Меню

Как называется структура почвы с комочками

Структура почвы

Частички почвы при склеивании образуют агрегаты, разные по величине и форме, и носят название структурных. Под структурой почвы понимают отдельности (агрегаты, комочки) разной величины, формы, на которые она распадается в спелом состоянии при рыхлении. Каждый комочек состоит из гранулометрических элементов, соединенных в макро- и микроагрегаты гумусом, корнями растений и др. Почва может быть структурной и бесструктурной. В последней гранулометрические элементы находятся в раздельночастичном состоянии. Примером бесструктурных почв могут быть песчаные: в них мало глинистых частичек и гумуса. Между структурными и бесструктурными почвами могут встречаться переходные, в которых структура выражена слабо. В зависимости от формы агрегатов различают три типа структуры – агрегатов различают три типа структуры – кубовидная, призмовидная, плитовидная (рис.2).

Кубовидная структура имеет отдельности, одинаково развитые по трем осям. Подразделяется на роды: глыбистая, комковатая, ореховатая, зернистая, пылеватая.

1 – кубовидная: а – комковатая б – ореховатая, в – зернистая, г – глыбистая; 2 – призмовидная: д – столбчатая, е – призматическая; 3 – плитовидная: ж плитчатая, з – чешуйчатая.

Призмовидная структура характеризуется преимущественным развитием отдельностей по вертикальной оси. Подразделяется на столбчатую и призматическую.

В плитовидной структуре отдельности развиты в основном по двум горизонтальным осям. Подразделяется на плитчатую и чешуйчатую.

Наиболее распространена структура комковатая (тип кубовидной). Оптимальный размер комков 3–5 мм. Они характерны для черноземных почв. Образование структурных агрегатов происходит под влиянием корневой системы, которая уплотняет частицы почв, гумуса и гидрооксидов железа (они склеивают частички), а кальций и магний цементируют их. Структура почвы не всегда прочная, и ее разрушает техника и соединения натрия (в аридном климате). Указанных химических элементов в почвах Беларуси очень мало, поэтому структурные агрегаты непрочные.

В зависимости от размеров агрегаты группируются следующим образом. Агрегаты более 10 мм называют глыбами, от 10 до 0,25 мм – макроагрегатами, менее 0,25 мм – микроагрегатами.

В почвенных горизонтах структурные отдельности обычно не бывают одного размера и формы. Часто структура в них смешанная. Например: комковато-зернистая, комковато-пылеватая и др.

Различным почвенным горизонтам свойственна определенная структура. Так, гумусовые горизонты характеризуются комковатой, зернистой (чернозем, дерновая почва) или мелкокомковатой, комковато-порошистой (дерново-подзолистая почва) структурой.

Для подзолистых горизонтов свойственна непрочнолистоватая, пластинчатая структура или вообще ее отсутствие. Иллювиальные горизонты чаще имеют призматическую или ореховатую структуру.

Образование структуры происходит при наличии давления (от воздействия корневых систем растений, животных, замерзания, высыхания почвы и др.) и клеющего вещества. В качестве последнего выступают коллоиды, главным образом гумусовые. Водопрочная структура образуется в случае коагуляции коллоидов (образование геля) катионами кальция и магния. При такой структуре почва после дождя не заплывает, на ней не образуется корка, затрудняющая поступление кислорода к корням растений.

Следует отметить весьма важную роль дождевых червей в образовании почвенной структуры. С агрономической точки зрения почва считается структурной, если комковато-зернистые водопрочные агрегаты размером от 10 до 0,25 мм составляют более 55%.

Плодородная почва – почва структурная. Она легко крошится при вспашке, лучше противостоит водной и ветровой эрозии. В структурной почве хорошо сочетается водный, воздушный и тепловой режимы. А это положительно воздействует на развитие биологических процессов, на режим питания растений.

Бесструктурные суглинистые почвы плохо впитывают воду, а ее сток может вызвать эрозию; вода и воздух в таких почвах антагонистичны. В бесструктурных почвах вода теряется в результате интенсивного капиллярного поднятия, что может привести к пересушиванию почвы, ухудшению обеспечения растений водой, элементами питания. Для получения хороших урожаев на бесструктурных почвах необходимо постоянно заботиться о высоком уровне агротехники.

Почвенную структуру могут разрушить механические факторы (передвижение по полям техники, животных, град и др.), а также физико-химические процессы, связанные с внесением в почву физиологически кислых удобрений, вытесняющих из почвы катионы кальция и магния.

Для образования и сохранения почвенной структуры необходимо систематически и в достаточном количестве вносить органические удобрения, известковать кислые почвы, обрабатывать почву в состоянии физической спелости. Хорошие результаты дают посевы многолетних трав (клевер с тимофеевкой), сидеральных культур.

Читайте также:  Внесение удобрений для груш

Источник

Структура почвы. Частицы почвы могут склеиваться между собой, образовывать структурные комочки — агрегаты, не размываемые водой

Частицы почвы могут склеиваться между собой, образовывать структурные комочки — агрегаты, не размываемые водой. Почва с большим количеством агрегатов называется структурной. Бесструктурными почвами называются такие, в ко­торых отдельные механические элементы (песок, пыль) не связа­ны между собой. Свойство почвы образовывать структурные агре­гаты называются структурностью.

В агрономическом отношении наиболее ценна мелкокомковатая и зернистая структура пахотного горизонта с размерами комочков от 1 до 5 мм. Очень важное качество почвенной структуры – ее водопрочность, т. е. неразмываемость агрегатов водой.

В структурной почве создается и поддерживается лучший воз­душно-водный режим, а следовательно, и микробиологическая деятельность, и питательный режим. Структурную почву легче обрабатывать.

Однако нельзя переоценивать значение структуры почвы. Известно, например, что песчаные почвы бесструктурны, но при достаточном увлажнении и удобрении могут давать очень высокие урожаи.

Физические и физико-механические свойства. К физическим свойствам почвы относятся плотность, плотность твердой фазы почвы, скважность, а также водные, воздушные и тепловые свойства.

Плотность почвы — масса единицы объема (1 см куб) сухой почвы в ее естественном состоянии. Плотность пахотного слоя грубозернистой песчаной почвы 1,8; подзолистой суглинистой 1,2; типичного чернозема 1,0. Исходя из плотности почвы, вычисляют массу пахотного слоя на 1 га. Для подзолистых суглинков он бу­дет 2,5—3 тыс. т (при глубине 20 см).

Величина плотности определяется плотностью твердой фазы почвы и зависит от ее зональных особенностей.

Плотность твердой фазы почвы — отношение массы твердой фазы (почвенных частиц) к массе того же объема воды при 4° С. Наибольшую плотность твердой фазы имеет минераль­ная почва, например песчаная с высоким содержанием кварца (2,65), у перегноя и торфа 1,6, поэтому почвы с большим количе­ством гумуса отличаются меньшей плотностью твердой фазы (так у мощного чернозема она 2,37).

Пористость, или скважность. Почва состоит из твердой фазы (почвенных комочков) и промежутков между ними, или пор. Общий объем пор в процентах по отношению ко всему объему почвы называется пористостью, или скважностью, почвы. Поры могут быть заняты водой или воздухом. Наиболее благоприятен в агрономическом отношении такой объем, при котором поры почвы заняты водой примерно наполовину.

Скважность различают капиллярную (объем промежутков капиллярного сечения), некапиллярную (промежутки более широкие, чем капилляры) и общую. Последняя в пахотном слое составляет около 50%.

Физико-механические свойства почвы: связность, пластичность, .липкость, набухание и усадка имеют значение при механической обработке, так как от них зависит удельное сопротивление почвы орудиям обработки.

Для агрономической характеристики состояния почвы применяется термин спелость почвы. Под спелостью почвы понимают ее пригодность для механической обработки. Она зависит от состояния влажности, связности, пластичности, липкости.

Спелая почва легко обрабатывается орудиями, не прилипает к ним, не мажется, не образует глыб, а крошится при обработ­ке на мелкие комки.

Неблагоприятное сочетание перечисленных физических свойств почвы может привести к образованию почвенной корки, ухудшаю­щей условия жизни растений.

В результате систематического уплотнения почвы плугом при вспашке на одну и ту же глубину в верхней части подпахотного слоя образуется плотная прослойка почвы, так называемая плужная подошва. Для предупреждения ее возникновения следует пахать поля на разную глубину и в разных направлениях.

Водные свойства и водный режим почв. Вода может находить­ся в почве в разных состояниях и в зависимости от этого имеет неодинаковое значение для питания растений. Различают следующие главные формы воды в почве.

Гравитационная вода занимает в почве крупные поры (некапиллярные), передвигается сверху вниз под собственно тяжестью. Это самая доступная для растений вода. Однако если она заполняет все поры, то наступает переувлажнение почвы. На песчаных почвах гравитационная вода легко уходит вглубь, в зону, недоступную для корней.

Читайте также:  Трехпольная система севооборота постоянно приносила высокие урожаи

Капиллярная вода занимает капилляры почвы. По ним она продвигается от более влажного слоя к более сухому. По ме­ре испарения воды с поверхности почвы такой восходящий ток ее может иссушить почвы. Капиллярная вода вполне доступна растениям.

Гигроскопическая вода находится в почве в виде мо­лекул в поглощенном состоянии, удерживается поверхностью поч­венных частиц, почти недоступна растениям, передвигается между частицами почвы в форме пара.

Названные формы воды не являются постоянными. Вода может из одной категории переходить в другую. При переувлажнении почвы все промежутки между ее частицами заняты водой. При подсыхании почвы расходуется в первую очередь свободная (не­капиллярная) вода, а затем капиллярная. Если запасы капиллярной и некапиллярной воды исчерпаны, то растения уже почти не могут получать ее из почвы через корневую систему, так как в почве остается только вода, малодоступная растениям. Степень увлажнения почвы, при которой растения начинают завядать, от недостатка влаги, называется влажностью завядания (ВЗ). Влажность завядания равна обычно полуторной максимальной гигроскопичности; на песчаных почвах она ниже 1% на супесчаных 1-3, на суглинистых 4-10, а на глинистых 15 % и выше.

Количество воды, которую почва прочно удерживает, а растения не могут использовать, составляет мертвый запас воды.

В глинистых почвах, водоудерживающая способность которых очень велика, мертвый запас влаги составляет 10-15% массы почвы, а в песчаных почвах — меньше 1 %. Это значит, что при одинаковой влажности (допустим, 20%) глинистая и песчаная почвы имеют разное количество доступной растениям воды: глинистая 5-10%, песчаная 19%.

Воду, которая содержится в почве сверхвлажности завядания (некоторые считают сверх мертвого запаса), т.е. больше двойной максимальной гигроскопичности, называют продуктивной (или доступной) влагой. Процент продуктивной влаги в почве равен приблизительно влажности почвы, выраженной в процентах, за вычетом двойной максимальной гигроскопичности.

Однако более точно количество продуктивной влаги исчислять в весовых единицах Каждый миллиметр осадков соответствует 10 т воды на 1 га.

Запас продуктивной влаги (W) вычисляют с учетом мощности и плотности каждого слоя почвы по формуле:

W = 0,1 • П • h (B — BЗ),

где 0,1—коэффициент перевода в миллиметры водяного слоя;/7—плотность почвы (в r на 1 см куб); h — мощность слоя почвы, для которого рассчитывается запас влаги (в см); В—влажность почвы и ВЗ—влажность завядания (в % от абсолютно сухой почвы).

Почва способна впитывать и удерживать воду, а затем отдавать ее растениям. Для получения высокого урожая необходимо, чтобы в почве всегда содержалось нужное растениям количество воды. Зерновые культуры расходуют на создание урожая 2—3 тыс. т воды на 1 га, а другие растения и больше.

В почву вода попадает прежде всего с осадками, а также из атмосферы в виде водяных паров. Наибольшее количество воды, которое может удержать (вместить) почва при заполнении всех пор, называется общей, или полной, влагоемкостью (ПВ), Она зависит от механического состава почвы, содержания в ней перегноя и от общей пористости. Например, глинистые почвы отличаются высокой влагоемкостью (60-80 г воды на 100 г почвы), а песчаные — низкой (15-25 г). Особенно велика она в торфяных почвах. При полном насыщении торфа масса ее в несколько раз превышает массу воздушно-сухого торфа. Наиболее благоприятный для растений водный режим создается в минеральных почвах при насыщении их водой на 60-80% полной влагоемкости.

Способность почвы пропускать через себя воду носит название водопроницаемости. При плохой водопроницаемости вода осадков стекает по поверхности почвы. В то же время при очень высокой водопроницаемости, какой, например, обладают песчаные почвы, осадки очень быстро проникают через почву и не используются растениями. Наиболее благоприятны условия для водопроницаемости в структурных почвах.

Водный режим почвы зависит прежде всего от количества выпадающих атмосферных осадков и от величины расхода влаги на испарение и транспирацию. Соотношение этих величин и определяет тип водного режима почвы. Он может быть промывным (отношение осадков к испарению больше единицы), переходным (это отношение около единицы) и непромывным (осадков меньше, чем величина испарения). Промывной тип преобладает в лесолуговой зоне, непромывной – в степной и пустынной зоне, а переходный — в лесостепи. При близком расположении грунтовых вод возникает еще выпотной тип водного режима, а при высоком уровне грунтовых вод — застойный тип, который не считается самостоятельным типом, а разновидностью промывного.

Читайте также:  Снижение плодородия сельскохозяйственных земель

Воздушные и тепловые свойства почвы. В почве содержится воздух, состав которого отличается от атмосферного большим количеством углекислого газа, меньшим количеством кислорода. При недостатке воздуха в почве замедляется прорастание семян, ненормально развивается корневая система, подавляется микробиологическая деятельность.

Содержание воздуха в почве (ее воздухоемкость) зависит от скважности почвы и относительного количества пор, занятых водой.

Важно, чтобы непрерывно шел интенсивный обмен воздуха между почвой и атмосферой (аэрация), чтобы воздух, более богатый кислородом, поступал в почву, а бедный кислородом удалялся из нее.

Тепловой режим в значительной степени объясняет интенсивность механических, геохимических и биологических процессов в почве. С повышением температуры на 10° С скорость химической реакции возрастает в 2-3 раза. В разных районах Земли в этой связи скорости химических реакций могут отличаться в десятки раз. От температуры зависит сорбция и десорбция, растворимость газов, соотношение твердой и жидкой фаз в почве, пептизация и коагуляция коллоидов.

Многие минералы отличаются значительными коэффициентами объемного расширения, например, у полевых шпатов вдвое меньше, чем у кварца. При периодическом нагревании и охлаждении в породах образуются трещины, а капиллярное давление в тонких трещинах и замерзающая вода в более крупных способствуют механическому разрушению минералов и пород. Нагревание увеличивает биохимическую деятельность бактерий, по крайней мере до температуры 40° С.

Тепловым режимом почвы называется совокупность явлений теплообмена в системе приземный слой воздуха – почва – почвообразующая порода. Тепловой режим определяет в первую очередь солнечная радиация, точнее соотношение поглощенной радиации и теплового излучения Земли. Сравнительно небольшую роль играют экзо- и эндотермические реакции в почве, а также внутренняя энергия нашей планеты. Интенсивность альбедо зависит от окраски почвы, характера ее поверхности, теплоемкости. Темные почвы, богатые органическим веществом и глинистыми минералами, энергично поглощают солнечное излучение. Светлые, особенно песчаные малогумусные почвы имеют альбедо 40-45 %, или почти вдвое меньше.

Под теплоемкостью понимают количество теплоты, необходимое для нагревания на 1° С 1 г почвы (массовая теплоемкость) или 1 см 3 почвы (объемная теплоемкость). Теплоемкость жидкой фазы – около 1, твердой – 0,1-0,5, газовой фазы – 0,0003. Из этих величин следует, что теплоемкость почвы увеличивается с увеличением влажности почвы, то есть для нагревания влажной почвы требуется больше тепла, чем для нагревания сухой.

Излучение теплоты также зависит от состава и влажности почвы, строения поверхности. Поступающее количество энергии (радиационный баланс) тратится на испарение, нагревание почвы, отдачу тепла в атмосферу. В среднем за год тепловой баланс почвы равен нулю.

Тепловодность – способность почвы проводить теплоту, она определяет глубину прогревания и охлаждения почв. Этот показатель у воды в 20 с лишним раз выше, чем у воздуха, поэтому влажные почвы прогреваются на большую глубину, хотя и медленнее, чем сухие. Биологически активное прогревание соответствует температуре выше 10° С. Колебания суточных температур распространяются обычно до глубины 1 м. Сезонные колебания захватывают значительно большую толщину почвы.

Промерзание почвы зависит от ряда причин: географического положения, климатических особенностей, температуры замерзания почвенного раствора, мощности снежного покрова и времени его выпадения, наличия древесной растительности. Растительность задерживает солнечную радиацию, поэтому летом температура почвы может быть ниже, чем воздуха. Пониженную теплопроводность имеет лесная подстилка. Но зимой температуры почвы под лесом выше, чем на соседнем поле.

Источник

Adblock
detector