Очистка почвы от загрязнений
Может случиться, что земля на загородном участке будет сильно загрязнена прорвавшимися из септика сточными водами, удобрениями, смытыми весной с полей, дизтопливом и т.д. Неочищенная почва на долгое время станет источником постоянного токсического заражения всего, что с ней соприкасается. Первое, что страдает от загрязнений в грунте — садовые и декоративные растения, а также неглубокие источники воды, которыми Вы пользуетесь. Иногда такое заражение ничем себя внешне не проявляет и действует незаметно. Некоторые вредные вещества способны накапливаться в организме и лишь по прошествии времени оказывают негативное воздействие на здоровье.
Если существуют сомнения в химической и бактериологической чистоте загородного участка, надо сделать лабораторный анализ почвы, овощей и фруктов, собираемых с дачных плантаций, и воды. Воду необходимо проверить, если она попадает в дом из мелких и средних по глубине источников — колодцев, песчаных скважин. Чрезмерное количество некоторых химических соединений или уровень кислотности почвы может отрицательно влиять на сохранность бетонных, металлических и прочих подземных конструкций.
Конечно, почва как часть биосферы стремиться естественным образом нейтрализовать чужеродные для нее вещества и соединения. Но этот процесс занимает очень много времени. При слишком высокой концентрации загрязнений механизм естественного природного очищения и восстановления может не работать.
экспресс-анализ почвы на загрязнения
Существуют эффективные технологии по очистке хозяйственно-бытовых стоков. Но как вернуть верхнему слою почвы его плодородные свойства и экологическую чистоту? Рассмотрим современные методы восстановления естественных природных качеств грунта.
Способы очистки почвы от загрязнений
По принципу действия методы очистки почвы делятся на три типа:
- химические
- физические
- биологические
Не все из перечисленных способов из-за своей радикальности подходят для восстановления экологии загородного участка и применяются для решения масштабных промышленных задач. Но возможны ситуации, когда лишь таким способом можно очистить землю от посторонних веществ — например, случайно пролили бочку солярки для котла отопления — и затем вернуть ее к жизни с помощью рекультивации. Часть методов производят сложное воздействие на почву и могут быть отнесены сразу к двум типам. Химический метод очистки почвыхимическая очистка почвы При химической очистке почвы от загрязнений используется метод промывки. Делаются специальные растворы из поверхностно-активных веществ или растворы, содержащие сильные окислители — активный кислород, хлорсодержащие соединения, а также щелочные растворы. Выщелачивание осуществляется с помощью 2%-ого раствора соляной кислоты. При выщелачивании содержание тяжелых металлов (цинк, свинец, кадмий, никель, медь, мышьяк) снижается на 85-95%. Так как при промывке растворы попадает в почву, непосредственно проникая во все поры между частицами, эффективность данного метода очень высокая. После очистки промывкой следует сделать рекультивацию почвы. Недостатки метода: нужна очистка почвы от соединений хлора. Метод не подходит для очистки большого объема грунта. Физико-химические методы очистки почвы Самый простой физический метод восстановления почвы — снять верхний слой и заменить его чистым, незараженным. Но не всегда есть возможность найти достаточное количество свободной и плодородной почвы. Электрофизический метод очистки — используется для удаления из почвы нефтепродуктов, фенолов и хлорсодержащих углеводородов. В основе метода лежит эффект электролиза воды при прохождении электрического тока через почву. Сложные загрязняющие соединения при таком воздействии активно окисляются и распадаются на менее вредные простые составляющие. Метод электрофизической очистки позволяет очищать почву от опасных соединений на основе свинца, ртути, кадмия, мышьяка и т.д. схема электрохимической очистки почвы (метод электролиза) В зависимости от условий в грунте и использованного дополнительного оборудования кроме электролиза могут быть использованы другие варианты метода: электрокоагуляция, электрохимическое окисление, электрофлотация, электроосмос, электрокинетический метод и некоторые другие. Практически все перечисленные способы электроочистки почвы технически сложны и дороги. Термический метод очистки почвы Термический метод очистки можно отнести к физическому. В зависимости от типа загрязнений нагрев может производиться как на воздухе, так и в вакууме — в специальных герметичных установках. Метод применяется для освобождения почвы от нефтепродуктов, масел, бензина, от некоторых цветных металлов, от галогеносодержащих и органических соединений. Углеводороды выгорают при нагреве материала до + 800 С. Восстановить свойства почвы после такого воздействия можно добавлением компоста или минеральных удобрений. Существуют не только стационарные, но и передвижные термические установки на автомобильном шасси. Во всем мире ежегодно термическим методом очищаются миллионы тонн почвы. термическая очистка почвы Очень сильный нагрев до сплавления частиц почвы проводится с помощью электродов, опускаемых в землю. Данный электро-термический метод используется для связывания в невымываемые грунтовыми водами формы таких опасных загрязнителей, как тяжелые металлы и радионуклиды. Биологические методы очистки почвы Фиторемедиация — комплекс методов использования растений для очистки сточных вод, почвы и атмосферы от различных типов загрязнений. В свою очередь фиторемедиация является составной частью еще более широкой методики биоремедиации. Рассмотрим фито-методы для очистки почвы. Метод фитоэкстракции — на загрязненном участке высаживаются специально отобранные растения. В силу своих биологических особенностей некоторые виды флоры способны поглощать и накапливать в корнях, стеблях и листьях соединения меди, цинка, кобальта, никеля, свинца, хрома, тем самым снижая содержание этих элементов в земле. Для более полного восстановления участка почвы необходимо обеспечить несколько циклов произрастания данных растительных видов. По завершении процесса фитоэкстракции все растения необходимо собрать и сжечь. При этом продукты сгорания следует захоронить на специальном полигоне для отходов, так как в пепле сохранится высокое содержание вредных элементов. Метод фитостабилизации немного отличается от фитоэкстракции. Используемые растения не поглощают, но осаждают в почве рядом с корнями опасные химические соединения, почвенные бактерии способны переработать некоторые из них в менее опасные. В результате соединения переводятся в неактивную и мало подвижную форму, чем снижается риск их дальнейшего распространения. ярутка полевая — поглощает из почвы тяжелые металлы Кроме определенных растений, естественным образом произрастающих в природе и пригодных для решения задач очистки почвы и воды, производятся опыты по созданию более эффективных генномодифицированных растений с улучшенными характеристиками. Все биологические методы очистки действенны только при невысоком и среднем уровне загрязнений почвы. Процесс биологической очистки воды и почвы достаточно медленный, но естественный и наименее затратный. Методы биостимуляции и биодеструкции — особые организмы разрушают проникшие в почву загрязнения. Методы используются в основном для нейтрализации различных нефтепродуктов, жиров и масел. Микроорганизмы-деструкторы либо просто добавляются в почву, либо в почве создаются условия — вносятся специальные добавки для ускоренного размножения эндогенных, то есть уже живущих там аэробных бактерий, способных расщеплять углеводороды. На рост бактерий влияет влажность, уровень аэрации и температура почвы, поэтому эффективность данного способа зависит от многих факторов. Лучший метод очистки почвы В сложных случаях, когда в почву попали разные по типу загрязнения, или новое загрязнение наложилось на неизвестное старое, наиболее эффективным будет последовательное использование нескольких способов очистки. Как мы уже сказали выше, вряд ли большинство из перечисленных в статье вариантов можно применить на загородном участке. Но некоторые методы вполне доступны и могут улучшить экологическую ситуацию. Это касается наиболее простых с технической точки зрения физических и биологических методов.
Источник
Очистки загрязненных почв, от тяжелых металлов
ОЧИСТКИ ЗАГРЯЗНЕННЫХ ПОЧВ, ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ
Загрязнение почв тяжёлыми металлами (ТМ) представляет важную экологическую проблему. Возможно осаждение их в виде труднорастворимых осадков, вымывание за пределы почвенного профиля, извлечение из почв растениями и микроорганизмами, сорбция минералами с высокой ёмкостью катионного обмена и смесью сорбентов. Однако сорбция тяжёлых металлов сорбентами и перевод их в труднорастворимые осадки приводят к созданию депонирующих сред, т.е. создаются отложенные негативные последствия. Вымывание тяжёлых металлов за пределы почвенного профиля водой малоэффективно в связи со слабой растворимостью осадков ТМ в почвах и значительной прочностью их связи в почвенном поглощающем комплексе. Извлечение тяжёлых металлов из почв растениями и микроорганизмами, как правило, невелико по сравнению с их валовым содержанием, и находится на пределе точности определений. Вышеуказанные недостатки существующих методов очистки почв от ТМ определяют необходимость поиска новых методов интоксикации почв [1].
В понятие ТМ включают все металлы, за исключением щелочных и щелочноземельных элементов. ТМ — группа химических элементов плотностью более 5 г / см3 с относительной атомной массой более 40 а. е. м.
По степени опасности ТМ подразделяют на три группы:
1) высоко опасные: Hg, As, Se, Сd, РЬ, Zn; 2) умеренно опасные: Сг, Со, Мо, Ni, Си, Sb и 3) малоопасные: V, W, Мп, Sr. По свойствам ионов ТМ в воде данные элементы подразделяются на металлы, изменяющие органолептические свойства воды, такие как цвет, запах, вкус (Те, Мп, Zn) и токсикологические (Al, Cd, Си, Мо, Сг). Также существует классификация ТМ по степени подвижности в почвенных экосистемах: первый класс включают Hg, As, Se, Сd, Pb, Zn и второй класс Cr, Со, Мо, Ni, Cu, Sb. Оба класса относятся к металлам первичного рассеивания (такого, как вулканическая деятельность). К третьему классу относятся металлы вторичного рассеивания: V, W, Мп, Sr [2].
Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими.
Среди них можно выделить следующие способы:
Увеличение кислотности почвы повышает возможность загрязнения ее тяжелыми металлами. Поэтому внесение органических веществ и глины, известкование помогают в какой — то мере в борьбе с загрязнением;
Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным [3];
Очистка методом промывки почвы растворами из ПАВ или растворами содержащие сильные окислители — активный кислород, хлорсодержащие соединения, а также щелочные растворы. При выщелачивании содержание тяжелых металлов (Zn, Pb, Cd, Ni, Cu, As) снижается на 85 — 95 % ;
Электрофизический метод очистки — используется для удаления из почвы нефтепродуктов, фенолов и хлорсодержащих углеводородов. В основе метода лежит эффект электролиза воды при прохождении электрического тока через почву;
Термический метод очистки — метод применяется для освобождения почвы от нефтепродуктов, масел, бензина, от некоторых цветных металлов, от галогеносодержащих и органических соединений. Восстановить свойства почвы после такого воздействия можно добавлением компоста или минеральных удобрений [4];
Проведение детоксикации подземных вод, ее откачивание и очистка;
Прогнозирование и устранение миграции растворимой формы тяжелых металлов;
В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.
Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.
Список использованной литературы:
Алексеев Ю. В. Тяжелые металлы в почвах и растениях / Ю. В. Алексеев. Л.: Агропромиздат, 1987.[141 с].
Левин С. В. Тяжелые металлы как фактор антропогенного воздействия на почвенную микробиоту / С. В. Левин, В. С. Гузев, И. В. Асеева и др. // Микроорганизмы и охрана почв / Под ред. Д. Г. Звягинцева. М.: Изд — во МГУ, 1989.[5, с. 47].
Химия окружающей среды / под ред. О. М. Бокриса. М.: Химия, 1982. [672 с].
Кабата — Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях. М., 1989. 377 с.
Источник
Химики придумали, как помочь растениям очищать почву от тяжелых металлов
Некоторые загрязненные территории уже очищают с помощью растений, накапливающих тяжелые металлы и другие токсиканты, но этот метод пока требует доработки и подбора оптимальных добавок, которые будут, с одной стороны, стимулировать аккумуляцию металлов, а с другой — помогут растениям справляться с избытком загрязнителей. Российские ученые из РХТУ им. Д.И. Менделеева и НИЦ ИРЕА “Курчатовский институт” показали, что с помощью фосфорорганического вещества, помогающего связывать ионы тяжелых металлов, а также комплекса фитогормонов и соединений железа можно добиться того, чтобы клевер не только накапливал избыточные концентрации никеля, кадмия и меди, но и почти не уменьшал свою биомассу. Исследователи продолжают эксперименты и планируют применить разработки для ремедиации реальных загрязнений, а результаты работы опубликованы в журнале Sustainability.
Flickr. Creative Commons
Некоторые растения умеют извлекать из почвы тяжелые металлы и в избытке их накапливать. Часто это нежелательно — растения становятся токсичными, и, например, употреблять в пищу их уже нельзя. Но иногда такие суперспособности, наоборот можно использовать во благо. Так, в Малайзии и Индонезии есть экспериментальные фермы, где с помощью растений-гипераккумуляторов (так называют растения, способные накапливать особенно много металлов) пробуют добывать никель. А еще их можно использовать для фиторемедиации, то есть очищать с помощью таких растений загрязненную почву.
Этот метод хорошо подходит для больших территорий с невысокими показателями загрязнения. Выкапывать тонны земли часто невыгодно, а иногда и невозможно, и вместо этого проще засадить территорию, например, подходящей травой, которая накопит тяжелые металлы. Потом ее можно будет скосить, сжечь, а золу утилизировать. Российские ученые начали исследовать возможности фиторемедиации как раз после запроса от руководства одного из мусорных полигонов, где наблюдали высокую концентрацию тяжелых металлов.
“Этот полигон уже лет пять как закрыли, но там до сих пор много тяжелых металлов, по всей видимости, они из тела полигона выпирают наверх потихонечку. Раскапывать его нет смысла — мы просто сдерём верхний слой почвы, а дальше всё начнется по кругу, и мы как вариант предложили фиторемедиацию, — рассказывает первый автор работы, профессор РХТУ Анна Макарова. — Но только растения хоть и могут накапливать металлы, но по умолчанию не очень рвутся это делать. Есть, конечно, гипераккумуляторы, но они хорошо работают не со всеми металлами и не всегда могут расти в нашем климате, а самое главное — их биомасса является достаточно небольшой. Поэтому необходимо было найти химические вещества, которые стимулируют аккумуляцию металлов, а еще подобрать им помощников — другие вещества, которые уже помогут растениям компенсировать негативные эффекты от избытка тяжелых металлов в том числе и способствовать развитию биомассы. Этому и была посвящена работа”.
Как помочь растениям?
В сельском хозяйстве, особенно в США, часто используют добавку — этилендиаминтетрауксусную кислоту (ЭДТА). Это соединение очень эффективно связывает различные ионы и так помогает растениям усваивать необходимые минеральные вещества. Точно так же ЭДТА хорошо связывается и с тяжелыми металлами, поэтому ее часто используют как стимулирующую фиторемедиацию добавку. Однако у ЭДТА есть большой минус — она так плохо разлагается в почве, что в конце концов сама становится загрязнителем. Поэтому российские ученые попробовали заменить ЭДТА другим веществом — гидроксиэтилидендифосфоновой кислотой (ОЭДФ). Это фосфорорганическое соединение, которое тоже может связываться с ионами металлов, но уже не так токсично, как ЭДТА. ОЭДФ включена во многие биохимические процессы, протекающие внутри растений, содержит нужные растениям атомы фосфора и калия, быстро разлагается в почве, и фактически ее можно считать даже полезной добавкой.
Образцы клевера, выращенные в почве, загрязненной ртутью, без поддерживающих добавок (справа) и с ними (слева)
Elsevier. Creative Commons
Однако избыточное накопление металлов уже само по себе вредно для растений. Они болеют, хуже растут, и в результате получается аккумулировать не так много загрязнителей. Поэтому российские ученые вводили растениям еще дополнительный комплекс фитогормонов и соединения железа, помогавшие компенсировать негативные эффекты от тяжелых металлов — такое своеобразное молоко за вредность.
В экспериментах ученые использовали клевер — по данным литературы, это неприхотливое растение хорошо накапливает тяжелые металлы. Исследователи собрали образцы почвы с полигонов и, проанализировав их состав, выяснили, что основные токсиканты — это кадмий (Cd), никель (Ni) и медь (Cu). Дальше ученые взяли универсальную грунтовую смесь и ввели в нее такие же количества Cd, Ni и Cu, что и в реальных образцах, а также стимулирующие фитоаккумуляцию добавки — ту самую токсичную ЭДТА или безвредную ОЭДФ. Все растения выращивали в лабораторных условиях, фитогормоны добавляли вместе с поливом, а солями железа опрыскивали листья. По истечении 31 дня растения вырывали из земли, разделяли у них корни и побеги и отдельно их сжигали, а состав определяли с помощью метода атомной абсорбционной спектроскопии.
Оказалось, что ЭДТА лучше стимулирует накопление металлов — с ней концентрации Ni и Cu в побегах клевера выросли почти в 6 раз по сравнению с контрольным экспериментом, в котором в почву не вводили никаких стимулирующих добавок. Но, с другой стороны, из-за использования ЭДТА клевер тускнел и слабел, и общая биомасса растения значительно снизилась. С ОЭДФ в растениях, с одной стороны, не накапливалось так много металлов (максимальный результат — увеличение концентрации никеля в корнях клевера в 2.63 раза), но, с другой стороны, у них гораздо слабей уменьшалась биомасса, а с помощью фитогормонов и железа этот негативный эффект почти нейтрализовали.
“Мы показали, что растения даже в загрязненных металлами почвах с полным комплексом наших добавок набирают достаточно приличную массу, — рассказывает Анна Макарова. — Конечно, несопоставимую с массой растений, растущих в чистой почве, но по крайней мере нам удалось хотя бы на 50% снять негативные эффекты токсикации тяжелыми металлами, а это важный шаг для того, чтобы разработать схему фиторемедиации для реальных условий”.
Вершки и корешки
Между двумя стимулирующими фиторемедиацию добавками было еще одно важное отличие. С токсичной ЭДТА металлы распределялись почти равномерно между корнями и побегами клевера, в то время как с ОЭДФ большинство токсикантов уходило в корни. Например, в некоторых экспериментах содержание Cd в корнях клевера превышало его содержание в побегах в 10 раз.
“Скорей всего это такой защитный механизм растения: оно пытается затолкать эти аккумулированные металлы в корни и так оставить максимально чистыми семена наверху, чтобы не повлиять на рост будущих потомков, — говорит Анна Макарова. — Для практики это означает, что ОЭДФ лучше всего использовать не для фитомайнинга или фиторемедиации, а скорей как защитную добавку для растений, когда есть подозрения, что почва загрязнена тяжелыми металлами. Например, для выращивания злаковых это может быть очень актуально — все металлы уйдут в корни, а вершки останутся чистыми”.
Российские ученые продолжают свои исследования в области фиторемедиации. В другой работе они предложили новую добавку, стимулирующую аккумуляцию ртути, а сейчас изучают возможности водных растений и планируют запустить более масштабные и продолжительные эксперименты. Кроме того, они обсуждают проект по фиторемедиации некоторых загрязненных территорий Усолья-Сибирского, где летом 2020 года произошла большая утечка токсичных производных ртути.
Статья: A. Makarova et al, The Improved Phytoextraction of Heavy Metals and the Growth of Trifolium repens L.: The Role of K2HEDP and Plant Growth Regulators Alone and in Combination, Sustainability (Q2), 2021, DOI: 10.3390/su13052432
Источник информации и фото: РХТУ им. Д.И. Менделеева
Источник