Меню

Какая может быть температура почвы

Температура почвы и воздуха. Тепловой режим почв

Популярные материалы

Today’s:

Температура почвы и воздуха. Тепловой режим почв

Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и годовой тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.

Тепловой режим обусловлен преимущественно радиационным балансом , который зависит от соотношения энергии солнечной радиации , поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.

Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126—167), в черноземной зоне — 30-50 (126—209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.

И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по её температурному режиму. Температурный режим графически изображается в виде термоизоплет — кривых, соединяющих точки одинаковых температур.

Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от −12 до +20°С. Выделяются 2 области — положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см в основном совпадает с областью распространения многолетнемерзлых пород.

Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:

Как определить температуру почвы для посадки. Все о температуре почвы

Разные культуры можно высаживать дедовским способом: в одно и то же время каждый год. Однако климат меняется, соответственно, и температура почвы становится другой. Каждому растению для развития требуются свои условия, и первое на что надо обращать внимание – это состояние почвы.

В нашей статье объясним подробно, когда семя готово прорасти в земле и как узнать, что пора заняться посадкой; что понадобится для измерения температуры почвы и как быть, если нет нужных приборов под рукой; по каким народным приметам можно ориентироваться, что пришло время высаживать растения.

Тепловые характеристики почвы

Температура почвы очень важна для посадки, поскольку от этого показателя зависит поступление влаги и минерального питания к корням, рост и дыхание растения. Зимой культуры не высаживают именно потому, что в мороз перестают происходить процессы почвообразования. В прогретой до определенного показателя почвенной среде вновь начинается передвижение воды, возобновляют свою деятельность микробы и так далее. На температуру почвы влияют географическое положение местности и высота над уровнем моря, также имеют значение и свойства самого грунта: его механический состав, состояние влажности, другие свойства.

Глинистая почва при влажном климате летом будет не такой теплой, как почва с легким механическим составом, а вот в зимний период песчаная земля промерзнет сильнее, нежели более связные почвы. Увлажненная земля летом холоднее, чем сухая. Структурный грунт за счет лучшего воздухообмена быстрее прогреется весной, чем бесструктурный. Температура наружного слоя земли всегда более высокая по сравнению с корнеобитаемым слоем.

Температура почвы на глубине 10 см. Геотермальные теплонасосные системы теплоснабжения и эффективность их применения в климатических условиях России

Г. П. Васильев , научный руководитель ОАО «ИНСОЛАР-ИНВЕСТ»

В отличие от «прямого» использования высокопотенциального геотермального тепла (гидротермальных ресурсов) использование грунта поверхностных слоев Земли как источника низкопотенциальной тепловой энергии для геотермальных теплонасосных систем теплоснабжения (ГТСТ) возможно практически повсеместно. В настоящее время в мире это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии.

Грунт поверхностных слоев Земли фактически является тепловым аккумулятором неограниченной мощности. Тепловой режим грунта формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потока радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м.

Читайте также:  Уход за цветком бегония при выращивании

Тепловой режим слоев грунта, расположенных ниже этой глубины («нейтральной зоны»), формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата (рис. 1). С увеличением глубины температура грунта также увеличивается в соответствии с геотермическим градиентом (примерно 3 °С на каждые 100 м). Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. Как правило, эта величина составляет 0,05–0,12 Вт/м 2 .

При эксплуатации ГТСТ грунтовый массив, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. При этом в капиллярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые, прежде всего, связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. При наличии в толще грунтового массива температурного градиента молекулы водяного пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков, а также грунтовые воды.

При какой температуре воздуха почва прогреется до 10 градусов. Узнайте температуру вашей почвы

Вряд ли чтение прогноза погоды в местной газете отнимет у вас много времени: песчаная почва — 32 °C; глинистая почва — 27 °C… Температура почвы изменяется также, как и температура воздуха. Различие в одном: температура почвы не может меняться с той же интенсивностью, как температура воздуха. Наверное одна часть вашего сада прогревается больше (или меньше), чем другая, в зависимости от ее местоположения, химического и физического состава почвы.Сначала давайте выясним, как температура почвы влияет на результаты ваших посевов .

Приведем некоторые примеры:

  1. Прорастание семян зависит от степени прогрева почвы, так же и от степени прогрева воздуха.
  2. Посадка самых ранних культур, как только почва достаточно прогрелась весной, позволяет по истечении периода вегетации посадить на то же место поздние культуры.
  3. Мульчирование или выращивание культур в защищенном грунте позволяет измерять температуру почвы так, как это нужно вам.
  4. Мелкие животные типа кроликов выбирают для своих нор в саду только те места, где температура поверхности почвы более высокая, потому-что это защитит их от зимних морозов.
  5. Вам необходимо научиться спасать растения от повреждения низкими температурами.
  6. Вы можете помогать полезным бактериям почвы, если знаете, при какой температуре почвы условия для их жизнедеятельности оптимальны.

Люди, которые занимаются земледелием по органическому методу, хорошо знают, что их почва – живая, она является домом для миллионов полезных бактерий. Для наилучшего осуществления своей работы бактерии требуют особых условий по теплу, влажности и доступности почвенного воздуха.

Эти условия имеются только в верхнем (культурном) слое почвы; их легче достигнуть на супесчаных почвах, чем на глинистых, где влажность слишком высока и всегда имеет место недостаток кислорода.

Согласно Т. Бэдфорду Франклину, автору «Климата в миниатюре», «поля кукурузы желтеют, особенно в областях с глинистыми почвами, когда холод и сушь восточных ветров охлаждают почву весной, — это происходит от того, что в холодной почве бактерии производят слишком мало нитратов для того, чтобы почвы могли дать урожай; только при наступлении более теплого периода бактерии начинают активно работать – ярко-зеленый цвет возвращается к кукурузе.

Как определить температуру почвы по температуре воздуха. Расчёт температуры грунта на заданной глубине

Часто при проектированиидля моделирования температурных полей и для других расчётов необходимо узнать температуру грунта на заданной глубине.

Температуру грунта на глубине измеряют с помощью вытяжных почвенно- глубинных термометров. Это плановые исследования, которые регулярно проводят метеорологические станции. Данные исследований служат основой для климатических атласов и нормативной документации.

Для получения температуры грунта на заданной глубине можно попробовать, например, два простых способа. Оба способа заключаются в использовании справочной литературы:

  1. Для приближённого определения температуры можно использовать документ ЦПИ-22. «Переходы железных дорог трубопроводами». Здесь в рамках методики теплотехнического расчёта трубопроводов приводится таблица 1, где для определённых климатических районов приводятся величины температур грунта в зависимости от глубины измерения. Эту таблицу я привожу здесь ниже.
  1. Таблица температур грунта на различных глубинах из источника «в помощь работнику газовой промышленности» еще времён СССР
Читайте также:  Предприятия для производство удобрений

Нормативные глубины промерзания для некоторых городов:

Глубина промерзания грунта зависит от типа грунта:

Можно конечно попробовать рассчитать температуру грунта, например, по методике, изложенной в книге С.Н.Шорин «Теплопередача» М.1952. На стр.115. Но такой расчёт весьма сложный и не всегда оправдан.

Я думаю, что самый простой вариант, это воспользоваться вышеуказанными справочными данными, а затем интерполировать.

Самый надёжный вариант для точных расчётов с использованием температур грунта — воспользоваться данными метеорологических служб. На базе метеорологических служб работают некоторые онлайн справочники. Например, http://www.atlas-yakutia.ru/.

Здесь достаточно выбрать населённый пункт, тип грунта и можно получить температурную карту грунта или её данные в табличной форме. В принципе, удобно, но похоже этот ресурс платный.

Если Вы знаете ещё способы определения температуры грунта на заданной глубине, то, пожалуйста, пишите комментарии.

Источник

Температура почв

Большинство сценариев изменения климата основано на анализе температур воздуха. Однако для теоретических и прикладных задач, связанных с оценкой отклика земной поверхности на изменения климата, первостепенное значение имеет температура почв — важнейшая характеристика климатических, почвообразовательных, мерзлотных и инженерно-геологических условий. Она определяет функционирование наземных биогеоценозов, позволяя судить о чувствительности ландшафтов к антропогенному воздействию, изменению природной среды и климатическим флуктуациям. Особый интерес к последнему аспекту диктуется растущим вниманием научной общественности к проблеме глобального потепления.

Гидрометеорологической службой России за более чем столетний период наблюдений собран огромный массив данных о температуре почв на сети метеорологических станций страны. Массовые наблюдения за температурой почв на глубинах начались в СССР в 1930–1950-х гг. В 70–80-х гг. XX в. сеть наблюдений достигла максимального охвата — более 1000 станций с использованием вытяжных термометров, установленных на стандартных глубинах 20, 40, 80, 120, 160, 240 и 320 см. С конца XIX в. основной вариант измерения температуры почв — участок с ненарушенной структурой почвы, сохранением растительного покрова и снежным покровом зимой. Данные наблюдений в обобщенном виде опубликованы в изданиях «Справочник по климату СССР» и «Метеорологический ежемесячник». С использованием этих справочников и машинных носителей Гидрометеорологических архивов, в лаборатории криологии почв Института физикохимических и биологических проблем почвоведения РАН совместно с Всероссийским научно-исследовательским институтом гидрометеорологической информации была создана база данных по температуре почв России и совместно с факультетом почвоведения МГУ им. М.В. Ломоносова составлена серия карт, отражающих основные характеристики температурного режима почв и являющихся продолжением работ В.Н. Димо. При их составлении использованы данные наблюдений по 667 метеостанциям России за период 1961–1990 гг., принимаемый Всемирной метеорологической организацией в качестве климатической нормы теплообеспеченности почв в годовом и сезонном циклах. В дополнение к данным Гидрометеорологической службы для Колымской низменности использовали данные, полученные с площадок для наблюдения по международной программе Циркумполярного мониторинга деятельного слоя (CALM). На Севере России и в горных районах наблюдательная сеть Росгидромета имеет слабую степень покрытия территории, а на полярных станциях из-за их труднодоступности и сложных условий функционирования ряды наблюдений значительно короче: всего несколько лет, в ряде случаев выходящих за период 1961–1990 гг. Параметры карт (среднемноголетние значения) получены расчётным методом на основе данных среднемесячных и среднегодовых температур почвы за отдельные годы. Данные карты представляют собой простые картографические модели, построенные по данным метеостанций. Ввиду мелкого масштаба карт при их составлении не учитывались рельеф местности и ландшафты, влияние морей и других природных факторов на температуру почвы. При анализе карт следует учитывать, что в Сибири и ряде других районов большинство метеостанций расположено вокруг крупных водоемов (озер и водохранилищ) или в долинах крупных рек с их отепляющим эффектом, а также отсутствие метеостанций, ведущих наблюдения за температурой почв в лесных массивах, и их крайне малое число в горных районах.

Одним из показателей, характеризующих температурный режим почв, является среднегодовая температура почвы. При разных амплитудах сезонных температур среднегодовая температура почвы может быть одинаковой, однако она будет тем выше, чем больше в годичном цикле преобладает процесс нагревания почвы, и тем ниже, чем большую роль играет процесс охлаждения.

В пределах территории России среднегодовая температура почвы на глубине 20 см изменяется от –14,5°C на о-ве Голомянный в Карском море до +15,2°C в Дербенте. Из-за отепляющего влияния снежного покрова среднегодовые температуры почвы выше среднегодовых температур воздуха и возрастают с севера на юг и с востока на запад. Выделяются две области — положительных и отрицательных среднегодовых температур на глубине 20 см. Изотерма 0°C проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см совпадает с областью сплошного распространения многолетнемерзлых пород. Наиболее низкие значения среднегодовой температуры почвы отмечаются на островах Северного Ледовитого океана, на п-ове Таймыр и северовостоке Якутии, наиболее высокие характерны для Черноморского побережья Кавказа и Прикаспийской низменности.

Читайте также:  Пеларгония королевская условия выращивания

Суммы температур выше 10°C в почве на глубине 20 см являются основным показателем её тепловых ресурсов. Они увеличиваются с севера на юг и изменяются на территории России в пределах от 0 до 4800°C.

Продолжительность периода с температурой выше 10°C на глубине 20 см нарастает в направлении с севера на юг. Минимальные значения продолжительности периода с температурой выше 10°C отмечаются в почвах области распространения многолетнемерзлых пород: в почвах арктических пустынь и тундровых почвах продолжительность периода с температурой выше 10°C на глубине 20 см ограничивается 0–2 месяцами, а в мерзлотно-таежных почвах биологически активный период с температурой выше 10°C увеличивается до 2–3 месяцев. В сезоннопромерзающих почвах продолжительность периода с температурой выше 10°C увеличивается до 3–4 месяцев. В почвах степного типа почвообразования продолжительность периода с температурой выше 10°C достигает 4–6 месяцев, а в Предкавказье и на Черноморском побережье Кавказа 6–8 месяцев.

Суммы температур ниже 0°C в почве на глубине 20 см характеризуют накопление холода в почве в период промерзания и нахождения почвы в мерзлом состоянии и принимаются за критерий оценки степени суровости зимних почвенных условий. Наибольшие суммы отрицательных температур отмечаются в почвах области распространения многолетнемерзлых пород на территориях, подверженных охлаждающему влиянию Северного Ледовитого океана. На островах и побережье Северного Ледовитого океана, северовостоке и в центре Якутии суммы температур ниже 0°C в почве составляют от –3000 до –5000°C и ниже. В направлении от побережья океана в глубь азиатского континента суммы отрицательных температур в почве снижаются до –1000 — –1500°C. На европейской территории, в сезоннопромерзающих почвах суммы отрицательных температур составляют –100 — –500°C. На северо-западе страны, в Предкавказье, на Курильских о-вах, юге п-ова Камчатка и о-ва Сахалин, подверженных отепляющему влиянию морей, суммы отрицательных температур в почве на глубине 20 см не превышают –50°C.

Определение глубины проникновения температуры выше 10°C в почву проводили по ежемесячным показаниям термометров путем интерполяции между температурами двух соседних глубин, на одной из которых среднемесячная температура выше, а на другой ниже 10°C. Глубина проникновения температуры выше 10°C в почвах России изменяется от 0 до ниже 320 см. Она увеличивается в направлении с севера на юг и с востока на запад. На территории Восточно-Европейской равнины к югу от Москвы и части территории Приморского края температура выше 10°C проникает в почву на глубину 320 см и ниже. В тундровой зоне глубина проникновения в почву температуры выше 10°C не превышает 20 см, а в зоне арктических пустынь такие температуры не наблюдаются.

Почвы России вне области распространения многолетнемерзлых пород характеризуются сезонным промерзанием. Оно вызвано тем, что в холодное время года почва теряет тепла больше, чем получает. Глубина промерзания почвы зависит от многих факторов: температуры воздуха, снежного и растительного покрова, типа почвы и её гранулометрического состава, влажности почвы, рельефа местности, хозяйственной деятельности человека. Глубина проникновения температуры 0°C в почву больше глубины промерзания почвы. Это различие обусловлено тем, что почвенный раствор в большинстве случаев замерзает при температурах ниже 0°C в зависимости от концентрации солей в почвенном растворе и размеров почвенных капилляров. Определение глубины проникновения температуры 0°C в почву проводили по ежемесячным показаниям термометров путем интерполяции между температурами двух соседних глубин, на одной из которых среднемесячная температура положительна, а на другой отрицательна.

На территории России глубина проникновения температуры 0°C в почву изменяется в пределах от менее 20 до более 320 см. На европейской территории России глубина проникновения температуры 0°C в почву значительно меньше, чем на азиатской территории. Только на юге п-ова Камчатка и о-ва Сахалин и на Курильских о-вах, где к отепляющему влиянию моря добавляется еще и влияние мощного снежного покрова, глубина проникновения температуры 0°C в почву не превышает 80 см.

Для почв в области распространения многолетнемерзлых пород важнейшим параметром является глубина проникновения в них изотермы 0°C при оттаивании летом. Эта величина на карте не показана ввиду недостаточности данных.

Д.А. Гиличинский, О.В. Решоткин, О.И. Худяков, И.О. Алябина, С.С. Быховец, В.А. Сороковиков

  • Средняя годовая температура почвы на глубине 20 см, масштаб 1:60 000 000
  • Суммы температур выше 10°C в почве на глубине 20 см, масштаб 1:60 000 000
  • Продолжительность периода с температурой выше 10°C в почве на глубине 20 см, масштаб 1:60 000 000
  • Суммы температур ниже 0°C в почве на глубине 20 см, масштаб 1:60 000 000

Источник

Adblock
detector