации синтезируются и попадают в окружающую среду сотни тысяч новых химических соединений с невыясненными токсикологическими характеристиками (Дятлов, 2000). Так, разнообразные соединения естественного и антропогенного происхождения накапливаясь в почве, обусловливают ее загрязненность и токсичность.

Методы биотестирования все чаще используются для определения токсических свойств окружающих нас сред: воздуха, воды, почвы, промышленных отходов, материалов и т. д. (Илющенко, Щегольков, 1990;

Сан ПиН 2.1.7.573-96;

Белоусова, Селезнева, 2004;

Underbrink, Sparrow, 1974;

Cebulska Wasilewska et al., 1981;

Cebulska-Wasilewska, 1986) Это обуславливается рядом обстоятельств: во-первых, указанные объекты обычно содержат большое количество ингредиентов, токсикологические свойства которых не всегда характеризуются простой суммой свойств каждого из них с учетом количественного состава, определяемого аналитическими методами;

во вторых, среда часто загрязнена неустойчивыми продуктами взаимодействия и распада, которые иногда токсичнее исходных веществ;

в-третьих, количество присутствующих в окружающей среде загрязнителей значительно превышает число удовлетворительных физико-химических методов анализа, позволяющих контролировать их содержание на уровне ПДК (Илющенко, 1995). Помимо этого, биотестирование позволяет получить интегральную токсикологическую характеристику природных сред независимо от состава загрязняющих веществ, поскольку большая часть загрязняющих веществ, в связи с отсутствием оборудования, методик и стандартов, аналитически не определяется, в связи с чем методы биотестирования приобретают все большую популярность и внедряются повсеместно (Дятлов, 2000).

Проведение экспериментов по влиянию различных поллютантов на растительные объекты в контролируемых условиях позволяет решать многие задачи;

установить причины разной устойчивости растений и тенденции приспособления к токсикантам, выявить влияние конкретного, исключить действие других факторов внешней среды, выяснить летальную дозу поллютанта и т.д. (Шершунова, Попова, 1999;

Parry, et al., 1976;

Klindworth, et al., 1979;

Degrassi, Rizzoni, 1981;

Panda, Sahu, 1985;

Fiskesjo, 1985, 1993;

Chauhan, et al.,1986;

Leith et al., 1989;

Badr, et al., 1992;

Cordina, et al., 1993;

Ma, et al., 1995) Городские почвы являются депонирующей средой практически для всех поллютантов и при геохимическом изучении транспортно-селитебных ландшафтов являются высоко информативными (Шунелько, 2000).

В связи с этим представляется актуальным разработка методов комплексного биотестирования почв с различным по интенсивности автотранспортным и промышленным воздействием и оценка чувствительности различных тест-откликов к повышенному содержанию тяжелых металлов в почве как в рамках одной тест системы, так и в сравнении чувствительности разных тест-систем.

Цель и задачи исследования. Цель настоящего исследования состояла в разработке методов биотестирования токсичности почвенного покрова техногенных зон города с различным по интенсивности автотранспортным и промышленным воздействием с помощью растительных тест-систем (на примере г. Ставрополя), а также в определении наиболее чувствительной тест-системы к содержанию тяжелых металлов в почве исследуемых пунктов.

Для достижения цели решались следующие задачи:

1. Определение содержания подвижных форм меди, свинца, кадмия, цинка и хрома в почвах техногенных зон исследуемых пунктов г.Ставрополя.

2. Установление наиболее чувствительной тест-системы к загрязнению почв техногенных зон городских территорий.

3. Выявление качественного проявления реакций индикаторных признаков тест-растений на повышенное содержание тяжелых металлов в почвах.

4. Проведение корреляционного анализа и выявление взаимосвязи между содержанием тяжелых металлов в почвах и количественным проявлением тест-откликов модельных растений.

5. Разработка шкалы токсичности сред по результатам биотестирования.

Научная новизна. Впервые проведено биотестирование почвенного покрова территорий с различным по интенсивности автотранспортным и промышленным воздействием с помощью трех растительных тест-систем (Raphanus sativus, Lepidium sativum, Allium cepa). Впервые предложен метод биотестирования водных вытяжек почв с экспонированием свежих луковиц Allium cepa в исследуемых вытяжках в течение 4, 7, 14 суток, с последующим измерением длины корней. Предложено использовать совместно ряд тест-откликов на одном растительном тест-объекте для биотестирования загрязненности почвенного покрова и водных вытяжек почв. Доказана перспективность использования активности каталазы проростков тест-растений в качестве чувствительного критерия для биотестирования загрязненности почвенного покрова тяжелыми металлами.

Проведено сравнение тест-откликов используемых модельных организмов в сходных условиях загрязнения тяжелыми металлами почвенного покрова.

Основные положения, выносимые на защиту.

1. При биотестировании почв с повышенным содержанием тяжелых металлов эффективно использовать такие индикаторные признаки, как митотическая активность апикальной меристемы корешков проростков лука репчатого, всхожесть семян, каталазная активность, длина надземной и подземной части проростков редиса и кресс-салата.

2. Токсичность тестируемых почв проявляется в ингибировании и стимулировании развития тест-откликов у редиса и кресс-салата.

3. При биотестировании почв по морфометрическим признакам эффективно применять экспонирование свежих луковиц Allium cepa в тестируемых вытяжках почв.

4. Активность каталазы проростков редиса и кресс-салата возможно использовать в качестве биохимического индикатора оценки токсичности городских почв.

5. При обобщении данных используется шкала токсичности исследуемых сред, в которой учитывается не только ингибирование, но и стимулирование развития тест-откликов.

Теоретическая и практическая значимость. Научно обоснованные данные представляют интерес с точки зрения методов биотестирования загрязненности объектов окружающей среды ввиду открытости и актуальности этого вопроса на современном этапе развития экологии.

Проведенное биотестирование почв, с повышенным содержанием тяжелых металлов, при помощи нескольких тест-откликов на одном модельном организме, позволяет увеличить степень чувствительности биотеста. Использованные методы могут быть применены для диагностики загрязнения почв как тяжелыми металлами, так и недифференцированными поллютантами.

Материалы диссертации могут быть использованы в процессе преподавания экологии, цитологии, цитогенетики, а также при организации и проведении спецкурса «Биотестирование объектов окружающей среды».

Апробация работы. Результаты исследований были представлены и обсуждены на межрегиональной научно-практической конференции «Образование, здоровье и культура в начале XXI века» (г. Ставрополь, 2004);

II Всероссийской научно-практической конференции «Химическое загрязнение среды обитания и проблемы экологической реабилитации нарушенных экосистем» (г. Пенза, 2004);

Всероссийском постоянно действующем научно-техническом семинаре «Экологическая безопасность регионов России и риск от техногенных аварий и катастроф» (г. Пенза, 2004);

научной конференции «Университетская наука – региону» (г. Ставрополь, 2004);

международной научной конференции «Татищевские чтения:

актуальные проблемы науки и практики (АПНП-2004)» (г. Тольятти, 2004);

международной научной конференций студентов, аспирантов и молодых ученых «Ломоносов 2004» (г. Москва, 2004);

научной конференции «Эколого-гигиенические проблемы регионов России и стран СНГ» (г. Умаг, Хорватия, 2004);

50-й научной конференции «Университетская наука – региону» (г. Ставрополь, 2005);

российской студенческой научной конференции «Актуальные проблемы современной биологии» (г. Астрахань, 2005).

Публикации. По теме диссертации опубликовано 11 работ.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, выводов и списка цитируемой литературы.

Работа содержит 159 страницы машинописного текста, включает 25 таблиц, 29 рисунков.

Список цитируемой литературы включает 289 источников, в том числе 95 на иностранных языках.

ГЛАВА I. ОБЗОР ЛИТЕРАТУРЫ 1.1 Почва как депонирующая среда техногенных загрязнителей Почва это весьма специфический компонент биосферы, поскольку она не только геохимически аккумулирует компоненты загрязнений, но и выступает как природный буфер, контролирующий перенос химических элементов и соединений в атмосферу, гидросферу и живое вещество.

Микроэлементы, поступающие из различных источников, попадают в конечном итоге на поверхность почвы, и их дальнейшая судьба зависит от ее химических и физических свойств. Продолжительность пребывания загрязняющих компонентов в почвах гораздо больше, чем в других частях биосферы. Хорошо известна глобально-экологическая роль почвы как природного фильтра для разного рода техногенных загрязнителей, среди которых особое место занимают тяжелые металлы (Аржанова, 1977;

Ильин, 1991). Почвы в силу своих природных свойств способны накапливать значительные количества загрязняющих веществ (Критерии оценки экологической обстановки…, 1992). Известно большое число примеров прямых антропогенных, а также опосредованных человеком воздействий окружающей среды на почву, способствующих ее загрязнению.

Будучи частью всех наземных экосистем, почва активно участвует во многих важных процессах преобразования веществ. Когда происходит количественное изменение долгое время державшихся на одном уровне факторов окружающей среды или вступают в действие совершенно новые экологические факторы, влияющие на почву, могут возникнуть нагрузки, которые нанесут вред почвенным организмам или даже изменят систему ценотических взаимоотношений между ними.

Загрязнение почвы вызывается различными по масштабу и по территориальному размаху явлениями, среди которых:

широкомасштабное территориальное (глобальное) загрязнение почвы, вызываемое совокупностью большого числа отдельных источников, не поддающихся более детальной идентификации территориально ограниченное загрязнение, причиной которого является в большинстве случаев более или менее известное небольшое число ограниченных по своему территориальному влиянию источников локальное узкоограниченное загрязнение почвы с кратко- или долговременным воздействием на отдельные организмы и экосистемы.

Загрязнение почвы проявляется в основном в двух формах:

1. Физическое изменение. Связано с различными, прежде всего механически действующими агентами, способными привести к существенным нагрузкам на экосистемы. Как правило, сильно подвержены физическим нагрузкам все имеющие антропогенное происхождение, т.е.

сильно измененные почвы. Это относится к большей части почв, возникающих в процессе рекультивации бывших горных разработок, на месте поселений или промышленных предприятий.

2. Химическое загрязнение вызвано веществами, действующими в виде газов, растворов или твердых тел и не вызывающими при этом, по крайней мере в начальной стадии, изменений физического характера. Этот вид загрязнения превосходит как в количественном, так и в качественном отношении все виды ее физического изменения (Биоиндикация загрязнений.

1.1.1 Химическое загрязнение почвы Разнообразные соединения естественного и антропогенного происхождения, накапливаясь в почве, обуславливают ее загрязненность и токсичность. Эти понятия следует различать. Загрязнение привнесение в какую-либо среду или возникновение в ней новых, обычно не характерных для нее физических, химических или биотических агентов, или превышение в рассматриваемое время естественного среднемноголетнего уровня (в пределах его крайних колебаний) концентраций перечисленных агентов в среде.

Токсичность ядовитость, способность некоторых химических веществ оказывать вредное влияние на организмы, поражать их (Реймерс, Яблоков, 1992). Определить степень токсичности почвы можно с помощью биотестирования (Кабиров с соавт., 1997;

Goggleman, Spitzauer, 1982;

Brown, et al., 1985;

McDaniels, et al., 1993;

Knasmller, et al., 1998;

Cabrera, Rodriguez, 1999).

Химическое загрязнение почвы вызывается разными причинами. Оно происходит либо сознательно (например, в результате применения средств защиты растений), либо непреднамеренно (в случае промышленных выбросов). В соответствии с этим, в большинстве случаев с территориальной точки зрения различными могут быть и радиус действия, и интенсивность загрязнения. Кроме того, высокий уровень техногенной нагрузки на почву является характерным для урбанизированной территории. Особенность загрязнения почв крупных городов является поступление на их поверхность большого количества соединений тяжелых металлов от различных источников загрязнения (Ладонина, Ладонин, 2000) Исходя из агрегатного состояния (газообразного, жидкого, твердого) и способа действия загрязнителей, упрощенно их можно подразделить на следующие группы.

Газы (особенно серосодержащие промышленные выбросы, галогениды и окислы азота). Загрязнение почвы сернистым газом (или соответствующими продуктами его окисления SO3, SO4) в полевых условиях, как правило, происходит вместе с загрязнением другими газами или пылью.

Пыль (зола, известковая пыль, частицы, содержащие тяжелые металлы, особенно промышленные выбросы). На больших пространствах Центральной Европы большое значение имеют пылевые известковые выбросы, приводящие, прежде всего в слабозабуференных кислых почвах, к изменению рН до нейтральных и основных значений.

Высокий уровень техногенной нагрузки на почву является характерным для урбанизированной территории. Особенность загрязнения почв крупных городов является поступление на их поверхность большого количества соединений тяжелых металлов от различных источников загрязнения (Ладонина, Ладонин, 2000).

К тяжелым металлам (плотность которых выше 5,0) относятся как микроэлементы, имеющие более или менее важное значение для питания организма (железо, магний, цинк, медь, кобальт и молибден), так и элементы с ограниченными (никель, ванадий) или до сих пор недостаточно изученными физиологическими функциями и экологической ролью (кадмий, мышьяк, уран, свинец, хром, ртуть). Доля отдельных элементов в общем содержании тяжелых металлов весьма различна в почвах, обогащенных ими как природным, так и антропогенным путем. Решающую при токсичном действии тяжелых металлов на (растительные) организмы является не столько их общее содержание в почве, сколько концентрация в доступном для организма состоянии. Эта концентрация вблизи природных место нахождений тяжелых металлов бывает повышена по сравнению с нормальной в 10—10000 раз;

таких же величин она может достигать в антропогенно обогащенных тяжелыми металлами почвах.

Соли (переносимые воздухом и водой, особенно при посыпании зимой улиц для удаления льда или при добыче и переработке соли).

Агрохимикаты (средства защиты растений, удобрения). Загрязнение почв, вызванное использованием агрохимикатов, связано, прежде всего, с применением средств защиты растений, регуляторов роста и удобрений.

Среди средств защиты растений (СЗР), вероятно, наиболее широкомасштабное воздействие на пространственные и функциональные отношения в экосистемах оказывают гербициды. Их воздействие зависит в каждом отдельном случае от химического состава, применяемой концентрации и степени их стойкости и проявляется после поступления в почву и адсорбции (порядка 30—50 %) на гумусных и глинистых коллоидах.

Разложение гербицидов происходит как абиотическим (химическим), так и биотическим (прежде всего микроорганизмами) путем. К тому же, загрязнение почв может происходить и при ненормированном использовании удобрений (Шуберт, 1988).

Изменение химических параметров почвы отражается спустя короткий или длительный период на росте и продуктивности отдельных видов, их популяций или приводит к более или менее сильным нарушениям структуры фитоценозов и даже к развитию сукцессий.

По причине физико-химической специфики отдельных почв при одинаковой интенсивности и продолжительности действия химического стрессора степень и форма возникающего химического загрязнения может быть различной. Решающее значение для действий на биологическом уровне имеет, по этой причине, соотношение интенсивности стрессора и специфической реакции буферной системы почвы.

1. 2 Биотестирование-как один из методов оценки состояния окружающей среды На современном этапе обращает на себя внимание бурное развитие методов биомониторинга как единственного подхода адекватной оценки состояния биологических и экологических систем (Криволуцкий, 1991;

Егорова, Сынзыныс, 1997;

Петухова, Доронина, 1999;

Евсеева, Гераськин, 2000;

Егорова, Белолипецкая, 2000;

Колупаев, 2000). В связи с этим разработка, совершенствование и внедрение методов биомониторинга в сеть контроля окружающей среды как отдельных ведомств, так и конкретных АЭС является актуальной задачей (Егорова с соавт., 2002). Методы биотестирования и биоиндикации позволяют диагностировать состояние экосистемы по откликам на стрессовое воздействие извне отдельных компонентов биоты. Экологическая диагностика на уровне биотестирования и биомониторинга дает интегральную адекватную оценку качества среды обитания любой биологической популяции, включая человека. Биотесты могут быть рекомендованы для непрерывного экспресс-контроля состояния окружающей среды промышленных районов и природно-хозяйственных комплексов, контроля залповых вредных выбросов предприятий, для оценки эффективности применяемых методов детоксикации окружающей среды и работы очистных сооружений, а так же экологической паспортизации предприятий и отдельных районов (Richardson, 1996;

Читайте также:  Кофейное дерево почва для пересадки

Rathinam, Mohanan, 1996).

Современный биомониторинг насчитывает несколько определений понятию «биотестирование». Биотестирование представляет собой методический прием, основанный на оценке действия фактора среды, в том числе токсического, на организм, его отдельную функцию или систему организмов (Методы биотестирования…, 1989). Согласно Морозовой (2001) биотестирорвание – это метод моделирования последствий воздействия фактора, обладающего общебиологическим действием на живое. Главная задача, решаемая биотестированием это получение быстрого ответа — есть или отсутствует токсичность (Тарасенко, 1999). Евгеньев (1999) под биотестированием понимает приемы исследования, при котором о качестве среды, факторах, действующих самостоятельно или в сочетании с другими, судят по выживаемости, состоянию и поведению специально помещенных в эту среду организмов – тест-объектов. Тест-объекты должны отвечать следующим требованиям:

1. Высокая чувствительность к воздействиям даже малых доз мутагена.

2. Быстрота и экономичность методов тестирования.

3.Воспроизводимость (возможность получения аналогичных результатов на этой же тест-системе).

4. Чувствительность не только к мутагенам, но и к их метаболитам.

5. Возможность экстраполировать данные, полученные при исследованиях in vitro на условия in vivo (Дмитриева, Парфёнов, 1991).

Биотестирование не отменяет систему аналитических и аппаратурных методов контроля природной среды, а лишь дополняет ее качественно новыми биологическими показателями, так как с экологической точки зрения сами по себе результаты определения концентрации токсикантов имеют относительную ценность (Патин, 1981). По мнению Оливернусовой (1991), использование биологических тест-систем позволяет определить изменения в экосистемах на очень ранней стадии, когда они еще не проявляются в виде морфологических и структурных изменений и их нельзя выявить другими методами. Это дает возможность предвидеть нарушения экосистемы и вовремя принять меры. Кроме того, состояние биоиндикаторов можно использовать как дополнительную информацию при оценке здоровья населения. По словам Егоровой (2002) кумулятивный эффект всего многообразия сочетаний различных воздействий возможно оценить лишь с помощью биотестирования.

Тарасенко (1999) рассматривает биотестирование как введение в более тщательный и всесторонний анализ химического состава воды. Вопросам биотестирования загрязненности воды поллютантами посвящены многие работы (Илющенко, Щегольков, 1990;

Морозова с соавт., 2001;

Христова, Безруков, 1994).

Несмотря на некоторые недостатки биотестирования (трудностью учета адаптационно-приспособительных изменений тест-организмов;

фазностью и сезонностью их реагирования, вызванной стимуляцией физиологических функций под воздействием малых концентраций загрязняющих веществ и их угнетением под воздействием больших концентраций;

различием метаболизма водных растений и животных и др.) (Бутаев с соавт., 2002). Перспективность контроля антропогенного загрязнения природных вод с помощью биотестов обоснована многочисленными исследованиями, и в Российской Федерации с 1991 г. оно стало обязательным элементом экологического мониторинга (Правила охраны поверхностных вод…, 1991). Кроме того, методы биотестирования нашли свое отражение в таких нормативных документах, как РД 118-02-90;

ПНД Ф Т 14.1:2:3:4.4-99;

СП 2.1.7.1386-03 и др). В субъектах продолжался эксперимент, направленный на внедрение методов биотестирования в области оценки качества возвратных вод и определения платы за сброс с учетом суммарной токсичности загрязняющих веществ. На основе результатов эксперимента подготовлена «Инструкция по расчету платы за сброс в водные объекты загрязняющих веществ с учетом их суммарной токсичности», которая направлена на рассмотрение в Минфин России и Минэкономики России (Государственный доклад …, 1999) Биоиндикация – родственный биотестированию прием, использующий для этих же целей организмы, обитающие в исследуемой среде. При выборе таких организмов приходится соблюдать определенные требования, среди которых возможность фиксировать четкий, воспроизводимый и объективный отклик на воздействие внешних факторов, чувствительность этого отклика на малые содержания загрязнителей и др. (Егоров, Егорова, 1999;

Егоров с соавт., 2001;

Михайлуц с соавт., 2001;

Известен пример биотестирования, основанный на использовании канареек для индикации появления рудничного газа в горных выработках горняками в средние века. Поведение птицы или ее гибель оповещали шахтеров о грозящей им опасности.

Биоиндикацию можно проводить на уровне молекул, клеток, органов (систем органов), организмов, популяций и даже биоценоза. Повышение уровня организации живой природы может приводить к усложнению, неоднозначности взаимосвязи биологического отклика с антропогенными факторами исследуемой среды, поскольку на них могут накладываться и природные факторы. Поэтому в качестве биотестов выбирают наиболее чувствительные к исследуемым загрязнителям организмы.

Использование биохимических реакций (молекулярный уровень индикации) связано с тем, что они наиболее чувствительны к воздействию внешних загрязнителей. В присутствии загрязнителей окружающей среды, например, происходит уменьшение содержания хлорофилла в мембранах хлоропластов растений или понижается способность фитопланктона к продуцированию кислорода в процессе фотосинтеза. Это может служить индикаторным признаком воздействия на живую природу газопылевых выбросов предприятий или токсичных компонентов сточных вод (Евгеньев, 1999).

При проведении биологического тестирования на уровне организмов выбор биологических переменных предполагает, что отклик должен коррелировать с изменениями на экосистемном уровне. Выявить такую зависимость на практике достаточно сложно. Однако такие показатели организмов, как рост особей, их продуктивность, выживаемость, состояние органов дыхания, состава крови и плазмы, удается использовать для биологического тестирования состояния среды (Евгеньев, 1999).

Чувствительность отклика биотестов на содержание биологически активных веществ в испытуемой среде можно проиллюстрировать на примерах. Многие организмы способны аккумулировать (накапливать) химические загрязнители выше их естественного содержания в воде и почве без быстро проявляющихся нарушений. Такая способность тест-организмов оказалась полезной в качестве индикаторного признака загрязнения окружающей среды и используется для аккумулятивной биоиндикации. Этот прием биотестирования применяют при исследовании процессов миграции токсичных веществ в окружающей среде. В качестве тест-организмов выбирают те из них, которые имеют высокий коэффициент биологического накопления (КН) токсикантов из окружающей среды. Фитопланктон, например, имеет значение КН по тяжелым металлам от 102 до 104. Величина КН зависит от природных факторов. Бензпирен в гидробиоте Берингова моря накапливается с КН, равным 2,9 » 103, а в теплых водах Средиземного моря накопление возрастает в пять раз. Знание КН оказалось удобным для глобального и регионального мониторинга окружающей среды. Для оценки загрязнения природных вод кадмием можно использовать результаты анализа его содержания в водорослях, полихлорированными бифенилами, Мирового океана – в жировых тканях морских млекопитающих, никелем, Средиземного моря – в устрицах. Содержание ртути в почвах региона удобно отследить по накоплению токсиканта в капусте, галогенидов – по иглам сосны, лишайникам. Наконец, лучший индикатор загрязнения автострад свинцом и кадмием – подорожник, растущий вдоль них.

Перечисленные методы не исчерпывают области применения биотестов для оценки загрязнения биосферы и прогноза влияния загрязнителей на живую природу. Несмотря на сложность выявления биологического отклика на воздействие внешних факторов, озабоченность состоянием экологии, очевидно, будет стимулировать дальнейшее развитие этих биоаналитических методов (Евгеньев, 1999).

Итак, несмотря на большое количество физико-химических методов диагностики состояния окружающей среды вопрос об использовании методов биотестирования остается открытым и требует детального рассмотрения вопросов применения конкретных тест-систем к конкретным случаям.

1.2.1 Использование международных тест-систем для оценки состояния окружающей среды Разработка тест-систем для выявления мутагенности среды, имеющих универсальный характер, обладающих высокой пропускной способностью является актуальной задачей настоящего времени (Дубинин, Пашин, 1978).

Сторонники тестирования выступают за необходимость создания комплекса тестов, поскольку возможность обнаружения всех генетических событий важных для человека отсутствует в любом единичном тесте (Фламм, 1977).

При оценке состояния окружающей среды исследователями используются различные тест-системы – от бактерий до млекопитающих (Каннукене, 1976;

Федорков, 1992, 1995;

Шавнин, Фомин, 1993;

Сальникова с соавт., 1994;

Зейферт, Хохуткин, 1995;

Федорова, Шестопалова, 1997;

Так для интегральной оценки уровня загрязнения водной среды токсическими веществами применяют методы биотестирования с помощью микроорганизмов. Тесты с использованием в качестве объектов прокариотических микроорганизмов отличаются большой пропускной способностью. При этом используют специальные штаммы. В широко распространенном тесте на Salmonella typhimurium, так называемый тест Эймса, используют штаммы ТА 97, ТА 98 и ТА 100 (Оценка мутагенных свойств … 1999). Вардуни (1997) изучала содержание мутагенных веществ в дождевой и талой воде, ила, почвы методом учета точковых мутаций у Salmonella typhimurium, а также провела сравнение чувствительности теста Эймса с чувствительностью метода анализа аберраций хромосом зачаточных листьев древесных растений в качестве экспресс-теста на мутагенность факторов окружающей среды.

Помимо прокариотических микроорганизмов для нужд биотестирования применяют и эукариотические микроорганизмы, к которым относятся дрожжи, нейроспора, аспергилл. Показателями мутагенности среды, при использовании вышеперечисленных объектов, является появление прямых и обратных генных мутаций, конверсий и реципрокных рекомбинаций в митозе (у дрожжей). Для биотестирования загрязнений природной среды Голубкова Э.Г. (1999) отмечает качества инфузорий, которые делают это простейшее хорошим объектом при изучении токсичности стоков поверхностных вод. В 1998 г. Госкомэкологией Курганской области приобретены и освоены прибор для измерения токсичности «Биотестер-2» (Государственный доклад …, 1999). Прибор «Биотестер-2» предназначен для экспресс оценки степени токсического загрязнения контролируемых водных объектов. Количественной характеристикой степени воздействия неблагоприятных факторов на тест объект, в биотестовой системе является хемотаксис инфузории туфельки (Paramecium caudatum). Восприятие химических веществ происходит на рецепторном уровне, чем объясняется скорость ответа тест-организма на воздействие химиката. Кроме того, известно, что структура рецепторов различных организмов (в том числе и инфузории) идентично хеморецепторным структурам высших организмов, поэтому подобная тест реакция хорошо моделирует воздействие загрязнителей на высшие организмы. Прибор позволяет проводить 15 проб за 1,5 часа (Инструкция к прибору «Биотестер-2», 1992) Некоторые авторы (Printes et al., 1998;

Diamantina Teresa et al., 2001;

Sakai Manabu.J., 2002) используют представителей рода Daphnia как тест объект для выявления токсичности исследуемых субстратов. Метод биотестирования с использованием ветвистоусых рачков Daphnia удобен, так как дафнии широко распространены в природе, легко культивируются, обладают высокой чувствительностью к токсикантам различной природы. В Российской Федерации дафниевый тест обязателен при установлении ПДК отдельных веществ в воде рыбохозяйственных водоемов (Тарасенко, 1999).

Кроме того, в нашей стране имеются нормативные документы в области охраны окружающей среды, которые регламентируют порядок проведения биотестирования токсичности природных и сточных вод, почв, и донных осадков на инфузориях, дафниях и цериодафниях (ПНД Ф Т 14.1:2:3:4.2-96;

ПНД Ф Т 14.1:2:3:4.3-99;

ПНД Ф Т 14.1:2:3:4.5-2000). Лапкина и Флеров (2001) для обнаружения в воде химических веществ раздражающего действия на первоначальном этапе их тестирования предлагают использовать поведенческие реакции молоди медицинской пиявки.

Другие авторы в качестве тест-объекта при биотестировании используют дрозофилу (Вавилов, Рябкова, 2001;

Ramos-Morales P.et al., 1995). В работах по учету рецессивных, сцепленных с полом летальных мутаций (РСПЛМ) используют линии дрозофил дикого типа с хорошо изученным спонтанным фоном мутабильности, например, Canton-S или 0-32, а в качестве тестерной линии – BASC. В Х-хромосоме мух этой линии имеются 2 инверсии – sc8 и d49, которые полностью исключают возможность кроссинговера между половыми хромосомами, но не нарушают жизнеспособности дрозофилы (Медведев, 1968).

Широко используемый метод учета соматических рекомбинаций (мозаицизма) у дрозофил предполагает использовать в качестве маркеров генов «у» и «sn3» в трансположении. В основе метода лежит учет мозаичных пятен, возникающих у мух тестерных линий в результате комплексного нарушения генотипа: митотической рекомбинации, потери хромосом или их фрагментов, транслокаций, делеций и генных мутаций (Методические рекомендации… 1982).

В настоящее время для тестирования мутагенности окружающей среды нашел широкое применение микроядерный тест (Ильинских с соавт., 1988).

Этот метод основан на выявлении микроядер в эритроцитах млекопитающих (Оценка мутагенной активности … 1984), в клетках эмбрионов (Титенко, Евсиков, 1977), корневой меристеме бобов (Rizzoni et all, 1995, 1998) и мейотических клетках традесканции (Ma, 1981 b).

1.2.2 Растения как тест-системы биологической индикации качества окружающей среды Использование растений в качестве чувствительных организмов к загрязнению окружающей среды уходит своими корнями в древние века.

Первые наблюдения сделали еще античные ученые: именно они обратили внимание на связь облика растений с условиями их произрастания. Живший в 327— 287 гг. до н. э. Теофраст написал широко известную работу «Природа растений», в которой содержится немало советов о том, как по характеру растительности судить о свойствах земель. Аналогичные сведения можно встретить в трудах римлян Катона и Плиния Старшего (Цит. по:

Биоиндикация загрязнений. …1988).

Идею биоиндикации с помощью растений сформулировал еще в 1 в. до н. э. Колумелла: «Рачительному хозяину подобает по листве деревьев, по травам или по уже поспевшим плодам иметь возможность здраво судить о свойствах почвы и знать, что может хорошо на ней расти». Это направление, ныне получившее название ландшафтной биоиндикации, успешно используется в практических целях. В нашей стране основоположником биоиндикационного использования растений, оценки свойств почв и подстилающих горных пород по особенностям развития растений и составу растительного покрова бесспорно считают А. П. Карпинского (Биоиндикация загрязнений … 1988).

Для оценки уровня загрязнений окружающей среды поллютантами применяют методы биотестирования с использование в качестве тест объектов растения, отличающиеся чувствительностью к поллютантам, несложным культивированием и, что особенно важно, имеющие реакцию, сопоставимую с таковой других тест-объектов. (Макеева, Никонова 2002;

Уфимцева, Терехина 2000;

Жидкова, Родионова 2002). Для мониторинга мутагенов в окружающей среде в настоящее время используют широкий спектр различных тест-систем, в том числе и растительные тест объекты (Романовский, 1992;

Ильинских с соавт., 1998;

Буторина с соавт., 2000;

Мануйлов, Багдасарян, 2004).

По словам Кашина, Иванова (1980), «растения являются высокоинформативным индикатором уровня доступных форм химических элементов в окружающей среде и основным источником их для человека и животных. В связи с этим они представляют большой интерес в качестве эффективных объектов при экологическом мониторинге загрязнения окружающей среды …»

Использование растений как индикаторов загрязнений окружающей среды было показано Константином и Овенсом (Constantin, Owens, 1982).

У.Д. Мэнинг и У.А. Федер (1985) определяют растение-индикатор как «растение, у которого признаки повреждения появляются при воздействии на него фитотоксичной концентрации одного загрязняющего вещества или смеси таких веществ… Индикаторными могут быть так же те растения, которые аккумулируют в тканях загрязняющие вещества или продукты метаболизма, получаемые в результате взаимодействия растения и загрязняющего вещества»

Роль растений как объектов генетических исследований не может не дооцениваться, поскольку лишь благодаря им были установлены основные принципы и положения генетики и цитогенетики. Еще больше возрастает роль растений при проверке факторов окружающей среды на генотоксичность, где растительные тест-системы незаменимы в силу рада преимуществ:

1. Растения являются эукариотами, и их хромосомы структурно и морфологически сходны с хромосомами млекопитающих, включая и человека.

2. У растений и млекопитающих отмечается сходная чувствительность к мутагенам.

3. Ответная реакция растений на воздействия мутагенов сходна с таковой у млекопитающих и других эукариот.

4. Возможность регенерации целого растения из культуры клеток.

5. Короткий жизненный цикл и возможность исследовать как гаплоидные, так и диплоидные поколения.

6. Относительная дешевизна, особенно по сравнению с тестами in vivo на млекопитающих.

7. Возможность проводить исследования in situ.

Все это делает растения очень удобными тест-системами для скрининга мутагенов и мониторинга загрязнений окружающей среды (Штина, 1990;

Ивашов с соавт., 1998;

Михайлова, Воробейчик, 1999;

Кабиров с соавт., 2000;

Коженкова с соавт., 2000;

При сравнении данных о мутагенности, определяемых с использованием растений отмечена корреляция с данными, полученными на других тест-системах (Grant, 1978). В силу этого растения рекомендуется использовать в качестве первого этапа в системе определения возможной генетической опасности различных загрязнителей окружающей среды. Кроме того, исследование мутагенного влияния на растения важно само по себе, поскольку растения являются важнейшей составной частью биосферы, от которой зависит благополучие как биосферы в целом, так и человека, как части биосферы (Shairer, Van’t Hof, Hayes, 1978) При выборе того или иного вида растения для использования его в качестве объекта биомониторинга необходимо учитывать определенные требования. Растение должно иметь четко выраженную реакцию на воздействие загрязняющего вещества, то есть оно должно иметь видимые признаки повреждения. Это может быть выявлено по морфологическим изменениям, по изменению скорости роста, нарушению цветения, плодоношения, образования семян или изменения продуктивности и урожайности (Меннинг, Федер, 1985).

Читайте также:  Факторы от которых зависит плодородие почв

Специальные биотесты для определения загрязнения окружающей среды поллютантами сводятся к оценке степени изменения морфологических показателей тест-растения.

В ряде стран, в том числе в Нидерландах, морфологические индикаторы используются в национальной системе мониторинга уже более 10 лет (Posthumus, 1982). С помощью методов биоиндикации, основанных на морфологии растений, получена большая часть картосхем антропогенного влияния (Биоиндикация загрязнений. …, 1988). В целях биотестирования используют макроскопические и микроскопические морфологические изменения растений.

Рассмотрим более подробно случаи использования растений в качестве тест-организмов для биотестирования загрязнений окружающей среды.

Рясковые – самые мелкие цветковые растения при благоприятных условиях размножаются круглогодично. Интенсивность фототаксиса хлоропластов в листецах ряски, оцениваемая по изменению количества хлоропластов, можно рассматривать как чувствительный показатель, свидетельствующий о степени загрязнения элементов агроландшафта.

Явление отрицательного фототаксиса и послужило основой метода фитотестирования (Ломагин, Ульянова, 1993). Благодаря этим преимуществам ряску можно назвать »экологической дрозофилой». Ряска малая (Lemna minor L.) и ряска тройчатая (Lemna trisulcs L.) чувствительны к загрязнению воды при содержании в ней до 10 мкг/мл ионов Ba, Cu, Mg, Fe, Co (Галактионов, Юдин, 1980). На каждый загрязнитель у видов рясок проявляется специфическая реакция (Гербхардс с соавт., 1990;

Цаценко, Малюга, 1998). На медь (0,1 – 0,.25 мг/мл) – листецы реагируют полным рассоединением из групп и изменением окраски с зеленой на голубую;

реакция проявляется через 4 часа после воздействия. На цинк (0,025мг/мл) реакция заключается в изменении окраски листеца: с насыщенно зеленой до бесцветной;

где зелеными остаются только точки роста;

барий (0,1 – 0, мг/мл) вызывает полное рассоединение листецов, отпадание корней и изменение окраски с зеленой на молочно-белую;

кобальт (0,25 – 0, мг/мл) — полную приостановку роста и потерю окраски (Малюга, с соавт., 1996).

В целях биотестирования применяют специально созданные сорта (линии) культурных растений, чувствительных к загрязнению. Так, в Англии, специально выведен сорт табака Bel W3, характеризующийся восприимчивостью к содержанию озона в воздухе. C помощью этого сорта была создана картосхема Британских островов, характеризующая их загрязнение озоном. При слабом воздействии озона на табак через несколько дней по всей поверхности листовой пластинки образуется густая сеть некротических пятен серебристого цвета. В качестве эталона сравнения одновременно высаживается относительно устойчивый к озону сорт табака Bel B (Manning, Feder, 1980;

Schiele et all, 1981).

Кроме того, в качестве новой тест-системы при проведении генетического мониторинга Baburek et al (1997) предлагают использовать семядоли трансгенного табака, несущие ген ada, или ген Sulphur в разных дозах.

Delhaize Emmanuel (1996) обнаружил накапливающий разные металлы мутант арабидопсиса man 1. При проращивании на почве проростки накапливали Mn в 7,5 раз больше, чем дикий тип. Rancelis et al (1993) при изучении генотоксичности бериллия в качестве тестерного организма, наряду с ячменем нормального типа, использовал генетически нестабильных мутантов (tw, tw1, tw2) этого же растения.

В системе мониторинга окружающей среды особое место занимает традесканция клон 02 и 4430 (Ma et al, 1995;

Grant W.F. et al, 1992;

Knasmuller S et al, 1998). Так Евсеева, Зайнуллин (2000) в течение трех лет проводили исследования генотоксичности компонентов атмосферного воздуха и снежного покрова г. Сыктывкара. Результаты наблюдений свидетельствовали о локальном загрязнении атмосферного воздуха в пределах города;

Погосян с соавт. (1991) изучали влияние загрязненности атмосферы выбросами промышленных предприятий и автотранспорта Еревана на частоту соматических точковых мутаций у традесканции. В пунктах, где сосредоточен ряд химических предприятий и повышена интенсивность движения автотранспорта частота мутаций у традесканции превышает контроль в 4,8 – 8,5 раз;

Сперроу с соавт. (1977) изучал возникновение соматических мутаций в Tradescantia под действием химических мутагенов и специфических загрязнителей атмосферы. На сегодняшний день это почти единственная тест-система пригодная для обнаружения мутагенности атмосферных загрязнителей in situ и она рекомендована в качестве экспресс-метода на первом этапе в системе генетического мониторинга загрязнений окружающей среды (Schairer, Van’t Hof, Hayes, 1978;

Ichikawa, 1991a, 1991b). Но клон 02 не единственный клон, который используется для экспериментов. Ichikawa (1984) описывает различных клонов традесканции, которые используются для изучения радиационного и химического мутагенеза. Видимым маркером, используемым в данной тест-системе, является фенотипическое изменение в пигментации от голубого к розовому в клетках волосков тычиночных нитей (ВТН) (Хандохов, 2004). Учет соматических мутаций в ВТН оказался довольно простым и поэтому привлекательным методом изучения мутагенеза при действии широкого набора мутагенных факторов (Ichikawa, Tahakashi, 1977;

Kirby-Smith, Deniels, 1953;

Nauman et al, 1976, 1977a, 1977b).

Выявленная высокая радиочувствительность и чувствительность к химическим мутагенам придала этому объекту дополнительные преимущества (Осипова, Шевченко, 1984;

Евсеева, 1999). ВТН традесканции не единственная тест-система данного организма. Для выявления газообразных мутагенов, радиационных исследований и выявления кластогенного эффекта сточных вод используют так называемый микроядерный тест (МЯ-тест). Метод основан на выявлении и подсчете микроядер в микроспорах традесканции (Ma, 1983).

Активный поиск растительных объектов для оценки действия загрязнителей окружающей среды продолжался на протяжении всего прошлого столетия. Так Vig, Paddock (1986) предложили сою Glicine max как тест-систему для изучения мутагенов среды, которая и позволяет легко учитывать прямые и обратные мутации;

Давронов, Захаров, (1985) изучали на этом же объекте митотический кроссинговер при радиационном воздействии, а Fugii (1978, 1983) – биологическое действие некоторых пестицидов. Эта же проблема исследуется в работе Effect of TPA 1983). В этих исследованиях для экспериментов используют семена гетерозиготной по гену хлорофилльной недостаточности линии сои Т-219 (Солдатов, Давронов, 1989;

Соя применялась и для изучения генотоксического потенциала солей хрома, молибдена, вольфрама (Гогуа, 2003) Glicine max (L.) не единственный представитель из семейства бобовых, который применяется как тест-объект для изучения действия мутагенов окружающей среды. Так, Вардуни (1997) в качестве независимого параллельного теста на недифференцированные мутагены русла р. Темерник исследовала меристему коневых клеток фасоли;

Sandhu et al (1991);

Kihlman, Andersson, (1982);

Ahmed, Grant, (1972), в качестве тест-растения для методов биомониторнга использовали Vicia faba;

Solanki, Sharma (1992);

Raghuvanshi et al., 1992 – чечевицу;

Цой, Пак (1996) – горох.

Шунелько (2000) для тестирования различных доз загрязняющих веществ в почве, в частности ТМ, использовала редис с белым кончиком, кресс-салат, овес и пшеницу. Причем, редис с белым кончиком наиболее чувствительным оказался к Cd, Zn, Cu, Ni, кресс-салат к Pb, пшеница к Cd, Zn. И это не единственные случаи применения культурных растений в качестве тестерных организмов. Так ряд авторов в качестве тест-организма используют ячмень (Гарина, 1977;

Гераськин с соавт., 1996), пшеницу (Моргун с соавт., 1993;

Li Wen.- Jian et al., 1996), ячмень и пшеницу (Зуев, 2002), семядоли табака и петунии (Fridlender M., et al, 1996;

Baburek et al, 1997). Погосян с соавт., (1991) рекомендуют рассматривать в качестве индикатора загрязненности атмосферного воздуха стерильность пыльцевых зерен винограда. Мутагенный эффект атмосферного воздуха вблизи нефтехимических комплексов впервые был изучен в США с использованием трех тест-систем: Zea mays, Tradescantia, Salmonella (Lower, 1980, 1981;

Schairer et al., 1981).

Широкое распространение получили методы биотестирования с использованием Сrepis cappilaris (Немцева, 1977;

Дубинин, 1978, 1994;

Реутова, Шевченко 1992).

Таким образом, следует подчеркнуть, что, несмотря на достаточно большое количество растительных тест-систем, вопрос о возможности использования растений для нужд биотестирования остается открытым в связи с нахождением новых растений, чувствительных к определенным загрязнителям окружающей среды.

1.2.3 Биотестирование почв с помощью животных и растительных тест систем В настоящее время при биотестировании почв используют один или несколько тест-организмов. По мнению Кабирова с соавт. (1997) для диагностики токсичности почв при биотестировании вначале необходимо разработать общие принципы и подходы и на их основе составлять многокомпонентные тест-системы, предназначенные для оценки токсичности почвенного покрова конкретного региона. Исходя из этих принципов, Кабиров с соавт. (1997) предпринял попытку разработать и использовать многокомпонентную тест-систему для оценки токсичности почвенного покрова городской территории. В предложенную ими тест систему входят следующие компоненты: сине-зеленая водоросль синехоцистис водяной, зеленая водоросль хлорелла обыкновенная, микроскопический гриб пеннициллум и высшее растение – овес посевной. В ходе эксперимента у тест-организмов изучается проявление следующих тест-реакций – размножение и рост клеток в почвенной вытяжке у сине зеленых и зеленых водорослей, рост колоний на агаровой среде, приготовленой на почвенной вытяжке – микроскопические грибы, всхожесть и энергия прорастания семян замоченных в почвенной вытяжке – высшие растения.

Илларионов и др. (2003) изучали фитотоксичность нефтезагрязненных почв. В качестве тест-объекта они использовали клевер луговой.

Показателями фитотоксичности явилось снижение всхожести и выживаемости семян, а также вес сухой биомассы выращенных растений.

Особое место занимает загрязнение почв тяжелыми металлами. Этот вид загрязнения приводит у растений из нормальных местообитаний к изменениям активности ферментов. Поэтому можно оценить нагрузку на первичный обмен веществ с помощью раннедиагностического тестирования.

В данном случае уместно сослаться на исследования (Маiег, 1980) о возможностях биоиндикации влияния свинца на растения по особенностям ферментов (например, эстеразы, малатдегидрогеназы, кислой фосфатазы, пероксидазы) с одновременным учетом их ферментативной активности и электрофоретическим разделением множественных форм.

Для мониторинга района Superfund Северной Каролины, почвы которых загрязнены креозотом, медью, хромом, мышьяком Hughes et al.

(1993) использовали тест на индукцию микроядер в клетках традесканции и тест Эймса, а в качестве тестируемого материала использовали экстракты почв. Было замечено, увеличение количества микроядер в клетках традесканции в 8 раз.

При оценке токсичности городских почв, содержащих в повышенных количествах кадмий, медь, свинец, цинк, никель, хром, кобальт, а также многие другие вещества Шунелько, Федорова (2000) провели ряд опытов по биотестированию методом проростков тест-растений. В качестве чувствительных организмов к перечисленным токсикантам авторы использовали кресс-салат, пшеницу, овес. Оказалось, что кресс-салат является наиболее чувствительным к загрязнению свинцом, пшеница к загрязнению кадмием и цинком.

Воробейчик, Позолотина (2003) изучали пространственную вариабельность загрязненности лесной подстилки тяжелыми металлами (медь, кадмий, свинец, цинк), ее кислотности и фитотоксичности по корневому тесту на проростках из генетически однородной выборки одуванчика лекарственного. Оказалось, что фитотоксичность определяет в первую очередь обменные формы металлов.

Пшеничнов с соавт. (1995) разработал вариант микробиотестирования общей токсичности почв, основанный на получении из нее водных вытяжек и количественной оценке в них токсикантов по степени ингибирования одной из ключевых ферментных систем – люциферазной, что объективно регистрируется биолюминометром типа БЛМ 8103. В качестве сенсора применяли регидратированную культуру Photobacterium photophereum. Предварительное испытание методики показало высокую чувствительность теста к фенолу, кадмию, свинцу, меди и др.

Трублаевич, Семенова (1997) оценивали токсичность почв с помощью лабораторной культуры коллембол. О токсичности почв судили по ответной реакции коллембол.

Вальков с соавт. (1997) исследовали воздействие кадмия, цинка, меди, ртути и свинца при содержании их в черноземе 1, 10, 100 ПДК на его фитотоксичность через семь суток, один и шесть месяцев после загрязнения.

О степени фитотоксичности судили по всхожести, энергии прорастания, скорости прорастания, а также по длине корней, длине зеленых проростков, воздушно-сухой массе корней и зеленых проростков. В качестве тест объекта использовали озимую пшеницу ввиду ее широкого сельскохозяйственного применения. Авторы отмечают, что благодаря такому свойству чернозема обыкновенного, как высокое содержание гумуса, нейтральная среда и др. даже при значительном загрязнении тяжелыми металлами черноземов они часто не оказывали на растения фитотоксического действия. Кроме того, наиболее информативными показателями являлись показатели длины и массы корней.

Гарипова, Калиев (2004) проводили биотестирование водных вытяжек почв земледельческих полей орошения Оренбургского газохимического комплекса. В качестве тест-объектов растительного происхождения использовали лук репчатый и редис посевной. При биотестировании на редисе использовали такие показатели, как длина корня, длина стебля, длина всего растения. У второго модельного организма-лука репчатого учитывали митотическую активность. Выяснилось, что почвы земледельческих полей орошения обладают фитотоксическими и мутагенными свойствами.

Для фитотестировния урбаноземов г. Воронежа Свистова с соавт.

(2003) использовала метод биотестирования. В качестве тест-организма в их исследованиях выступал редис. О фитотоксичности почв судили по всхожести семян и росту корня модельного организма.

Для оценки влияния кислотного дождя на почву средствами биотестирования проводят эксперименты по стандартизированному выращиванию специально подобранных кислотоустойчивых или кислоточувствительных видов на субстратах с соответствующим химическим загрязнением. В зависимости от постановки опыта (определение краткосрочных или долгосрочных воздействий стрессора) нарушения изучаются на биохимическом, физиологическом, морфометрическом или продуктивно-экологическом уровне.

При косвенной оценки вреда, наносимого росту и продуктивности растений, используют опыты по культивированию тест-растений в конкретных условиях (Grezsta, 1982). Двухгодичные саженцы деревьев с различной чувствительностью исследовались на экспериментальных субстратах со ступенчато изменяющейся концентрацией загрязнителей. При этом выяснилось, что для целей биоиндикацни пригодны следующие параметры: выживаемость, рост корней и побегов, некрозы листьев и хвои.

Подобные исследования были проведены и с травянистыми растениями (Denaer-de-Smet, 1975).

Для биотестирования солевого загрязнения Klаtz (1982) рекомендует оценку кратковременного воздействия загрязненных почв на травянистые растения в экспериментах по определению прорастания и развития этих растений. Опыты с прорастанием семян особенно пригодны для оценки загрязнения поверхности почвы и ее верхних горизонтов (0-5 или 0-10 см глубины). С этой целью семена соответствующих видов (например, Lolium perense, Lepidium sativum), иногда солеустоичивых (Puccinellia distans) высеваются в чашках Петри (диаметром от 9 до 12 см) на различных почвах.

Как было показано в экспериментах с Мg Cl (Dasler et al, 1976), вместе с повышением концентрации соленого раствора в почве происходило сильное замедление прорастания семян и заметно уменьшался процент всхожести.

Помимо опытов с проращиванием семян на тестируемых почвах используют и ростовые опыты, которые заключаются в высаживании стандартизированных видов или основных эдификаторов фитоценозов в интересующих исследователя местообитаниях (например, Lollium perenne) в открытый грунт или в сосуды, причем диапазон применяемых концентраций и продолжительность опыта варьируют.

В связи с широким применением гербицидов в сельском хозяйстве в последнее время актуальным становится вопрос о стойкости этих веществ.

Определение стойкости гербицидов происходит путем либо предварительной экстракции (Neururer, 1975;

Неld, 1981), либо непосредственного подмешивания гербицидов или загрязненной гербицидами почвы к определенным стандартным субстратам (Bouchet, Dagneaut, 1974;

Gerber et al., 1975). В последнем случае затем производят посев или посадки тест растений с последующей бонитировкой степени ущерба по внешнему виду или изменению.

Известно, что газ вызывает нарушения роста в подземных органах растений. Это связано в первую очередь с недостатком кислорода, или влияние же самой газовой смеси (Gustafson, 1944) в деталях еще недостаточно исследовано (Foos, 1976). При этом саженцы тополей показали себя очень чувствительными биоиндикаторами. Для биотестирования загрязнения в окрестностях подземных трубопроводов проводились эксперименты с саженцами культиватора «Оксфорд» (Foos, 1976). Растения выращивались три недели в гидропонной культуре, а затем в течение нескольких недель подвергались воздействию газа. В зависимости от условий опыта отмечалась различная степень подавления роста, в первую очередь роста корней. Надземные органы реагировали позднее развитием заметного хлороза. Примечательно то, что больше страдали старшие саженцы.

1.3 Эколого-географическая характеристика г. Ставрополя 1.3.1 Географическое положение Город Ставрополь расположен в лесостепной зоне умеренного пояса, в западной части Ставропольского края на 4500с. ш. и 4200 в. д. Он занимает юго-западный склон Ставропольской возвышенности, которая лежит в центре Предкавказья. Площадь Ставрополя 118 кв. км, из которых 44, 4 кв.

км находятся под постройками, 27,7 кв. км занимают зеленые массивы и насаждения общего пользования, 25,5 кв. км. занимают пахотные земли.

Территория города вытянута с юго-запада на северо-восток на 30,5 км и с юга на север на 16,5 км. Перепады высот составляют 425м;

Читайте также:  Урок почва как особое природное образование

в застроенной части города преобладают перепады высот более 50м на 1 км. В восточной части города абсолютные отметки поверхности снижаются до 325 метров, в западной-поднимаются до 660 метров (Дегтярева, 2003).

1.3.2 Климат Согласно климатическому районированию территория Ставрополя относиться к южной континентальной части Европейской области (Алисов, 1969) и входит в юго-западный район Ставропольской возвышенности (Щитов, 1960). Климат города Ставрополя умеренно континентальный с жарким, временами засушливым летом и умеренно холодной зимой с сильными ветрами. На территорию города воздействуют главным образом воздушные массы умеренных широт.

С запада и северо-запада поступают морские, с востока зимой – сухие холодные массы от Азиатского максимума. Реже вторгаются арктические воздушные массы.

В целом Ставрополь обладает благоприятными климатическими условиями. Продолжительность солнечного сияния 2187 часов в год.

Суммарная радиация за год равняется 121,3 ккал/см. Число дней без солнца около 70 (ноябрь — декабрь).

Климатические особенности города лучше всего прослеживаются по сезонам. Начало осени характеризуется устойчивой теплой и солнечной погодой. Зима наступает в последних числах ноября. Она короткая — 2,5- месяца. Средняя температура января — 3,7°С. В зимний период нередки резкие похолодания, когда минимум температуры достигает — 36°С.

Среди зимы ежегодно наблюдаются оттепели с температурой воздуха до +5, +10°С. Весна наступает в первой декаде марта. Нарастание тепла идет очень быстро. Лето наступает во второй половине июня. Среднемесячная температура воздуха в июле +20, +25. Существенные температурные различия возникают между западными, восточными и центральными частями города, между низкими и наиболее возвышенными территориями.

Среднее годовое количество осадков – 663 мм, в теплый период выпадает 471 мм, в холодный -192 мм. Максимум приходиться на июнь — мм, минимум на февраль-30 мм. Годовая величина испаряемости — 650 мм, коэффициент увлажнения 1,0, что соответствует лесостепным ландшафтам.

Среднегодовая относительная влажность воздуха равна 71 %, в зимние месяцы поднимается выше 80 %. Минимальная влажность отмечается в июле- августе и составляет 58-59 %. Снежный покров имеет высоту 15– см.

Ставрополь характеризуется обычно сильными ветрами. Их скорость достигает 35-40м/сек. В городе преобладают ветры двух направлений:

восточные, юго-восточные и противоположные им западные, северо западные Восточные и юго-восточные ветры типичны для зимнего периода. Они преимущественно сухие: летом – жаркие, зимой – холодные. Восточные ветры могут дуть постоянно на протяжении недели, часто образуя суховеи.

Ветры западного и северо-западного направлений чаще наблюдаются летом.

Они обычно влажные (прохладные летом и теплые зимой), менее продолжительные, но более сильные, чем восточные ветры. Северо-западные зимой переносят воздушные массы с севера и поэтому могут быть очень холодными.

1.3.3 Почвы Многообразие и сложность геохимических процессов в ландшафте находят свое отражение в почве, как продукте взаимодействия между биотической и абиотической средами. Фактор почвообразования в окрестностях города Ставрополя в основном отражает зональные закономерности. Город расположен в пределах черноземной почвенной зоны.

А.Л. Антыков и А.Я. Стоморев (1970) указывают, что в районе Ставрополя и его окрестностей основное место занимают два типа почв: выщелоченные глубокомицелярно-карбонатные черноземы и серые лесные почвы, частично оподзоленные.

В соответствии с современной классификацией городских почв, почвенный покров ландшафтов г. Ставрополя представлен группами естественных почв, естественно-антропогенных и антропогенно преобразованных почв. Естественные почвы в пределах города (серые лесные почвы, черноземы обыкновенные обычные, черноземы обыкновенные карбонатные, черноземы обыкновенные глубоковскипающие, черноземы обыкновенные засоленные и обыкновенные солонцевато засоленные) приурочены к сохранившимся природным степным и лесопарковым территориям. Естественно антропогенные поверхностно преобразованные почвы характеризуются преобразованием менее 50 см почвы (урбопочвы). Антропогенные глубоко-преобразованные почвы (с преобразованием более 50 см профиля) формируются за счет процессов урбанизации на культурном слое или на насыпных, намывных и перемешанных грунтах мощностью более 50 см.

В Ставрополе антропогенно-глубокопреобразованные (урбаноземы) почвы широко развиты в историческом центре города, селитебных зонах, на территории промышленных зон. В группе урбаноземов г. Ставрополя можно выделить физически преобразованные почвы, где произошла физико механическая перестройка профиля, культуроземы (городские почвы фруктовых и ботанических садов, старых огородов), некроземы (почвы кладбищ), экраноземы (формируются под асфальто-бетонным покрытием), собственно урбаноземы. Химически преобразованные почвы, в которых произошли значительные хемогенные изменения свойств и строения за счет интенсивного химического загрязнения, представлены в Ставрополе индустриземами (почвами промышленно-коммунальных зон) и нефтеземами (почвами, пропитанными органическими масляно-бензиновыми жидкостями).

Под лесными массивами в городе Ставрополе сформировались серые лесные почвы. Для них характерны большая влажность, меньшее содержание гумуса, суглинистый механический состав, меньшая мощность гумусовых горизонтов.

В целом, почвенный покров города Ставрополя испытывает значительные изменения всех факторов почвообразования, характерные для городских территорий (температурного режима, уровня грунтовых вод, нивелирования рельефа и перемещение грунтов, специфики городской растительности и др.). Морфологический профиль городских почв Ставрополя независимо от степени нарушенности отличается от профиля их фоновых аналогов. Это проявляется в обогащении скелетного материала промышленным и бытовым мусором, увеличении плотности поверхностных слоев, преобладании слоеватой структуры верхних горизонтов. В городских условиях идут процессы осаждения строительной пыли, содержащей карбонаты кальция и магния и увеличивающей подщелачивание почв, поступления с автомагистралей в почву сажи и битуминозных веществ, что приводит к повышению содержания гумуса в 4–8 раз (Никифорова, Лазукова, 1991).

В черту города входят крупные лесные массивы: лес Круглый (246 га), частично Русская Лесная дача (7154 га), Таманский лес (497 га), Члинский лес (199 га) и Мамайский лес (579 га). Главные породы лесообразователи – дуб черешчатый и скальный, бук восточный и ясень обыкновенный.

В окрестностях города Ставрополя лесная и лугово-степная растительность чередуются друг с другом. Степь, как зональное образование, свойствена примерно одной трети территории города. В настоящее время это почти полностью распаханные земли, и сама лугово-степная растительность сохранилась лишь на склонах балок, примыкающих к Ставрополю. Сорные растения вместе с дикорастущими и культурными образуют фитоценозы, которые вплотную подходят к городу или находятся в городской черте.

Основные места обитания сорных растений – пустующие и резервные земли под строительство, обочины дорог, пустыри, выведенные из оборота сельскохозяйственные угодья, (газоны, свалки, неудобья) Фауна города Ставрополя представлена преимущественно синантропами, мигрантами – видами, проникающими из прилежащих к городу естественных – с запада и северо-запада – лесных, а с севера, востока и юго-востока – степных ландшафтов (Экологический паспорт …, 1995).

1.3.4 Основные типы антропогенного воздействия в г. Ставрополе Современный этап промышленно-урбанизированного освоения территории города характеризуется резким возрастанием антропогенной нагрузки на природный комплекс и связанное с этим обострение экологических проблем. В 50-60-е годы основной упор был сделан на строительстве предприятий химии, тяжелого машиностроения и приборостроения. Переход с начала 90-х годов к условиям рыночной экономики отразился и на структуре производства города. Экономический спад производства в нашей стране, как известно, проявился в общей тенденции снижения антропогенного воздействия в городах в связи с закрытием многих крупных предприятий.

Город Ставрополь, как и другие краевые и республиканские центры Северного Кавказа, является территорией, в пределах которой сконцентрированы многочисленные источники негативного антропогенного воздействия, влияющие на все природные компоненты городского ландшафта. В городе и его окрестностях можно выделить несколько крупных типов антропогенного воздействия на окружающую среду: селитебный, промышленный, транспортный, сельскохозяйственный, лесотехнический, водохозяйственный, рекреационный. Объекты указанного воздействия либо концентрируются в более или менее четко выраженные зоны, либо рассредоточены по городской территории.

Влияние промышленного фактора на общее состояние геохимической среды в городе несколько снизилось в последние годы. Многие экологически опасные предприятия химии и машиностроения стали нерентабельными в условиях рыночной экономики. Тем не менее, промышленность вносит существенный вклад в загрязнение города.

Состояние атмосферного воздуха в городе в 2002 г. определяли выбросы следующих веществ (тонн):

— сернистый ангидрид – 10,0;

— окись углерода – 1821,0;

— окислы азота – 911,0;

— легколетучие органические соединения – 243,0;

— пыль неорганическая ниже 20 % SiO2 – 85,46.

Основной вклад в выбросы этих загрязняющих веществ в атмосферу вносят: по сернистому ангидриду – предприятия машиностроения (70,0 %);

по окислам углерода и азота – предприятия электроэнергетики, включая самостоятельные котельные 63,1 %, 75,4% соответственно. По легколетучим органическим соединениям – предприятия машиностроения, нефтехимии (25,5, 6,6 %% соответственно);

пыль неорганическая ниже 20 % SiO2 – предприятия производства стройматериалов (87,2 %).

На предприятиях города уловлено 1,127 тыс. тонн загрязняющих веществ. Степень улавливания в целом по городу составляет 25,768 %.

Самая высокая степень улавливания отмечается на предприятиях перерабатывающей отрасли – 69,7 %. Самая низкая – на предприятиях транспорта. От предприятий коммунального хозяйства, электроэнергетики выбросы, содержащие загрязняющие вещества, поступают в атмосферу без очистки.

Уменьшение валового выброса загрязняющих веществ в атмосферу, по отношению к 2001, обусловлено снижением объемов производства.

Валовые выбросы промобъединения «Люминофор» уменьшились по сравнению с 2001 г. на 106,171 т, ОАО «Красный металлист» — на 135,377 т.

За последние пять лет (1998 – 2002 г.г.) выбросы загрязняющих веществ в атмосферу увеличились на 0,97 тыс. тонн, что составило 39,86% к уровню 1998 года. Комплексная оценка загрязнения атмосферного воздуха города характеризуется как высокая. (Государственный доклад …, 2003).

Промышленные зоны занимают в целом около 20 % территории города (2,6 тыс. га) и разделяются на северную, северо-западную, южную, юго восточную и центральную.

Северо-западная зона, включает в себя предприятия химической и машиностроительной промышленности (ОАО «Оптрон», АООТ «Нептун», ОАО электроматериалов и приборов «Аналог», ОАО «Автоприцеп-КАМАЗ»

Предприятие ООО «Лисма» отличается сложным и, с точки зрения влияния на окружающую обстановку, наиболее вредным технологическим процессом. Отходы производства скапливаются в открытых отстойниках, остаются в них на многие годы, отравляя окружающую атмосферу и почвы.

Завод «Анилин» производит краски на основе органического синтеза.

За пределами территории завода имеются отстойники для жидких промышленных отходов. С поверхности отстойников происходят испарения промышленных стоков, что отрицательно сказывается на качестве атмосферного воздуха. Не исключены утечки отходов и загрязнение подземных вод.

Предприятие ОАО «Автоприцеп-КАМАЗ» путем горячей обработки листовой стали производит части грузовых автомашин. В процессе их производства происходит выделение тепла в атмосферу, а также слив отработанной горячей воды, которая предназначается для дальнейшего использования в технических целях. Кроме того, происходит загрязнение почв и атмосферного воздуха отходами производства в виде металлической стружки и испарений, происходящих в процессе горячей обработки металла.

На окружающую среду со стороны предприятия оказывается мощное шумовое и вибрационное воздействие.

Автопредприятия (МУАП — 1, АО «Автовокзал» и др.) города характеризуются большим скоплением пассажирского и грузового автотранспорта. Помимо парковки автомашин, осуществляется их текущий ремонт и мойка. Со стороны предприятий производится мощное шумовое и химическое воздействие на окружающую среду в виде выбросов отработанных газов, масел, отходов газоэлектросварки и сточных вод мойки.

Негативное влияние северо-западной и западной промышленных зон усугубляется двумя обстоятельствами, в свое время не учтенными ни жителями, ни строителями, ни городской администрацией. Первое обстоятельство связано с преобладанием на городской территории северо западных ветров, выносящих загрязненный воздух северо-западной промышленной зоны на селитебные районы центральной и северной частей города. Второе обстоятельство сводится к отсутствию между промышленной и селитебной зонами какого-либо буферного пространства, смягчающего негативные влияния на жителей со стороны таких предприятий как ООО «Лисма-Люминофор» и др. Наоборот, вместо «буферного района», непосредственно вблизи от интенсивно эксплуатируемой автомагистрали расположен один из участков рекреационной зоны.

В северной зоне сосредоточены предприятия химической и машиностроительной отраслей, производство стройматериалов: «Сажевый завод», ТСП «Стройматериалы», завод «Стеновых материалов и керамзита» и др. Основные загрязнители сточных вод этих предприятий соли тяжелых металлов.

Южная промышленная зона представлена пищевой и радиотехнической промышленностью: молочный комбинат, заводы ОАО Ставропольский радиозавод «Сигнал» и др. предприятия. ОАО Молочный комбинат «Ставропольский» в качестве отходов производства отправляет стоки, насыщенные животными жирами и белками, что может привести к химическому загрязнению почв и грунтовых вод.

В восточной промышленной зоне города находятся предприятия химической, металлургической, автотранспортной, пищевой промышленности:

ЗАО «Металлист», ОАО «Ставропольский инструментальный завод», ООО СП «Стеклотара», ОАО мясокомбинат «Ставропольский» и др. В этой же зоне расположен и железнодорожный вокзал, являющийся местом сосредоточения железнодорожного и автомобильного транспорта, а также людей. Основное воздействие на окружающую среду шумовое и вибрационное, кроме этого химическое, связанное с перегрузкой различных веществ. Предприятия восточной зоны оснащены старым оборудованием, что ухудшает и без того сложную экологическую ситуацию.

Фабрика «Восход» (АОЗТ народно-художественных промыслов «Восход»), у которой очистные сооружения отсутствуют, загрязнение формирует за счет отходов волокна, отходов отделочных препаратов и красителей. ОАО завод «Ставбытхим» посредством отходов производства оказывает негативное химическое воздействие на атмосферу и загрязнение почв и грунтовых вод. Заводы поршневых колец и автокранов (ОАО «СТАПРИ» и ООО КПК «Автокрансервис») применяют горячую обработку металла, в результате чего отходы производства отрицательно воздействуют на атмосферный воздух, почвы, грунтовые воды.

В юго-восточной промышленной зоне находятся предприятия машиностроительной, медицинской, приборостроительной промышленности:

ГУП «Ставропольская биофабрика», ГУП ЗАО «Кинотехника».

Предприятия центральной промышленной зоны не располагаются столь компактно, как в других зонах, и представляют различные отрасли:

завод кожевенный завод. Сточные воды последнего относятся к высококонцентрированным и содержат шерсть, жиры, продукты распада белков, синтетические дубители, а так же известь, соединения хрома, алюминия и др.

Для предприятий города характерны следующие промышленные отходы: металлургический шлам, осадок гальванических производств, электролит хромирования, отходы производства варки лака, нефтепродукты, не подлежащие регенерации, отходы черных и цветных металлов, шлам с очистных сооружений канализации, кирпичный и бетонный бой, опилки, стружка и другие древесные отходы, производственный мусор. Проблема организации специального полигона для складирования токсичных промышленных отходов в городе не решена. Значительная часть таких отходов вывозится на бытовые свалки, что ведет к загрязнению окружающей среды и создает реальную угрозу здоровью населения.

Расположение функциональных зон в г. Ставрополе характеризуется тесным контактом между селитебными и промышленными зонами. Целый ряд промышленных предприятий расположен внутри жилых массивов.

Мощным загрязнителем атмосферы городов является транспорт, при этом лидирующая роль принадлежит автомобильному транспорту. Во многих городах выбросы автодорожного транспорта превалирует над промышленностью и составляет 60-80 % от общего объема выбросов загрязняющих веществ в атмосферу (Государственный доклад …, 1998).

Бурная «эпидемия автомобилизации» как фактор загрязнения окружающей среды является характерным явлением для Ставрополя. Если в начале 70-х годов доля вредных веществ, вносымых автотранспортом в атмосферу составляла 10-13 %, то в настоящее время эта величина достигла 60 – 70 % и продолжает расти. Для Ставрополя отмечается устойчивый рост объема вредных выбросов автотранспорта – 67,5%. Автомобильный транспорт необходимо рассматривать как индустрию, связанную с использованием горючих и смазочных материалов, развитием и эксплуатацией дорожно-транспортной сети (Толоконников с соавт., 1999).

Сейчас общее экологическое состояние в городах во многом определяется правильной организацией движения авто транспорта. В Ставрополе повышенному загрязнению воздуха выхлопными газами способствует сложный рельеф улиц, широкое использование дизельных автобусов, создающих дымные шлейфы, неудовлетворительное техническое состояние значительной части транспортных средств. Интенсивное насыщение воздуха выхлопными газами в часы пик происходит в районах Нижнего и Верхнего рынков, на перекрестках магистральных улиц (ул. Доваторвцев, пр.

Кулакова, ул. Ленина) и в других местах скопления автотранспорта. По данным Ставропольстата в течение последних пяти лет увеличивается количество зарегистрированного автотранспорта в городе (рис. 1) Рис. Количество зарегистрированного автотранспорта в г. Ставрополе всего грузовые автобусы пикапы легковые специальные 2000 2001 2002 2003 Основные виды воздействия транспорта на окружающую среду и природные ресурсы – загрязнение токсичными веществами отработавших газов двигателей автотранспортных средств, выбросы вредных веществ в атмосферу от стационарных источников, загрязнение поверхностных водных объектов, образование отходов и воздействие транспортных шумов, вторичное загрязнение (Государственный доклад …, 2003). В состав выхлопных газов автомобилей входит 200 химических соединений, из которых наиболее токсичны оксиды углерода и азота, углеводороды, в т.ч.

Источник

Adblock
detector