Материал к презентации «Производство азотных удобрений»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Азотные удобрения – азотосодержащие вещества, которые используются для повышения содержания азота в почве. В зависимости от формы азотного соединения, однокомпонентные азотные удобрения подразделяются на пять групп. Производство основано на получении синтетического аммиака из молекулярного водорода и азота.
Всем же известно: чтобы организм существовал, необходимо наличие кислорода, водорода, углерода и азота. Ясно, что азот – это один из главных элементов в жизни как растений, так и человека с животным. Для растений источником азота является, естественно, почва.
Содержание азота в грунте
Установлено, что весомая доля азота в земле сосредоточена в ее слое, именуемом гумусом, в нем более 5% азота. Естественно, чем слой гумуса толще, тем больше и количество азота, следовательно, на такой почве и лучше себя чувствуют растения.
Для чего азот нужен растениям?
Этот элемент, оказывается, есть далеко не в каждом органическом соединении. Например, нет азота в сахарах, клетчатке, масле и крахмале. Есть азот в аминокислоте и белке. Азот — важная составляющая нуклеиновой кислоты, которая является главнейшей составляющей буквально любой клетки, отвечающей за синтез белка и дупликацию наследственных данных (дупликация – образование дополнительного наследственного материала, идентичного тому, который уже есть в геноме).
Даже хлорофилл, который, как известно, способствует поглощению растениями энергии солнца, также в своем составе имеет азот. Кроме того, азот есть в различных компонентах органической среды, например, в алкалоидах, липоидах и подобных им веществах. СЛАЙД 1-2!!
Разновидности удобрений, содержащих азот
Азотные удобрения — это вещества, в составе которых имеются азотные соединения. Всего существует несколько главных групп азотных удобрений. Это нитратные удобрения (кальциевая и натриевая селитра), аммонийные удобрения (хлорид аммония и сульфат аммония), аммиачно-нитратные удобрения (аммиачная селитра), амидные удобрения (мочевина) и жидкие азотные удобрения (аммиачная вода или безводный аммониак (аммиак)).
Удобрения азотные, группа нитратные СЛАЙД 3.
Начнем с кальциевой селитры , — ее химическая формула Са(NО₃)₂. Внешне кальциевая селитра представляет собой белоснежные гранулы, в которых азота содержится до 18%. Данное удобрение подходит для почв с повышенной кислотностью. Кальциевая селитра отлично растворяется в воде, поэтому хранить удобрение нужно в мешках, которые не пропускают воду.
При внесении кальциевой селитры нужно помнить, что ее смешивание с фосфорными удобрениями недопустимо.
Следующее удобрение — это натриевая селитра , ее химическая формула NaNO₃. Данное удобрение является кристаллическим, в нем содержится чуть меньше – до 17% азота. Натриевая селитра хорошо растворима в воде и отлично впитывается корнями растений.
Учитывая прекрасную растворимость в воде и гигроскопичность, данное удобрение нужно хранить в сухих местах.
Натриевую селитру долгое время добывали в природе. Самые большие
залежи расположены в Чили (чилийская селитра). В настоящее время разработаны способы получения натриевой селитры путем взаимодействия различных азото- и натрийсодержащих соединениях.
Аммонийные удобрения СЛАЙД 4!!
Следующая группа — это аммонийные удобрения. На первом месте в этой группе стоит сульфат аммония , его химическая формула имеет вид (NH 4 ) 2 SO 4 . Внешне данное удобрение представляет собою белоснежный порошок, в котором содержится чуть более 20% азота.
Сульфат аммония может использоваться и как основное азотное удобрение, и в качестве дополнительной подкормки.
Удобрение необходимо смешивать с известью или мелом в соотношении один к двум.
Сульфат аммония не является гигроскопичным, поэтому с хранением его проблем обычно не возникает.
Сульфат аммония — кристаллическое азотносерное удобрение, содержит 21% азота в аммонийной форме, не слеживается. В сульфате аммония содержится до 24% серы, сульфат аммония – одно из широкоприменяемых в сельском хозяйстве минеральных удобрений. Удобрение обладает ценным качеством – низкой миграционной способностью, так как катион аммония активно поглощается почвой и это предохраняет его от вымывания.
Сульфат аммония в России сульфат аммония производят с 1899 года. Впервые его получили в Донбассе, на Щербинском руднике путем улавливания и нейтрализации серной кислотой аммиака, который образуется при коксовании каменного угля.
его химическая формула NH₄Cl. В данном удобрении содержится около 26% азота. Внешне хлористый аммоний представляет собой желто-белый порошок. При внесении хлористого аммония не наблюдается вымывания его из почвы, при хранении данное удобрение не слеживается и даже после многолетнего хранения не требует измельчения.
Хлорид аммония – мелкокристаллический порошок желтоватого или белого цвета. При 20°C в 100 м 3 воды растворяется 37,2 г вещества. Обладает хорошими физическими свойствами, малогигроскопичен. Хлорид аммония получают как побочный продукт при производстве соды.
В промышленности хлорид аммония получают упариванием маточного раствора, остающегося после отделения гидрокарбоната натрия NaHCO 3 после реакции, в которой углекислый газ пропускают через раствор аммиака и хлорида натрия. СЛАЙД 6.
<\displaystyle <\mathsf
В лаборатории хлорид аммония получают взаимодействием хлороводорода с аммиаком при пропускании их через раствор NaCl.
<\displaystyle <\mathsf <8NH_<3>+3Cl_<2>\rightarrow N_<2>+6NH_<4>Cl>>> <\displaystyle <\mathsf
Технологическая схема производства сульфата аммония СЛАЙД 5.
Основным сырьевым источником в производстве сульфата аммония является аммиак коксового газа. В коксовом газе содержится 6-14 г/м 3 аммиака. Его можно переработать в сульфат аммония тремя способами: косвенным, прямым и полупрямым.
По косвенному способу коксовый газ охлаждают, при этом из него конденсируется смола и надсмольная вода, насыщенная аммиаком; оставшийся в газе аммиак поглощают водой в аммиачных скрубберах. Из полученной аммиачной воды и из надсмольной воды отгоняют аммиак в дистилляционных колоннах, который затем поглощают серной кислотой. Этот способ требует громоздкого оборудования и значительного расхода энергии.
По прямому способу поглощение аммиака серной кислотой с образованием сульфата аммония производят непосредственно из коксового газа, предварительно охлажденного до температуры 68 °С и очищенного от смолы в электрофильтрах.
Наиболее экономичен и широко распространен полупрямой способ. Коксовый газ для конденсации смолы сначала охлаждают до температуры 25-30 °С. Конденсат расслаивается на два слоя: нижний — смолу и верхний — надсмольную воду, в которой растворена часть аммиака. Надсмольную воду обрабатывают в дистилляционной колонне известковым молоком и выделившийся аммиак поглощают серной кислотой вместе с аммиаком, оставшимся в доочищенном в электрофильтрах от смолы коксовом газе.
Поглощение аммиака из коксового газа можно производить в сатураторах (насыщает жидкость углекислым газом) барботажного типа (сатураторный способ). В сатураторном способе поглощение аммиака из коксового газа и кристаллизация сульфата аммония совмещены в одном аппарате — сатураторе. Это ограничивает возможность выбора технологического режима, который был бы оптимальным одновременно для обоих процессов, т. е. обеспечивающего наиболее полное поглощение аммиака и образование крупнокристаллического сульфата аммония, легко отделяемого и отмываемого от маточного раствора.
Схема производства сульфата аммония сатураторным способом
Коксовый газ, охлажденный до температуры 25-30 °С и очищенный от смолы, поступает в подогреватель 1, где нагревается глухим паром до температуры 60-80 °С. Подогретый газ смешивается с аммиаком, полученным при переработке надсмольной воды, и направляется по барботажной трубе 5 в сатуратор 4.
Газ барботирует через 78 %-ный раствор серной кислоты, при этом образуется сульфат аммония:
Тепло, необходимое для испарения избыточной влаги из образовавшегося раствора сульфата аммония, подводится в сатуратор с коксовым газом, подогретым в аппарате 1.
По выходе из сатуратора газ направляется в ловушку 2 для отделения от брызг кислоты, затем охлаждается и передается на дальнейшее использование. Когда кислотность раствора в сатураторе снижается до 6-8 % (что соответствует содержанию в нем 140-170 г/л связанного аммиака), из раствора начинают выделяться кристаллы сульфата аммония. Образующаяся пульпа центробежным насосом перекачивается в кристаллоприемник 8. Маточный раствор из верхней части кристаллоприемника переливается в приемный сосуд 6 и возвращается в сатуратор. Кристаллы сульфата аммония непрерывно поступают из кристаллоприемника в центрифугу 7, где отделяются от маточного раствора. Отфугованные кристаллы сульфата аммония, имеющие влажность около 2 %, передают на склад или направляют па сушку.
Часть раствора непрерывно циркулирует между сатуратором и баком 3. Благодаря циркуляции и непрерывному перекачиванию пульпы из сатуратора в кристаллоприемник с возвратом маточного раствора в сатуратор в нем обеспечивается постоянный.уровень жидкости и ее тщательное перемешивание. Поэтому кристаллы соли все время находятся во взвешенном состоянии, и рост кристаллов происходит равномерно во всей массе раствора.
На получение 1 т сульфата аммония затрачивают: 0,73-0,75 т серной кислоты (100 %-й), 0,26-0,27 т аммиака (содержащегося в 30-35 тыс. м 3 коксового газа), 100-108 МДж электроэнергии, 8 м 3 воды и 2,7-6 т пара.
Аммиачно-нитратные удобрения СЛАЙД 7.
Следующая категория — это аммиачно-нитратные удобрения, лидером в этой группе является аммиачная селитра. Химическая формула аммиачной селитры — NH₄NO₃. Это удобрение имеет вид беловатого гранулированного порошка. В удобрении содержится около 36% азота. Аммиачную селитру использовать можно как основное удобрение или в качестве дополнительной подкормки.
Аммиачная селитра ввиду повышенной гигроскопичности не переносит хранения в сырых помещениях, там она довольно быстро твердеет и слеживается. Конечно, это не означает, что удобрение приходит в негодность, просто пред тем как вносить его в почву, нужно будет селитру измельчить, что бывает порой довольно затруднительно.
Интересно, что в настоящее время аммиачная селитра в чистом виде практически не реализуется, продают ее в виде разного рода смесей. Большой популярностью пользуется и имеет хорошие отзывы при использовании смесь, состоящая из 60% аммиачной селитры и 40% различных нейтрализующих компонентов. В данном соотношении в смеси находится примерно 19-21% азота.
Это гигроскопичное соединение, которое уязвимо к сырости, что приводит к слеживаемости вещества. С этой целью в селитру добавляют известняк, муку фосфоритную и дополнительные соединения, поглощающие влагу. Селитра аммиачная содержит азот с массовой долей вещества 35%. Белый кристаллический гранулированный порошок отлично растворяется в воде. Селитра — хорошо усвояемое удобрение. Может иметь вид гранул и вид чешуек.
Но есть одно «Но!» – запрещено смешивать селитру аммиачную с любыми соединениями органического происхождения. Нельзя ее и нагревать, так как возможно ее воспламенение и взрыв.
Аммиачная селитра содержит нитратный и аммонийный азот в соотношении 1:1. Правильнее называть это удобрение аммонийной селитрой, но аммиачная селитра – название более распространенное. Это наиболее эффективное из однокомпонентных азотных удобрений. Стоимость его перевозки и внесения в почву значительно ниже, чем у других азотных удобрений (исключение – мочевина и жидкий аммиак).
Нитра́т аммо́ния — впервые получена Глаубером в 1659 году. Используется в качестве компонента взрывчатых веществ и как азотное удобрение .
Методы получения аммиачной селитры ( СЛАЙД 8. )
В промышленном производстве используется безводный аммиак и концентрированная азотная кислота:
<\displaystyle <\mathsf
По способу Габера из азота и водорода синтезируется аммиак, часть которого окисляется до азотной кислоты и реагирует с аммиаком, в результате чего образуется нитрат аммония:
<\displaystyle <\mathsf <3H_<2>+N_<2>\longrightarrow \ 2NH_<3>>>>
Этот способ также известен как способ Одда, названный так в честь норвежского города, в котором был разработан этот процесс. Он применяется непосредственно для получения азотных и азотно-фосфорных удобрений из широко доступного природного сырья. При этом протекают следующие процессы:
1.Природный фосфат кальция растворяют в азотной кислоте:
Ca3(PO4)2 + 6HNO3 → 2H3PO4 + 3Ca(NO3)2
2. Полученную смесь охлаждают до 0 °C, при этом нитрат кальция кристаллизуется в виде тетрагидрата — Ca ( NO 3)2·4H 2 O, и его отделяют от фосфорной кислоты.
3. На полученный нитрат кальция, не очищенный от фосфорной кислоты, действуют аммиаком, получая в итоге нитрат аммония:
Ca(NO3)2 + 4H3PO4 + 8NH3 → CaHPO4↓ + 2NH4NO3 + 3(NH4)2HPO4 <\displaystyle <\mathsf
Бо́льшая часть нитрата аммония используется либо непосредственно как хорошее азотное удобрение, либо как полупродукт для получения прочих удобрений. Для предотвращения создания взрывчатых веществ на основе нитрата аммония в удобрения, доступные в широкой продаже, добавляют компоненты, снижающие взрывоопасность и детонационные свойства чистого нитрата аммония, такие как мел (карбонат кальция).
В Австралии, Китае, Афганистане, Ирландии и некоторых других странах свободная продажа нитрата аммония даже в виде удобрений запрещена или ограничена. После террористического акта в Оклахома-Сити ограничения на продажу и хранение нитрата аммония были введены в некоторых штатах США.
Группа – амидные удобрения СЛАЙД 10.
Мочевина , — ее химическая формула имеет вид CH 4 N 2 O. Мочевину именуют иначе – карбамид, это удобрение считается одним из максимально эффективных. В мочевине содержится около 47% азота, иногда — на 1% меньше. Внешне это белоснежные гранулы. Данное удобрение отличается повышенной способностью закислять почву, поэтому вносить её можно только с нейтрализующими веществами – доломитовой мукой, мелом, известью. Мочевина весьма редко используется как основное удобрение, обычно ее применяют как дополнительную внекорневую подкормку.
Всего известно две марки мочевины, которые именуются – А и Б. Марка под наименованием А не относится к категории сильно эффективных и крайне редко используется в растениеводстве. Обычно мочевину марки А используют для кормовой добавки для животных, например, коз, коров, лошадей. Марка мочевины с именованием Б — это обработанная добавками мочевина, применяемая именно в качестве удобрений.
Именно благодаря такому содержанию мочевина — наиболее концентрированное азотное удобрение. Выглядит мочевина в виде белых гранулированных частиц, которые очень легко поддаются растворению.
Какая бывает? Мочевина бывает двух марок. Это марка А и марка Б. Марка Б – это карбамид, обработанный добавкой. Вносится карбамид марки Б непосредственно в почву ранней весной с целью подкормки. Карбамид марки А не представляет для растениеводства глобального значения. Он больше используется, как добавка к корму для коров, коз и лошадей.
Жидкие азотные удобрения СЛАЙД 11.
Гидрат аммиака , или гидроксид аммония (аммиачная вода либо жидкий аммиак). Химическая формула гидроксида аммония NH 4 OH. По сути, аммиачная вода представляет собою растворенный в воде аммиак. Всего существует два типа жидкого аммиака, первый содержит азота не менее 19% и не более 26%, а второй может содержать от 15% азота до 21%.
+ Достоинства жидких удобрений — это их крайне низкая цена, быстрая усвояемость растениями, длительный период действия и равномерное распределение удобрений в почве.
— Недостатки, — это довольно сложная транспортировка и хранение, возможность образования сильных ожогов на листьях при попадании удобрения на их поверхность и необходимость в специальной технике, предназначенной для внесения жидких удобрений.
Аммиачная вода (водный аммиак)
– раствор аммиака в воде, давление паров невысокое, черные металлы не разрушает. Азот содержится в форме аммиака NH 3 и аммония NH 4 OH. Свободного аммиака содержится гораздо больше, чем аммония. Это способствует потерям азота за счет улетучивания. Работать с аммиачной водой проще и безопаснее, чем с безводным аммиаком, но в связи с низким содержанием азота ее применение рентабельно только в хозяйствах, расположенных недалеко от предприятий, ее производящих.
Безводный аммиак – NH 3 . Это концентрированное удобрение представляет собой бесцветную жидкость с содержанием азота 82,3%. Получают его сжижением газообразного аммиака под давлением. При хранении в открытых емкостях быстро испаряется, коррозирует медь, цинк и сплавы, но нейтрален по отношению к железу, чугуну и стали, поэтому его перевозят и хранят в специальных стальных толстостенных цистернах, способных выдерживать давление 25 – 30 атмосфер. Причем цистерны заполняют не полностью.
Азотные удобрения — как получают? Азотные удобрения делают из аммониака (аммиака), который, в свою очередь, получают в результате реакции азота и водорода. Азот – часть воздуха, а водород – часть природного газа метана. Когда воздух проходит сквозь генераторную установку с горящим коксом, образуется азот, а водород получают либо из природного, либо из нефтяного или коксового газов. Повышая давление, достигая температуры 400 градусов, ускоряя реакционный процесс с помощью катализаторов, получают аммиак. Полученное синтетическое соединение аммиак — основа для производства азотных удобрений. Еще одним очень существенным продуктом реакции является нитратная кислота – основа для изготовления нитратных удобрений.
Аммофос СЛАЙД 12.
Аммофос — азотно-фосфорное концентрированное растворимое удобрение. (Фосфорнокислый аммоний). Содержит около 10—12 % N и 52 % Р 2 О 5 . В основном состоит из моноаммонийфосфата NH 4 H 2 PO 4 и частично диаммонийфосфата (NH 4 ) 2 HPO 4 .
Получение
Получают нейтрализацией фосфорной кислоты аммиаком:
Аммофос — концентрированное комплексное фосфорно-азотное удобрение получают нейтрализацией ортофосфорной кислоты аммиаком. Основу аммофоса составляют моноаммонийфосфат NH 4 H 2 PO 4 и частично диаммонийфосфат (NH 4 ) 2 HPО 4 .
В аммофосе, который выпускается в виде двух марок — «А» и «Б», содержится 9—11% N и 42—50% P 2 O 5 , т. е. отношение N : P 2 O 5 в удобрении чрезмерно широкое, равно 1 : 4 (азота содержится в 4 раза меньше, чем фосфора). Это высококонцентрированное удобрение, содержащее азот и фосфор в хорошо усвояемой растениями форме. 1 ц аммофоса заменяет не менее 2,5 ц простого суперфосфата и 0,35 ц аммиачной селитры.
Растворимость при 20°С составляет 370 г/л, рН раствора — 4-4,5. Удобрение малогигроскопично и относится к группе водорастворимых фосфорных удобрений. Это соединения, которые хорошо растворяются в воде.
При наличии влаги в почве МАФ быстро распадается на NН 4 + и Н 2 РО — 4 , ионы, которые хорошо усваиваются растениями. Реакция почвенного раствора изменяется на слабокислую, поэтому аммофос — хороший выбор для нейтральных и щелочных почв.
Сырье для производства аммофоса – аммиак и ортофосфорная кислота (экстракционная и термическая). Взаимодействие идет по реакции нейтрализации:
Технологический процесс состоит из:
Реакции нейтрализации первой ступени. Неупаренная кислота нейтрализуется до pH = 4–4,5. При этом в осадок выделяется большая часть примесей.
Удаления примесей путем фильтрации.
Упаривания очищенного раствора.
Реакции нейтрализации второй ступени.
Охлаждения до кристаллизации.
Гранулирования и сушки полученного продукта.
Гидрофосфат аммония СЛАЙД 14. 
Температура плавления 155°С
Гидрофосфат аммония ( диаммонийфосфат, диаммофос ) — водорастворимая соль , образующаяся при взаимодействии аммиака и фосфорной кислоты. Химическая формула (NH 4 ) 2 HPO 4 .
Применяется как сложное (комплексное) концентрированное фосфорно-азотное удобрение и как огнезащитное средство. При внесении в почву повышает её pH (увеличение основности ), но через длительный период начинает уменьшать pH (увеличение кислотности ) почвы за счёт окисления аммония (NH 4 + ) в азот .
Диаммонийфосфат также добавляется в некоторые сорта сигарет .
Описание коксовой печи СЛАЙД 15.
Коксовая печь — технологический агрегат, в котором осуществляется коксование каменного угля. Первые коксовые печи (так называемые стойловые) стали применять в начале 19 в. Они состояли из кирпичных стенок высотой до 1,5 м и длиной до 15 м, расположенных друг от друга на расстоянии 2—2,5 м. Загруженный в пространство между стенками уголь покрывали сверху и с торцов землёй и поджигали. Коксование продолжалось 8—10 дней. Важным этапом явилось создание в 70-х гг. 19 в. коксовые печи с улавливанием химических продуктов из коксового газа. В этих печах камеры коксования были отделены от отопительных простенков. Современные коксовые печи по способу загрузки угольной шихты и выдачи кокса подразделяют на горизонтальные и вертикальные. Наиболее широко распространены горизонтальные коксовые печи периодического действия. Такие коксовые печи состоят из камеры коксования, обогревательных простенков, расположенных по обе стороны камеры, регенераторов. На верху камеры коксования предусмотрены загрузочные люки, с торцов камера закрыта съёмными дверями. Длина камер достигает 13—16 м, высота 4—7 м, ширина 0,4—0,5 м. Обогрев камер осуществляется за счёт сжигания в вертикальных каналах простенков коксового, доменного или др. горючего газа. Период коксования одной угольной загрузки зависит от ширины камеры и температуры в обогревательных каналах и составляет обычно 13—18 ч. По окончании коксования раскалённый кокс выталкивают из камеры через дверные проёмы коксовыталкивателем и тушат. Для компактности коксового цеха и лучшего использования тепла коксовые печи объединяют в батареи (по 61—77 коксовых печей в каждой) с общими для всех печей системами подвода отопительного газа, подачи угля, отвода коксового газа. Все операции по обслуживанию коксовые печи (загрузка, съём и закрытие дверей и люков, выдача и тушение кокса и т.д.) механизированы и автоматизированы. Разрабатываются коксовые печи непрерывного действия, например вертикального и кольцевого типа.
Устройство коксовых печей
Коксохимические заводы сооружаются, как правило, вблизи металлургических заводов и входят в их состав, либо как отдельные предприятия. Коксохимическая промышленность отличается высокой концентрацией производства, т. е. заводы являются весьма мощными и имеют высокую производительность.
Современные печи для коксования углей представляют собой горизонтальные прямоугольные камеры, выложенные из огнеупорного материала. Камеры печей обогреваются через боковые стены. Печи располагаются в ряд и объединяются в батареи для уменьшения потери тепла и достижения компактности. В типовую батарею печей с шириной камер 410 мм входят обычно 65 печей, а в батарею большой емкости с камерами шириною 450 мм входят 77 печей. Обычные камеры имеют полезный объем 20—21,6 м 3 , а печи большой емкости—30 м 3 . Ширина печей более 450 мм нецелесообразна из-за ухудшения качества кокса (повышения истираемости). Для облегчения выталкивания кокса из камеры коксования ширину камеры со стороны выдачи кокса делают на 40—50 мм шире, чем с машинной стороны. Таким образом, камера имеет вид конуса. За основные элементы батареи надо принять следующие: фундамент, регенераторы, корнюрную зону, зону обогревательных простенков, перекрытия простенков и перекрытия камер.
Фундамент представляет собой бетонное основание, имеющее с боков железобетонные укрепления, сдерживающие перемещение кладки батареи при ее разогреве. Фундамент состоит из двух плит. На нижней плите установлены верхние сооружения батареи. В верхней плите обычно располагают борова печей. Батарея имеет четыре борова для отвода продуктов горения.
Коксовая печь – печь для превращения каменного угля в кокс. В свою очередь, кокс – это твердый углеродистый остаток, образующийся при нагревании различных топлив (каменного угля, торфа и т.п.) до 950-1050 °С без доступа воздуха. Содержание углерода в коксе 96-98 %.
Коксовая печь состоит из двух главных элементов: из камеры коксования и отопительных простенков. В отопительных простенках сжигается топливо. В камере коксования находится обрабатываемый материал (уголь, кокс). Стенки камеры выполнены из огнеупорного кирпича и служат муфелем, предохраняющим материал от окисления. Камера коксования имеет такие ориентировочные размеры: длина 13-15 м, высота 4,2-5 м, ширина 0,4-0,45 м.
Коксовые печи собирают в коксовые батареи по 40-70 штук. Загрузка угля происходит через отверстия в своде печи из погрузочной тележки, которая перемещается сверху печей. Выдача готового кокса – через боковые двери посредством выталкивателя. После выдачи кокс попадает в вагон, в котором выполняется мокрое или сухое тушение кокса во избежание его загорания. Температура выдачи кокса около 1000 °С. Температура дыма в обогреваемом простенке около 1300-1400 °С. Процесс коксования длится 13-16 часов.
Печь отапливается обычно доменным газом или коксовым газом, выделяющимся в процессе коксования угля.
При коксовании одной тонны сухого каменного угля получают в среднем 750 кг кокса, 300-330 м 3 коксового газа, 35 кг смолы, 10-11 кг бензольных углеводородов и 3 кг аммиака в виде сульфата аммония.
Процесс коксования осуществляется в коксовых печах. Все коксовые печи снабжены двумя герметичными дверями по торцам. В своде печи имеются три отверстия для загрузки шихты из трех бункеров загрузочного вагона. Под печью располагаются кирпичные регенераторы. Грязный коксовый газ через газосборник и газоотводы направляется в химические цехи. С машинной стороны коксовая печь обслуживается перемещающимся по рельсовому пути коксовыталкивателем. С помощью штанги эта машина выталкивает коксовый пирог из печи. Предварительно с коксовой стороны двересъемная машина снимает дверь. Кокс направляется в тушильный вагон. После тушения кокса водой он выгружается на наклонную рампу и конвейером направляется на коксосортировку. Коксовыталкиватель снабжен также перемещающейся по горизонтали штангой-планиром, с помощью которой выравнивается поверхность угольной загрузки перед началом коксования.
Рисунок 1. Общий вид современной коксовой батареи 1 — приемный бункер для сырого каменного угля; 2 — отделение для дробления и смешения угля; 3 — распределительная башня; 4 — погрузочная тележка; 5 — камера коксования; 6 — кокс; 7 — коксовыталкиватель; 8 — тушильный вагон; 9 — тушильная башня; 10 — платформа для выгрузки охлажденного кокса; 11 — отвод коксового газа.
Коксовые печи (объем каждой до 42 м 3 ) располагаются параллельно по 70—80 шт., образуя коксовую батарею. Ее обслуживают коксовыталкиватель, двересъемная машина, загрузочный и тушильный вагоны, распределительная угольная башня. Стены печей выложены из высокоогнеупорного кирпича. Печи разделяются полыми отопительными простенками, внутри которых сжигается смесь коксового и доменного газов и развиваются температуры до 1400 °С. Через стенки печей тепло продуктов сгорания передается теплопроводностью к угольной шихте в рабочем пространстве каждой печи.
Сульфа́т аммо́ния ( NH 4 ) 2 SO 4 — аммонийная соль серной кислоты . Это бесцветные прозрачные кристаллы (или белый порошок ) без запаха. Получают сульфат аммония действием серной кислоты на раствор аммиака и обменными реакциями с другими солями. Применяется в качестве удобрения , при производстве вискозы , в пищевой промышленности , при очистке белков в биохимии , в качестве добавки при хлорировании водопроводной воды. Токсичность сульфата аммония очень низкая.
При нагревании до 147 °С сульфат аммония разлагается на соответствующий гидросульфат NH 4 HSO 4 и аммиак по схеме: <\displaystyle <\mathsf <(NH_<4>)_<2>SO_<4>\rightarrow NH_<4>HSO_<4>+NH_<3>\uparrow >>>
При повышении температуры выше 500 °С гидросульфат аммония кипит с разложением на серный ангидрид , аммиак и воду:
Сульфат аммония с одержит 21 % азота и 24 % серы. Подкисляет почву.
Также используется в производстве вискозного волокна как компонент осадительной ванны.
В биохимии переосаждение сульфатом аммония является общим методом очистки белков.
Сульфат аммония используется в технологии хлорирования воды с аммонизацией — его вводят в обрабатываемую воду за несколько секунд до хлора. С хлором он образует хлорамины , связывая свободный хлор, благодаря чему значительно сокращается образование хлорорганики , вредной для организма человека, сокращается расход хлора, уменьшается коррозия труб водопровода .
Сульфат аммония является компонентом порошковых огнетушителей и огнезащитных средств.
Кроме того, находит применение при получении марганца электролизом, в производстве аммониево-алюминиевых квасцов , корунда . Добавляется к стекольной шихте для улучшения её плавкости.
Воздействие на человека
Сульфат аммония признаётся безопасным для человека и используется в качестве пищевой добавки в России, на Украине и в странах ЕС. Сульфат аммония используется в качестве заменителя соли и носит название пищевой добавки Е517. В пищевой индустрии добавка сульфат аммония выступает в роли улучшителя качества муки и хлебобулочных изделий, увеличивая также их объём, является питанием для дрожжевых культур, применяется как стабилизатор и эмульгатор.
Хлорид аммония