2 Схемы
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
Емкостной датчик влажности почвы
Датчик предназначен для определения влажности почвы емкостным методом, то есть датчик не имеет гальванического контакта с почвой, что потенциально делает его весьма долговечным , по сравнению с такими. Датчик был приобретен на Али за 100 рублей с небольшим.
Датчик поставляется в антистатическом пакете. К нему прилагается соединительный кабель, длиной 20 см.
Датчик влажности емкостной представляет собой печатную плату, с габаритами 100 х 22 мм.
Все электронные компоненты устройства смонтированы на плате с одной стороны. Для подключения к Arduino предназначен трех контактный разъем.
Схема подключения датчика к Arduino
Датчик влажности может питаться постоянным напряжением 3,3 В или 5 В, непосредственно от платы Arduino, при этом он потребляет ток 4,8 мА и 5,5 мА, соответственно. На фото видно как он подключен к плате.
Информационный выход датчика AUOT аналоговый. Для демонстрации работы устройства можно использовать программу AnalogInput2, которая считывает сигналы с одного аналогового порта 0 и отправляет их в последовательный порт. При напряжении питания 3,3 В напряжение на информационном выходе меняется в диапазоне от 560 (воздух) до 460 (датчик зажат в руке).
При напряжении питания 5 В напряжение на информационном выходе меняется в диапазоне от 670 (воздух) до 330 (датчик зажат в руке).
Таким, образом, видно, что напряжение на информационном выходе датчика снижается пропорционально повышению влажности окружающей среды.
Следует иметь в виду, что показания датчика меняются плавно, да и пропитывание грунта водой это тоже процесс явно не мгновенный, по этим причинам опрашивать такой датчик часто нет никакого смысла.
К недостаткам датчика можно отнести, то, что радиоэлементы не как не защищены от попадания влаги. Даже если устройство эксплуатируется в цветочном горшке, то попадание капель воды на плату датчика вполне возможно, что и говорить об использовании его в грунте. Вероятно, при практическом использовании датчика в реальном проекте следует покрыть все радиоэлементы слоем лака, парафина или эпоксидной смолы, так что бы случайная капля, попавшая на плату, не замкнула контакты и не стала причиной коррозии. В целом простой и потенциально весьма надежный датчик, который может стать элементом системы автоматического цветополива или домашней метеостанции.
Полезное видео
Файлы прошивки в архиве. Обзор для сайта 2Схемы подготовил Denev.
Источник
Датчик влажности почвы (ёмкостный): инструкция по использованию и примеры
Ёмкостный сенсор влажности почвы пригодиться для создания систем автоматического полива растений. Датчик не даст засохнуть комнатным цветкам и флоре на огороде.
Принцип работы
Ёмкостный датчик выполнен в виде штыря, которым погружается в грунт на расстояние до 80 мм. На штыре в виде дорожек расположены два электрода, но в отличии от резистивной модели, электроды ёмкостного сенсора защищены токоизолирующей маской и неподвержены коррозии.
Внутри ёмкостного датчика находится RC-генератор на таймере 555, частота которого зависит от ёмкости между двумя электродами, которые выполняю роль конденсатора. Изменение влажности грунта сказывается на его диэлектрических свойствах и меняет ёмкость, что приводит к повышению или понижению выходного сигнала датчика. Итоговое напряжение пропорционально степени влажности почвы.
Пример работы для Arduino и XOD
В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.
Схема устройства
Подключите датчик влажности почвы к аналоговому пину A0 платформы Arduino. Для коммуникации понадобятся соединительные провода «мама-папа».
Для быстрой сборки и отладки устройства возьмите плату расширения Troyka Shield, которая одевается сверху на Arduino Uno методом бутерброда. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.
Код для Arduino IDE
Прошейте платформу Arduino скетчем приведённым ниже.
После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.
Источник
Обзор емкостного датчика почвы v2.0
Автор: Сергей · Опубликовано 21.11.2020 · Обновлено 16.12.2020
Сегодня расскажу как подключить емкостный датчик влажности почвы к плате Arduino UNO с отправкой показаний на сериал порт. Так-же приведу пример калибровки, для вывода показаний в процентах %.
Технические параметры
► Напряжение питания: 3.3 — 5.5 В;
► Рабочий ток: 5mA
► Габариты: 99 х 16 х 10 мм;
► Выходное напряжение: 0 — 3.0 В
► Вес: 1 г
Общие сведения
Данный датчик, измеряет уровень влажности почвы посредством емкостного измерения, а не резистивного, как другие датчики. Это позволило увеличить срок службы датчика, так как он не подвержен коррозии. Так же, модуль включает в себя встроенный стабилизатор напряжения, с помощью которого обеспечивается диапазон работы от 3.3 В до 5.5 В, что позволяет подключить его к Arduino UNO, а так же к NodeMCU.
Выходное напряжение ёмкостного датчика почвы составляет от 1.2 В до 3.0 В. Принципиальную схему датчика можно посмотреть на рисунке ниже.
Назначение контактов модуля NEO-6M:
Емкостного датчика почвы v.2 имеет один разъем (PH2.0-3P) для подключения.
► GND — заземляющий вывод питания;
► VCC — вывод питания 3.3 В — 5 В.
► AUOT — аналоговый выход до 3В.
Подключение емкостного датчика почвы v.2 к Arduino UNO
Необходимые детали:
► Arduino UNO R3 x 1 шт.
► Емкостной датчик почвы v.2 x 1 шт.
► Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт.
► Кабель USB 2.0 A-B x 1 шт.
В данном примере подключим емкостной датчика почвы v.2 к Arduino UNO и отобразим аналоговое значение и значение влажности почвы в процентах.
Подключение:
Теперь приступим к подключению емкостной датчик почвы к Arduino UNO, схема для этого очень проста. Подключим вывод VCC к 3.3 В (Arduino UNO, а GND к GND (Arduino UNO). Точно так же подключаем вывод аналогового выхода к A0 (Arduino UNO).
Программа:
Скопируйте приведенный ниже скетч и загрузите его на свою плату Arduino.
Источник
Емкостной датчик влажности почвы
Общие сведения:
Trema-модуль емкостной датчик влажности почвы — в отличие от резистивных датчиков влажности не подвержен коррозии. Датчик является аналоговым, напряжение на выходе обратно пропорционально влажности почвы. Датчик идеально подходит для наблюдения изменений влажности почвы, для создания систем автоматического полива растений и для мониторинга целостности грунтового трубопровода.
Спецификация:
- Напряжение питания Vcc: 5 В или 3,3 В
- Напряжение на выходе датчика при Vcc 5В:
3 . 1,75 В; при Vcc 3,3В:
2 . 1 В
Способ — 2 : Используя проводной шлейф и Shield
Используя 3-х проводной шлейф, к Trema Shield, Trema-Power Shield, Motor Shield, Trema Shield NANO
Питание:
Входное напряжение питания 5 В или 3,3 В, постоянного тока, подаётся на выводы Vcc (V) и GND (G) датчика. Датчик можно подключить к постоянному питанию (тип подключения 1), а можно управлять питанием датчика (тип подключения 2) если подавать питание на датчик с любого информационного вывода, тогда функцией digitalWrite() можно включать или выключать датчик. При таком подключении нужно дать датчику время для включения генератора частоты, примерно 50 миллисекунд.
Питание датчика от информационного вывода (тип подключения 2), возможно, благодаря низкому энергопотреблению датчика (потребляемый ток
В зависимости от влажности почвы, при питании 5 вольт показания датчика находятся в диапазоне от
1.75 вольт; при питании 3,3 вольта от
1. Соответственно, диапазон показаний функции analogRead() будет зависеть от напряжения питания датчика.
График зависимости выходного напряжения датчика от влажности почвы при питании 5В
Примеры:
Считывание показаний с датчика:
Показания датчика считываются вызовом функции analogRead(номер_вывода);
Тип подключения 1:
Тип подключения 2: датчик запитан от выводов A0 и A1.
Так как датчик является инверсным, для удобства чтения данных можно воспользоваться встоенной функцией map(), которая в следующем скетче преобразует и инвертирует «сырые» показания датчка в диапазон от 0 до 100:
Источник
Как работает датчик влажности почвы, и его взаимодействие с Arduino
Когда вы слышите термин «умный сад», вам приходит в голову система, которая измеряет влажность почвы и автоматически поливает ваши растения.
С этим типом системы вы можете поливать растения только при необходимости и избегать чрезмерного или недостаточного полива.
Если вы хотите построить такую систему, вам обязательно понадобится датчик влажности почвы.
Как работает датчик влажности почвы, и его взаимодействие с Arduino
Как работает датчик влажности почвы?
Работа датчика влажности почвы довольно проста.
Вилка в форме зонда с двумя открытыми проводниками действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от содержания воды в почве.
Рисунок 1 – Работа датчика влажности почвы
Это сопротивление обратно пропорционально влажности почвы:
- большее количество воды в почве означает лучшую проводимость и приводит к снижению сопротивления;
- меньшее количество воды в почве означает худшую проводимость и приводит к повышению сопротивления.
Датчик выдает выходное напряжение в соответствии с сопротивлением, измеряя которое мы можем определить уровень влажности.
Обзор аппаратного обеспечения
Типовой датчик влажности почвы состоит из двух компонентов.
Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.
Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.
Рисунок 2 – Зонд датчика влажности почвы
Модуль
Датчик также содержит электронный модуль, который соединяет датчик с Arduino.
В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).
Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).
Рисунок 3 – Регулировка чувствительности датчика влажности почвы
Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.
С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.
Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!
Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.
Рисунок 4 – Светодиодные индикаторы питания и состояния почвы
Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.
Распиновка датчика влажности почвы
Датчик влажности почвы очень прост в использовании и содержит только 4 вывода для связи с внешним миром.
Рисунок 5 – Распиновка датчика влажности почвы
AO (аналоговый выход) выдает аналоговый сигнал с напряжением в диапазоне между напряжением питания и 0 В и будет подключен к одному из аналоговых входов нашей платы Arduino.
Вывод DO (цифровой выход) выдает цифровой выходной сигнал со схемы встроенного компаратора. Вы можете подключить его к любому цифровому выводу на Arduino или напрямую к 5-вольтовому реле или подобному устройству.
Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В. Обратите внимание, что сигнал на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.
GND для подключения земли.
Измерение влажности почвы с помощью аналогового выхода
Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.
Подключение
Давайте подключим наш датчик влажности почвы к плате Arduino.
Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.
Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.
Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.
Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.
Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.
Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.
И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.
Схема соединений показана на рисунке ниже.
Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе
Калибровка
Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.
Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.
Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.
Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.
Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:
850, когда почва сухая;
400, когда почва полностью насыщена влагой.
Рисунок 7 – Калибровка датчика влажности почвы
Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.
Финальная сборка
Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:
- 750 – достаточно сухая для полива.
Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.
Рисунок 8 – Вывод аналоговых показаний датчика влажности почвы
Измерение влажности почвы с помощью цифрового выхода
Для нашего второго эксперимента мы определим состояние почвы с помощью цифрового выхода.
Подключение
Мы будем использовать схему из предыдущего примера. На этот раз нам просто нужно удалить подключение к выводу аналого-цифрового преобразователя и подключить вывод DO модуля к цифровому выводу 8 Arduino.
Соберите схему, как показано ниже:
Рисунок 9 – Подключение датчика влажности почвы к Arduino для считывания показаний на цифровом выходе
Калибровка
Для калибровки цифрового выхода (DO) модуль имеет встроенный потенциометр.
Вращая движок этого потенциометра, вы можете установить пороговое значение. Таким образом, когда уровень влажности превысит пороговое значение, светодиод состояния загорится, и модуль выдаст низкий логический уровень.
Рисунок 10 – Состояния цифрового выхода датчика влажности почвы
Теперь, чтобы откалибровать датчик, вставьте зонд в почву, когда ваше растение будет готово к поливу, и подстройте потенциометр по часовой стрелке так, чтобы светодиод состояния горел, а затем подстройте потенциометр обратно против часовой стрелки, пока светодиод не погаснет.
Теперь ваш датчик откалиброван и готов к использованию.
Код Arduino
После того, как схема будет собрана, загрузите в Arduino следующий скетч.
Если все в порядке, вы должны увидеть вывод в мониторе последовательного порта, похожий на приведенный ниже.
Рисунок 11 – Вывод цифровых показаний датчика влажности почвы
Источник