Меню

Как сохранить температуру почвы

Температура почвы и температура воздуха. Все о температуре почвы

Популярные материалы

Today’s:

Температура почвы и температура воздуха. Все о температуре почвы

Разные культуры можно высаживать дедовским способом: в одно и то же время каждый год. Однако климат меняется, соответственно, и температура почвы становится другой. Каждому растению для развития требуются свои условия, и первое на что надо обращать внимание – это состояние почвы.

В нашей статье объясним подробно, когда семя готово прорасти в земле и как узнать, что пора заняться посадкой; что понадобится для измерения температуры почвы и как быть, если нет нужных приборов под рукой; по каким народным приметам можно ориентироваться, что пришло время высаживать растения.

Тепловые характеристики почвы

Температура почвы очень важна для посадки, поскольку от этого показателя зависит поступление влаги и минерального питания к корням, рост и дыхание растения. Зимой культуры не высаживают именно потому, что в мороз перестают происходить процессы почвообразования. В прогретой до определенного показателя почвенной среде вновь начинается передвижение воды, возобновляют свою деятельность микробы и так далее. На температуру почвы влияют географическое положение местности и высота над уровнем моря, также имеют значение и свойства самого грунта: его механический состав, состояние влажности, другие свойства.

Глинистая почва при влажном климате летом будет не такой теплой, как почва с легким механическим составом, а вот в зимний период песчаная земля промерзнет сильнее, нежели более связные почвы. Увлажненная земля летом холоднее, чем сухая. Структурный грунт за счет лучшего воздухообмена быстрее прогреется весной, чем бесструктурный. Температура наружного слоя земли всегда более высокая по сравнению с корнеобитаемым слоем.

При какой температуре воздуха почва прогреется до 10 градусов. Подводим итоги Сентябрьского стоп-кадра в 2020/2020 учебном году

В измерении температуры почвы приняли участие Петрозаводск и Санкт-Петербург, Москва и Ижевск, республика Татарстан, Ростовская область и Астраханская область.

Из участников с высокой температурой воздуха в день стоп-кадра начнём анализ с анкеты Черки-Гришинской школы. При температуре воздуха 26°С поверхность воздуха прогрелась до 29°С. При этом, когда они измерили температуру воздуха на глубине 10 см, перепад оказался достаточно значительным – 18°С. На глубине 20 см уже всего 14°С.

У группы Лазорики из станицы Мелиховская исходные данные вроде бы похожи. Высокая температура воздуха – 30°С, температура поверхности почвы – 31°С. А вот дальше начинаются странности: на глубине 10 см – 31°С, а на глубине 20 см – 30°С. Вроде бы интуитивно понятно, что почва прогревается медленно и под слоем земли холоднее, чем на поверхности земли. Человек пользовался этим свойством, выкапывая погреба. Мне кажется, что в этом случае стоило бы уточнить, насколько точно группа Лазорики соблюдала протокол исследования.

А вот из результатов участников из пгт. Красные Баррикады можно понять одну из причин, возникающих при измерении погрешностей. Посмотрите на фотографию, которую они разместили в анкете.

При измерении только часть «щупа» датчика погружена в почву, можно предположить, что участники не проделали предварительно углубление в почве, как требует протокол проекта, а попытались воткнуть датчик прямо в почву. При этом возникает сопротивление, так что кажется, что дальше втыкать нельзя, чтобы не сломать датчик. Однако у таких датчиков температуры есть одно неожиданное свойство – измерителем служит вся длина датчика. Поэтому половина датчика измеряет реальную температуру почвы на нужной глубине, а половина датчика находится в условиях тёплого наружного воздуха. В результате возникает сильное искажение результата измерения.

Такую же картину можно видеть и у других участников проекта, работавших с цифровыми датчиками температуры.

Меня очень заинтересовали. Это единственная анкета, в которой отмечено, что чем глубже, тем температура почвы выше, хотя разница небольшая. Впрочем и температура воздуха в Петербурге ниже, чем у большинства остальных участников. Вывод, который сделал учащийся с ником alice30701, совпадает с выводами, которые делали мои собственные учащиеся в стоп-кадрах прошлого года. Осенью почва быстрее остывает с поверхности, а на глубине ещё хранит тепло. Весной, наоборот, чем глубже, тем холоднее, потому что почва постепенно прогревается, начиная с поверхности. (Об этом можно прочесть в статье ниже, посвящённой анализу мартовского стоп-кадра прошлого учебного года).

Соотношение температуры воздуха и почвы. Тепловой режим почв

Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и годовой тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.

Тепловой режим обусловлен преимущественно радиационным балансом , который зависит от соотношения энергии солнечной радиации , поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.

Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126—167), в черноземной зоне — 30-50 (126—209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.

И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по её температурному режиму. Температурный режим графически изображается в виде термоизоплет — кривых, соединяющих точки одинаковых температур.

Читайте также:  Внесение удобрений для зернобобовых

Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от −12 до +20°С. Выделяются 2 области — положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см в основном совпадает с областью распространения многолетнемерзлых пород.

Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:

Источник

Пять простых способов повысить или понизить температуру в теплице

Теплица помогает получить гарантированный урожай самых теплолюбивых культур даже в регионах с переменчивым и суровым климатом в любое время года. Для этого ее нужно правильно обустроить и следить за влажностью, качеством грунта, достатком питания, соблюдать севооборот и поддерживать оптимальный температурный режим воздуха и почвы. В этой статье подробно рассказываю, какие показатели оптимальной температуры в теплице для роста и развития растений и как правильно регулировать температурный режим при любой погоде

Какая температура должна быть в теплице

Наиболее часто в теплице выращивают огурцы, томаты, зеленные культуры и салат, корнеплоды, разные виды капусты, иногда лук на перо. Для каждой культуры существую свои нормы оптимальных температур почвы и воздуха, днем и ночью.

Если говорить о средних цифрах по температуре для всех овощных культур то она должна быть:

  • ночью — примерно на 4-7 °C ниже, чем в дневное время,
  • в пасмурную погоду — на 3-5 °C ниже, чем в погоду солнечную.

Для адекватной оценки температуры в теплице настоятельно рекомендую приобрести термометры.

— Лучше разместить несколько приборов в конце, середине и в начале теплицы.

— Таким образом можно высчитывать среднюю температуру воздуха и почвы в теплице.

Почему так важно поддерживать оптимальную температуру в теплице?

  • Если температура будет выше оптимальных значений, то растения будут испытывать сильный стресс, могут начаться некрозы, ткань листовых пластинок будет увядать и отмирать. Опыление при повышенной температуре будет значительно хуже, много завязей будет сброшено.
  • При пониженной температуре замедлятся все обменные процессы, растения банально не будут расти и развиваться. Опыление также будет сильно затруднено, снизится иммунитет, значительно сократится урожай, его созревание будет заметно растянуто.

Как регулировать температуру в теплице: 5 простых способов

Регулировать температуру в теплице можно разными способами. Например, повысить температуру можно путем герметизации теплицы, то есть полной заделкой всех возможных щелей и отверстий, использовать дополнительное укрытие поверх теплицы и др.

Чтобы максимально стабилизировать температуру в теплице и избежать резких колебаний температуры, старайтесь размещать теплицы в максимально защищенных от ветра местах, желательно в полутени, в идеале — когда тень укрывает теплицу в полуденные часы и когда она хорошо освещена утром и вечером.

1. Укрытие теплицы дополнительным слоем пленки

Если ваша теплица крыта, допустим, стеклянными рамами, то повысить теплоизоляцию можно укрыв ее дополнительно слоем пленки .

  • Еще лучше и теплее будет, если укрыть двумя слоями пленки с воздушной прослойкой меж них.
  • Отмечено что двойной слой пленки примерно на 1/3 уменьшает потерю тепла в ночное время и в период похолодания на улице.

Однако следует знать, что утепление пленкой грозит потерями освещенности в теплице примерно на 1/4.

Как известно ухудшение освещенности ухудшает процессы фотосинтеза, что приводит к увеличению вегетационного периода растений и вызывает увеличение периода созревания.

2. Побелка стен и крыши теплицы

  • Снизить температуру воздуха и грунта в теплице можно путем побелки ее поверхности.
  • Белить можно теплицы из любых материалов — пленки, стекла, поликарбоната.

Фото: следите за тем, чтобы в теплице не было резких перепадов ночных и дневных температур

3. Укрытие почвы в теплице пленкой

Температуру почвы можно повысить путем укрытия пленкой . Еще этот способ можно назвать использование теплицы в теплице, или парника в теплице.

  • Грядки в теплице в вечернее время укрываются пленкой, располагающейся на дугах. Таким образом, в холодное время сезона можно минимизировать потери тепла в ночное время.

Укрытие пленкой особенно актуально для тех случаев, когда в теплице не высаживается рассада, а высеваются семена овощных культур.

  • Пленка обязательно должна быть прозрачной для света.
  • Использование пленки позволит ночью сберечь в среднем до 4 °C тепла, а днем — до 8 °C тепла.
  • Пленка способна на 3-5 дней приблизить появление всходов.

4. Проветривание в теплице

Более простое решение — это использование форточек , которые днем можно открывать, снижая температуру в теплице, а на ночь герметично закрывать, избегая больших теплопотерь.

  • Существуют целые системы – форточки, закрывающиеся и открывающиеся в автоматическом режиме с понижением освещенности, работающие на фотоэлементах, или с понижением температуры – более сложные и дорогие системы.
  • Использование автоматических систем может снизить риск перегрева или переохлаждения воздуха в теплице в 2 раза. С автосистемы проветривания можно сохранить до половины тепла.
  • После размещения рассады старайтесь вентиляционные отверстия закрывать не позднее 15 часов дня, в середине лета не позднее 18 часов вечера.

Фото: для проветривания в теплице обязательно должны быть предусмотрены форточки

Как регулировать температуру в пленочной теплице

На сегодняшний день распространенными являются пленочные теплицы, несмотря на их существенный минус — это значительная амплитуда колебания температуры. Так, в летний солнечный день температура воздуха в теплице может быть выше температуры воздуха на улице максимум на 30 °C, а ночью — всего на 2 °C. Если превышение ночной температуры — факт положительный, то превышение дневной температуры на такие высокие значения может оказаться опасным для растений. Ведь максимальная температура для большинства культур не превышает 29 °C.

Читайте также:  Условия для выращивания ирги

Снизить пороговые значения температуры в пленочных теплицах можно путем открытия двери и форточек.

Однако надо знать, что, например, огурцы не переносят сквозняки, а томаты любят сквозняки.

5. Увлажнение воздуха в теплиц

Проветривание в теплице можно совмещать с увлажнением воздуха — этот поможет снизить температуру на 7-9 °C.

  • Понизить температуру можно путем дождевания поверхности теплицы. Температура в теплице в результате дождевания покрытия может понизиться максимум на 13 °C, что в сильную жару будет спасением для растений.
  • Помогает понизить температуру в теплице и мелкодисперсное распыление воды.
  • Стабилизировать температуру возможно также простым методом размещения канистр с водой, выкрашенных в черный цвет. Днем их ставят на улице, а ночью заносят в теплицу. Они будут отдавать накопленное за день тепло, и температура почвы и воздуха ночью будет ближе к дневным показателям.
  • Н.В. Хромов

Еще больше статей читайте на нашем сайте «Антонов Сад.ру»

Источник

Температура почвы и воздуха. Тепловой режим почв

Популярные материалы

Today’s:

Температура почвы и воздуха. Тепловой режим почв

Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и годовой тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.

Тепловой режим обусловлен преимущественно радиационным балансом , который зависит от соотношения энергии солнечной радиации , поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.

Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126—167), в черноземной зоне — 30-50 (126—209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.

И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по её температурному режиму. Температурный режим графически изображается в виде термоизоплет — кривых, соединяющих точки одинаковых температур.

Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от −12 до +20°С. Выделяются 2 области — положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см в основном совпадает с областью распространения многолетнемерзлых пород.

Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:

Как определить температуру почвы для посадки. Все о температуре почвы

Разные культуры можно высаживать дедовским способом: в одно и то же время каждый год. Однако климат меняется, соответственно, и температура почвы становится другой. Каждому растению для развития требуются свои условия, и первое на что надо обращать внимание – это состояние почвы.

В нашей статье объясним подробно, когда семя готово прорасти в земле и как узнать, что пора заняться посадкой; что понадобится для измерения температуры почвы и как быть, если нет нужных приборов под рукой; по каким народным приметам можно ориентироваться, что пришло время высаживать растения.

Тепловые характеристики почвы

Температура почвы очень важна для посадки, поскольку от этого показателя зависит поступление влаги и минерального питания к корням, рост и дыхание растения. Зимой культуры не высаживают именно потому, что в мороз перестают происходить процессы почвообразования. В прогретой до определенного показателя почвенной среде вновь начинается передвижение воды, возобновляют свою деятельность микробы и так далее. На температуру почвы влияют географическое положение местности и высота над уровнем моря, также имеют значение и свойства самого грунта: его механический состав, состояние влажности, другие свойства.

Глинистая почва при влажном климате летом будет не такой теплой, как почва с легким механическим составом, а вот в зимний период песчаная земля промерзнет сильнее, нежели более связные почвы. Увлажненная земля летом холоднее, чем сухая. Структурный грунт за счет лучшего воздухообмена быстрее прогреется весной, чем бесструктурный. Температура наружного слоя земли всегда более высокая по сравнению с корнеобитаемым слоем.

Температура почвы на глубине 10 см. Геотермальные теплонасосные системы теплоснабжения и эффективность их применения в климатических условиях России

Г. П. Васильев , научный руководитель ОАО «ИНСОЛАР-ИНВЕСТ»

В отличие от «прямого» использования высокопотенциального геотермального тепла (гидротермальных ресурсов) использование грунта поверхностных слоев Земли как источника низкопотенциальной тепловой энергии для геотермальных теплонасосных систем теплоснабжения (ГТСТ) возможно практически повсеместно. В настоящее время в мире это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии.

Грунт поверхностных слоев Земли фактически является тепловым аккумулятором неограниченной мощности. Тепловой режим грунта формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потока радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м.

Читайте также:  Цветная капуста как вырастить хороший урожай

Тепловой режим слоев грунта, расположенных ниже этой глубины («нейтральной зоны»), формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата (рис. 1). С увеличением глубины температура грунта также увеличивается в соответствии с геотермическим градиентом (примерно 3 °С на каждые 100 м). Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. Как правило, эта величина составляет 0,05–0,12 Вт/м 2 .

При эксплуатации ГТСТ грунтовый массив, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. При этом в капиллярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые, прежде всего, связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. При наличии в толще грунтового массива температурного градиента молекулы водяного пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды.

При какой температуре воздуха почва прогреется до 10 градусов. Узнайте температуру вашей почвы

Вряд ли чтение прогноза погоды в местной газете отнимет у вас много времени: песчаная почва — 32 °C; глинистая почва — 27 °C… Температура почвы изменяется также, как и температура воздуха. Различие в одном: температура почвы не может меняться с той же интенсивностью, как температура воздуха. Наверное одна часть вашего сада прогревается больше (или меньше), чем другая, в зависимости от ее местоположения, химического и физического состава почвы.Сначала давайте выясним, как температура почвы влияет на результаты ваших посевов .

Приведем некоторые примеры:

  1. Прорастание семян зависит от степени прогрева почвы, так же и от степени прогрева воздуха.
  2. Посадка самых ранних культур, как только почва достаточно прогрелась весной, позволяет по истечении периода вегетации посадить на то же место поздние культуры.
  3. Мульчирование или выращивание культур в защищенном грунте позволяет измерять температуру почвы так, как это нужно вам.
  4. Мелкие животные типа кроликов выбирают для своих нор в саду только те места, где температура поверхности почвы более высокая, потому-что это защитит их от зимних морозов.
  5. Вам необходимо научиться спасать растения от повреждения низкими температурами.
  6. Вы можете помогать полезным бактериям почвы, если знаете, при какой температуре почвы условия для их жизнедеятельности оптимальны.

Люди, которые занимаются земледелием по органическому методу, хорошо знают, что их почва – живая, она является домом для миллионов полезных бактерий. Для наилучшего осуществления своей работы бактерии требуют особых условий по теплу, влажности и доступности почвенного воздуха.

Эти условия имеются только в верхнем (культурном) слое почвы; их легче достигнуть на супесчаных почвах, чем на глинистых, где влажность слишком высока и всегда имеет место недостаток кислорода.

Согласно Т. Бэдфорду Франклину, автору «Климата в миниатюре», «поля кукурузы желтеют, особенно в областях с глинистыми почвами, когда холод и сушь восточных ветров охлаждают почву весной, — это происходит от того, что в холодной почве бактерии производят слишком мало нитратов для того, чтобы почвы могли дать урожай; только при наступлении более теплого периода бактерии начинают активно работать – ярко-зеленый цвет возвращается к кукурузе.

Как определить температуру почвы по температуре воздуха. Расчёт температуры грунта на заданной глубине

Часто при проектированиидля моделирования температурных полей и для других расчётов необходимо узнать температуру грунта на заданной глубине.

Температуру грунта на глубине измеряют с помощью вытяжных почвенно- глубинных термометров. Это плановые исследования, которые регулярно проводят метеорологические станции. Данные исследований служат основой для климатических атласов и нормативной документации.

Для получения температуры грунта на заданной глубине можно попробовать, например, два простых способа. Оба способа заключаются в использовании справочной литературы:

  1. Для приближённого определения температуры можно использовать документ ЦПИ-22. «Переходы железных дорог трубопроводами». Здесь в рамках методики теплотехнического расчёта трубопроводов приводится таблица 1, где для определённых климатических районов приводятся величины температур грунта в зависимости от глубины измерения. Эту таблицу я привожу здесь ниже.
  1. Таблица температур грунта на различных глубинах из источника «в помощь работнику газовой промышленности» еще времён СССР

Нормативные глубины промерзания для некоторых городов:

Глубина промерзания грунта зависит от типа грунта:

Можно конечно попробовать рассчитать температуру грунта, например, по методике, изложенной в книге С.Н.Шорин «Теплопередача» М.1952. На стр.115. Но такой расчёт весьма сложный и не всегда оправдан.

Я думаю, что самый простой вариант, это воспользоваться вышеуказанными справочными данными, а затем интерполировать.

Самый надёжный вариант для точных расчётов с использованием температур грунта — воспользоваться данными метеорологических служб. На базе метеорологических служб работают некоторые онлайн справочники. Например, http://www.atlas-yakutia.ru/.

Здесь достаточно выбрать населённый пункт, тип грунта и можно получить температурную карту грунта или её данные в табличной форме. В принципе, удобно, но похоже этот ресурс платный.

Если Вы знаете ещё способы определения температуры грунта на заданной глубине, то, пожалуйста, пишите комментарии.

Источник

Adblock
detector