Какие агротехнические приемы способствуют улучшению теплового режима почвы
Знание тепловых свойств почвы позволяет использовать различные агротехнические приемы, существенно влияющие на тепловой режим почвы.
Основными факторами, определяющими способность почв проводить и аккумулировать тепло, являются их механический, минералогический состав, а также влажность и плотность.
Чем меньше плотность почвы, тем менее плотно прилегают частицы друг к другу, тем меньше ее теплопроводность. Теплопроводность – это способность почв проводить тепло от слоя к слою при разности температур между слоями. Чем меньше теплопроводность почвы, тем интенсивнее она прогревается или выхолаживается в верхних слоях, тем выше или ниже температура поверхности почвы.
Почвы с низкой теплопроводностью, например торфянистые, медленно нагреваются. Суточная температурная волна в них распространяется на незначительную глубину: до 20 – 30 см. В результате в таких почвах наблюдается перегрев верхних слоев и пониженные температуры более глубоких слоёв в дневные часы в теплое время года.
К таким плохо прогревающимся почвам следует отнести, кроме торфянистых, также тяжелые глинистые и суглинистые почвы. Эти почвы из-за их низкой теплопроводности и высокой теплоёмкости называют холодными, а песчаные, быстро подсыхающие, — теплыми.
Однако более влагоемкие и водоудерживающие суглинистые почвы при прочих равных условиях промерзают значительно меньше, чем песчаные.
Существуют агротехнические, агромелиоративные и агрометеорологические приемы активного влияния на тепловой режим почв.
Наиболее доступные агротехнические приемы для активного воздействия на тепловой баланс почвы.
1. Создание гребнистой поверхности способствует повышению температуры в верхних слоях почвы. Температура почвы на гребнистой поверхности на 3 — 5° С выше, чем на ровных участках.
2. Глубина основной и поверхностной обработки. Ранневесеннее боронование и рыхление почвы усиливают ее прогревание. При вспашке или культивации происходит нарушение однородности почвы по глубине — изменяется плотность, общая пористость и пористость аэрации. Это приводит к снижению теплопроводности и изменению теплоемкости почвы. Разность в температуре нагрева почвы с различной мощностью пахотного горизонта будет пропорциональна глубине обработки.
3. Прикатывание верхнего слоя почвы в тёплое время года повышает теплопроводность уплотненного слоя. Этим приемом можно повысить температуру на 3 — 5°С в — 10 — сантиметровом слое, залегающем ниже уплотненной прослойки.
4. Температуру почвы можно значительно изменить мульчированием (покрытием поверхности почвы различными материалами: полимерными пленками, торфом, соломой, опилками и др.). Черная мульча уменьшает отражательную способность почвы и способствует ее нагреву, белое покрытие может служить средством снижения избыточного нагревания почвы.
5. Повышению температуры почвы способствует применение больших доз органических удобрений. Тепло выделяется микроорганизмами в процессе разрушения органического вещества и их жизнедеятельности. Различные группы микроорганизмов используют 15—50% поглощенной ими энергии на поддержание жизни, а остальную выделяют в виде тепла в окружающее пространство. При разложении органического вещества (навоз) микроорганизмы могут повышать его температуру до 40—60 °С.
6. Распространенным агрометеорологическим приемом является создание дымовых завес, снижающих излучение тепла из почвы и предохраняющих растения от заморозков.
7. Увеличение влажности почвы путем обычного полива или орошения ведет к значительному снижению температуры в результате затрат тепла на нагревание и испарение воды. Однако при глубоких предзимних влагозарядковых поливах наблюдается другая картина. Вода, находящаяся в почве, представляет собой раствор с большим количеством различных веществ, вследствие чего температура его замерзания оказывается гораздо ниже (до — 10°С), чем температура замерзания чистой воды.
8. Накопление ровного и достаточно мощного слоя снега уменьшает глубину промерзания почвы, повышает ее температуру зимой и ускоряет оттаивание весной. Толщина снега в 1см удерживает воздействие температуры в 0, 4 — 1 градус. Так, при толщине снега 24 см на его поверхности температура была —26,8°С, а под снегом на поверхности почвы —13,8°С. При толщине снега в 50см и более температура у земли остаётся постоянной: от -5 до +5 градусов. Весной при наличии мощного снегового покрова (80-100 см) происходит оттаивание почвы снизу вверх за счет внутреннего тепла земли, а также сверху, за счет инфильтрации талых вод.
Методы регулирования теплового режима для каждой зоны нашей страны могут быть не только различными, но даже противоположными. В северных районах почти все приемы агротехники направлены на повышение температуры почвы и быстрейшее ее прогревание, а на юге — на ее снижение.
Источник
Основы земледелия
Физиологические процессы в растении протекают только при определенном количестве тепла. При низкой температуре растения останавливаются в росте и прекращаются микробиологические процессы в почве.
Потребность в тепле различна не только у растений, относящихся к разным семействам, но и у одной и той же культуры в те или иные фазы развития. Отношение различных культур к теплу проявляется при прорастании семян и сохраняется во время роста и развития растений. Различают минимальные температуры, ниже которых физиологические процессы не идут, оптимальные температуры, при которых рост и развитие растений протекают хорошо, и максимальные — выше которых растения резко снижают продуктивность и даже погибают. Для каждой фазы роста и развития существуют свои минимальные, оптимальные и максимальные температуры. Для завершения полного цикла развития растение должно получить также определенную сумму активных температур за вегетационный период.
Установлено, что для нормального роста и развития большинства сельскохозяйственных растений сумма среднесуточных активных температур воздуха (свыше 5°С) должна составлять не менее 1600°С в год.
По мере повышения температуры почвы рост и развитие растений ускоряются. Так, семена ржи при температуре 4-5°С прорастают в течение четырех дней, при 16°С — за сутки. Поэтому при выборе сроков посева учитывают особенности температурного режима культур, так как семена, посеянные в холодную почву, могут долго пролежать в ней, не прорастая, и загнить.
Температура почвы оказывает влияние на рост корневой системы растений (энергичнее растет при относительно невысокой температуре почвы). Так, у овса при температуре почвы 12-14°С корневая система была в 1,5 раза меньше, чем при температуре 6-8°С.
При температуре выше оптимальной растения резко увеличивают интенсивность дыхания и расход органического вещества, что в результате приводит к уменьшению нарастания зеленой массы.
Большой вред причиняет высокая температура в летний период, особенно при недостатке воды. Гибель растений от засухи можно наблюдать не только в южных районах, но и на севере, где нередки случаи засыхания клевера и ускоренного высыхания («захвата») гречихи от высокой температуры воздуха.
Пониженные температуры культуры лучше всего переносят в фазе наклюнувшихся семян. В дальнейшем по мере роста и развития растения резко снижают устойчивость к холоду. Наступление заморозков в весенний период может сильно повредить проросткам. Большую опасность представляют также осенние заморозки, от которых гибнут листья томата, огурца, картофеля, не вызревают просо, гречиха, а на востоке страны — и яровая пшеница поздних сроков посева. Поэтому правильный подбор культур по продолжительности вегетационного периода и сопоставление его с безморозным периодом и суммой активных температур в конкретной зоне имеют большое практическое значение.
Однако тепло необходимо не только зеленым растениям. В почве живет громадное количество микроорганизмов, в той или иной мере влияющих на растения. Эти микроорганизмы плохо переносят понижение температуры, приостанавливают свою жизнедеятельность, но особенно угнетающее действие на них оказывает высокая температура.
Наиболее благоприятна для почвенной микрофлоры температура 15-20°С с небольшими колебаниями в ту или другую сторону, что характерно для высокогумусных оструктуренных почв.
Один из главных источников тепла для почвы — Солнце. Температура почвы зависит от количества тепла, поступающего на ее поверхность, а также свойств самой почвы — ее теплоемкости, теплопроводности и теплоотдачи.
Теплоемкость — количество тепла, необходимое для нагревания 1 г или 1 см 3 почвы на 1°С.
Если теплоемкость воды принять за единицу, то теплоемкость песка составит 0,196, глины — 0,233, торфа — 0,477, воздуха — 0,0003.
Поэтому при большом содержании в почве воды требуется много тепла на ее прогревание: влажные глинистые почвы из-за их высокой теплоемкости называют холодными, а песчаные, быстро подсыхающие — теплыми. Вода может изменять тепловые свойства почвы в 10-15 раз.
На тепловой баланс почвы влияет также теплоотдача, которая зависит от насыщенности атмосферы водяными парами, температуры самой почвы и состояния ее поверхности.
Наибольшие изменения температуры происходят в верхних слоях почвы как в течение суток, так и в течение года. Суточные колебания температуры не распространяются обычно глубже 1 м и до 5 м при смене сезонов.
Особое значение температурные колебания имеют для зимующих культур, так как быстрое и глубокое промерзание почвы резко снижает их устойчивость к низкой температуре.
Приток солнечной энергии к почве зависит от широты местности, времени суток, облачности, тумана, содержания пыли в воздухе и т. д.
Солнечные лучи неодинаково прогревают поверхность почвы. Это зависит от растительного покрова, цвета почвы и ее выровненности. Зимой большое влияние на температуру почвы и ее промерзание оказывает снежный покров. Так, при толщине снега 24 см на его поверхности температура была -26,8 °С, а под снегом на поверхности почвы -13,8 °С.
Вода, находящаяся в почве, представляет собой раствор с большим количеством различных веществ, вследствие чего температура его замерзания оказывается гораздо ниже (до -10°С), чем температура замерзания чистой воды.
Помимо Солнца (основной источник тепла), в природе существует другой важный источник — выделение тепла микроорганизмами в процессе разрушения органического вещества и их жизнедеятельности. Различные группы микроорганизмов используют 15-50% поглощенной ими энергии на поддержание жизни, а остальную выделяют в виде тепла в окружающее пространство. При разложении органического вещества (навоз) микроорганизмы могут повышать его температуру до 40-60°С.
Методы регулирования теплового режима для каждой зоны нашей страны могут быть не только различными, но даже противоположными. В северных районах почти все приемы агротехники направлены на повышение температуры почвы и быстрейшее ее прогревание, а на юге — на ее снижение. Увеличение влажности почвы путем полива или орошения ведет к значительному снижению температуры в результате затрат тепла на нагревание и испарение воды.
Ранневесеннее боронование и рыхление почвы усиливают ее прогревание.
Применение посадок и посевов на гребнях и грядах способствует уменьшению влажности почвы и лучшему ее прогреванию в северных районах.
Большое значение при регулировании температурного режима почвы имеет снегозадержание (особенно в посевах озимых культур) и посадка полезащитных лесных полос, снижающих скорость ветра, испарение с поверхности почвы и накапливающих снег зимой. В южных районах строительство прудов, водоемов и лиманов увеличивает влажность почвы и воздуха, что значительно снижает испарение и нагревание почвы. В северных районах применение навоза, компостов, особенно в парниках, рассадниках и теплицах, позволяет использовать тепло, выделяемое микроорганизмами при разложении органического вещества, и получать раннюю рассаду овощных культур. Такой прием, как мульчирование (покрытие поверхности почвы материалами различного цвета — солома, торф, перегной, зола), увеличивает или снижает нагревание почвы.
Источник
Какие агротехнические приемы способствуют улучшению теплового режима почвы
Глава 9. ТЕПЛОВЫЕ СВОЙСТВА И ТЕПЛОВОЙ РЕЖИМ ПОЧВ
Основной источник тепла в почве – лучистая солнечная энергия, которая поглощается поверхностью почвы и превращается в тепловую энергию и только в незначительной степени внутреннее тепло Земли и теплота, выделяющаяся при окислительных процессах и разложении органических веществ.
Тепловой режим почвы совместно с водным и воздушными режимами оказывает большое влияние на:
1) почвообразовательный процесс – скорость выветривания минералов, растворение минеральных веществ и газов, контролирует фазовые переходы в системе почва – почвенный раствор – почвенный воздух;
2) плодородие почвы – численность и активность микроорганизмов, процессы минерализации, гумификации и другие биохимические процессы;
3) жизнедеятельность и продуктивность растений – прорастание семян, развитие корневой системы, скорость поступления питательных элементов и воды, ростовые процессы, транспирация воды.
Оптимальная температура для большинства биохимических процессов почвы 25 – 30 °С.
§1. Тепловые свойства почвы
Тепловое состояние почвы характеризуется показателями температуры ее генетических горизонтов. Совокупность свойств, обусловливающих способность почв поглощать и перемещать в своей толще тепловую энергию, называются тепловыми свойствами. К ним относятся: теплопоглотительная способность (теплопоглощение), теплоемкость и теплопроводность.
Теплопоглощение – способность почвы поглощать лучистую энергию Солнца, характеризуется величиной альбедо. Альбедо – количество солнечной радиации, отраженное поверхностью почвы по отношению к общей солнечной радиации, достигающей поверхности почвы, выраженное в %. Чем меньше альбедо, тем больше поглощает почва солнечной радиации. Альбедо зависит от: 1) цвета, 2) влажности, 3) структурного состояния, 4) содержания гумуса, 5) выровненности поверхности почвы, 6) растительного покрова. Высокогумусированные почвы имеют темную окраску. Поэтому ими поглощается энергии на 10 – 15 % больше, чем светлоокрашенными. По сравнению с песчаными почвами глинистые имеют большую теплопоглотительную способностью. Сухие почвы отражают лучистую энергию на 5 – 11 % больше, чем влажные, бесструктурные с гладкой поверхностью отражают лучи больше, чем оструктуренные с шероховатой поверхностью. Почвы участков, имеющих наклон к югу, поглощают солнечного тепла больше, чем почвы склонов, обращенных на север. Растительный покров, наоборот, уменьшает теплопоглощение.
Теплоемкость – это способность почвы вмещать в себя и удерживать то или иное количество тепла. Измеряется количеством тепла в калориях, необходимого для нагревания 1см 3 или 1 г почвы на 1 °С, в связи с чем различают объемную и удельную теплоемкость почв (первая больше второй).
Составные части почвы имеют различную теплоемкость: удельная теплоемкость воды наивысшая – 1,0, гумуса – 0,477, глины – 0,233, кварца – 0,198 и наименьшая теплоемкость у почвенного воздуха.
Следовательно, теплоемкость почвы зависит от: ● минералогического состава; ● гранулометрического состава; ● пористости и содержания воды и воздуха; ● содержания органического вещества.
По характеру теплоемкости почвы делят на «теплые» и «холодные». Песчаные и супесчаные почвы менее влагоемки, поэтому быстрее прогреваются, их называют «теплыми» почвами. Весной такие почвы становятся пригодными для обработки на 2 – 3 недели раньше, чем почвы суглинистые. Глинистые почвы содержат больше воды, на нагревание которой требуется много тепла, вследствие чего их называют «холодными». В случае одинакового механического состава влажная почва более теплоемкая и холодная, чем сухая; богатая органикой более теплоемка и холоднее минеральной. Самые холодные торфяные почвы, так как содержат много воды и состоят из органического вещества (оказывают влияние на климатические условия прилегающей местности).
Теплота, поступающая на поверхность почв, под действием градиента температур перераспределяется в почвенном профиле. Этот процесс называется теплообменом и зависит от теплопроводности.
Теплопроводность – это способность почв проводить тепло от более нагретых слоев к более холодным. Измеряется количеством тепла в калориях, которое проходит за 1 с через 1 см 2 слоя почвы толщиной 1 см. Она зависит от: ● минералогического и гранулометрического состава; ● содержания воздуха и влажности; ● плотности почвы; ● теплопроводности составных частей почвы.
Чем крупнее механические элементы, тем больше теплопроводность. Так, теплопроводность крупнозернистого песка при одинаковой пористости и влажности в 2 раза больше, чем фракции крупной пыли. Наименьшей теплопроводностью обладает воздух, затем – гумус, несколько лучшей – вода, наибольшей – минеральная часть почвы. По теплопроводности твердая фаза почвы примерно в 100 раз превышает воздух, в 28 раз воду. Поэтому рыхлая, сухая, высокогумусированная почва имеет более низкий коэффициент теплопроводности, чем плотная, влажная, с небольшим количеством гумуса, тем хуже она проводит тепло, т.е. тем длительнее удерживается в ней аккумулированная солнечная теплота.
На низких влажных местах с большим количеством органики слабая теплопроводность часто провоцирует заморозки на поверхности почвы весной и осенью, а сильно заторфованные почвы северных широт способствуют подъему уровня вечной мерзлоты и продвижению ее в более южные районы. Сухие поверхностные слои южных почв являются своеобразным экраном, предохраняющим внутренние слои от перегрева (поверхность черноземов летом в полдень достигает 40 – 50 о С, песков в Каракумах – 70 – 80 о С).
§2. Тепловой режим почв и его регулирование
Совокупность явлений поступления, переноса, аккумуляции и отдачи тепла называется тепловым режимом почвы. Он формируется под влиянием климата (потока солнечной радиации, условий увлажнения, континентальности и др.), а также условий рельефа, растительности и снежного покрова. Основным показателем теплового режима почвы, который характеризует ее тепловое состояние, является температура почвы.
Температура почвы определяется притоком солнечной радиации и тепловыми свойствами самой почвы. В связи с суточной и годичной цикличностью в поступлении радиации Солнца для температуры почвенного профиля характерна суточная и годовая периодичность.
Наибольшие суточные колебания температуры наблюдаются на поверхности почвы и имеют синусоидальный характер. Максимальная температура поверхности почвы наблюдается около 13 ч, минимальная – ночью. С глубиной суточная амплитуда изменений температуры значительно снижается и затухает на глубине около 50 см. Скорость передачи тепла вглубь профиля замедляется, поэтому максимум и минимум суточных температур на разных глубинах почвы наступает в разное время. В среднем имеет место запаздывание в 2 – 3 ч на каждые 10 см глубины. В связи с особенностями каждого типа почв на фоне общего характера суточного хода температур каждому из типов присущи свои особенности.
Годовая динамика температуры зависит от природной зоны, имеет большую амплитуду колебаний и выражена на большей глубине, чем суточные. Наиболее резкие годовые колебания температуры происходят на поверхности почв, с глубиной они затухают. Зона активной выраженности сезонной динамики ограничена 3 – 4 метровым слоем, на глубине 6 м годовая температура колеблется менее чем на 1 о С.
Годовой ход температуры характеризуется проявлением двух периодов: летнего с потоком тепла от верхних горизонтов к нижним (период нагревания почвы) и зимнего – с потоком тепла от нижних к верхним (период охлаждения почвы). В умеренных широтах максимум среднесуточной температуры поверхности почвы наблюдается обычно в июле – августе, а минимум – в январе – феврале. Летом самая высокая температура отмечается в верхних горизонтах, с глубиной она снижается; зимой верхние горизонты имеют наименьшую температуру, а с глубиной она повышается. Вследствие инерционности теплопереноса в почвенной толще установление максимальной температуры почв отстает от максимума температур воздуха (на глубине 3 м максимум устанавливается на несколько месяцев позже, чем на поверхности).
Большое влияние на годовое изменение температуры почвы оказывает растительность, она предохраняет поверхность почвы от резких колебаний температуры. В районах с холодными зимами и выпадением снега значение для формирования температурного режима имеют промерзание почвы, мощность и длительность сохранения снежного покрова (чем он мощнее, рыхлее и чем длительнее сохраняется, тем больше утепляет почву и снижает глубину ее промерзания). Почва начинает замерзать при температуре несколько ниже 0 °С, поскольку в почвенном растворе всегда содержатся растворимые вещества, понижающие температуру замерзания. Под снегом почва промерзает на незначительную глубину, а в бесснежные зимы или при сдувании снега ветром почва может промерзать на глубину 0,7 – 0,9 м и более. Вот почему снегозадержание проводят не только для накопления влаги в почве, но и для сохранения тепла.
Растительный покров, задерживая и накапливая снег, резко ослабляет промерзание почвы. На наименьшую глубину почва промерзает в лесу и среди лесных и кустарниковых насаждений. Рельеф влияет на приток солнечной радиации, накопление снега и увлажнение почвы. Поэтому наибольшая глубина промерзания почвы наблюдается на выпуклых формах рельефа, наветренных склонах, где сдувается снег. В понижениях (лощинах, западинах) глубина промерзания почв наименьшая. Почвы северных склонов промерзают более глубоко, южные – на меньшую глубину. Чем влажнее почва, тем меньше она промерзает. Замерзание почвы начинается до или после установления снежного покрова и продолжается до января или февраля, когда она начинает оттаивать снизу. Оттаивание идет за счет передачи тепла из нижних горизонтов, когда приток тепла от нижних слоев почв превышает его потери поверхностью почвы. В северных и северо-восточных районах страны, в зоне «вечной» мерзлоты оттаивает лишь верхний слой почвы.
Влияние деятельности человека на промерзание почвы связано с изменением состояния растительного покрова, условий увлажнения на территории. Уничтожение растительности (вырубка леса и пр.) уменьшает накопление снега и способствует увеличению глубины промерзания.
Каждый почвенный тип в соответствии с зональностью поступления солнечной радиации, распространением растительности характеризуется определенным температурным режимом. В настоящее время принята следующая систематика тепловых режимов почвы (В.Н. Димо, 1972):
1) мерзлотный тип характерен для территорий с многолетней мерзлотой, где среднегодовая температура профиля почвы отрицательная, преобладает процесс охлаждения. Сезонное промерзание и оттаивание наблюдается до верхней границы многолетнемерзлых пород. Распространен в Евроазиатской полярной и Восточно-Сибирской мерзлотно-таежной почвенных областях.
2) длительно сезоннопромерзающий тип характерен для областей, где преобладает положительная среднегодовая температура почвенного профиля, длительность промерзания не менее 5 месяцев. Глубина проникновения отрицательных температур не менее 1 м, но до многолетнемерзлотных пород не доходит (их может и не быть).
3) сезоннопромерзающий тип отличается положительной годовой температурой; вечная мерзлота отсутствует, промерзание почвы продолжается не более 4 – 5 мес.
4) непромерзающий тип имеет положительную среднегодовую температуру по профилю, промерзание почв не проявляются даже в самый холодный месяц. Наблюдается в областях субтропических, тропических поясов, теплая европейская часть умеренного пояса.
При определении тепловых условий почвы определяют: сумму температур выше 10 о С в горизонте почвы 0 – 20 см, длительность вегетационного периода (выше 10 о С) на той же глубине, длительность и глубину промерзания.
Существенное изменение в характер теплового режима почвы вносит их распашка. Температурный режим становиться более контрастным. Так, на пахотном типичном черноземе под пропашными культурами суточная амплитуда достигает 35 – 57 о С, в то время как на целине не более 18 – 23 о С. В холодное полугодие они охлаждаются быстрее и глубже, а сам период с отрицательными температурами на 20 – 30 дней длиннее, чем у целинных.
Под разными культурами температурный режим пахотных почв также различается.
Регулирование теплового режима почв. Регулирование теплового режима имеет важное значение для обеспечения оптимальных условий роста растений. Улучшение теплового режима почв основывается на осуществлении приемов, регулирующих приток солнечной радиации, и приемов, ослабляющих или повышающих ее потери за счет теплоотдачи в атмосферу. В летнее время в северных районах с повышенным увлажнением почв и меньшим притоком солнечной радиации эти мероприятия преследуют цель повышения температуры почвы, в южных засушливых – понижение.
Различают агротехнические, агромелиоративные и агрометеорологические приемы регулирования теплового режима почв. К агротехническим приемам относят прикатывание, гребневание, оставление стерни, мульчирование; к агромелиоративным – орошение, осушение, лесные полосы, борьбу с засухой; к агрометеорологическим – борьбу с заморозками, меры по снижению излучения тепла из почвы и др.
К приемам, регулирующим приток солнечного тепла к поверхности почвы, относятся затенение почвы растительностью, мульчей, рыхление и прикатывание поверхности почвы, гребневые и грядковые посевы.
Растительный покров затеняет поверхность почвы, ослабляет приток к ней солнечного тепла и способствует понижению температуры. Поэтому в жарких районах ряд культур (табак, кофе) возделывают под пологом древесных пород (в затенении). В этих же целях создают кулисы из высокостебельных растений и устраивают легкие навесы.
В районах с недостатком тепла посевы высокостебельных растений (кукурузы, подсолнечника и др.) создают «парниковый эффект», сопровождающийся повышением температуры почвы, этот прием применяют для увеличения урожайности овощных культур.
В летний период лесные полосы понижают температуру почвы не только в самой полосе, но и в межполосном пространстве, что способствует большей устойчивости посевов к действию суховеев. В зимнее время способствуют накоплению снега, который утепляет почву, уменьшает скорость ветра и тем самым снижает вертикальный обмен приземного слоя воздуха с атмосферой.
Гребневание способствует лучшему прогреванию почвы, усиливает теплообмен воздуха с почвой, повышает устойчивость растений к заморозкам. Прикатывание повышает среднесуточную температуру на 3 – 5 °С в 10 см слое, залегающем ниже уплотненной прослойки. Мульчирование поверхности почвы торфом, соломой и другими материалами широко применяют для регулирования температуры почвы, особенно в овощеводстве. Белое покрытие применяют для снижения избыточного нагревания почвы и, наоборот, темные материалы (черная бумага, темная торфяная крошка) способствуют большему притоку тепла. Любое мульчирующее покрытие заметно снижает испарение, а следовательно, и расход тепла. При мульчировании сглаживаются суточные колебания температуры почвы. Органические удобрения повышают температуру почвы.
Рыхление поверхностного слоя способствуют более быстрому обмену тепла в почве. Шероховатая поверхность обработанной почвы днем сильнее поглощает солнечную энергию, но ночью больше ее и излучает по сравнению с плотной поверхностью. Рыхление почвы увеличивает ее теплопроводность и уменьшает альбедо. Этот прием способствует снижению температуры почвы днем и сохранению тепла ночью.
Все агромелиоративные мероприятия, изменяющие водный режим, так или иначе меняют и температурный режим почв. В южных районах орошение предохраняет почву от перегрева. В северных районах для более интенсивного прогревания почв весной используют дренаж почв. Осушение торфяных почв приводит к повышению температуры верхних горизонтов в дневные часы летом и несколько снижает ночью по сравнению с неосушенными почвами. В районах северного земледелия при осушении торфяных почв заметно ухудшается их прогревание в весенне-летний период, так как улучшается аэрация и снижается теплопроводность. Поэтому на некоторой глубине осушенных почв длительно сохраняются мерзлотные прослойки, что замедляет развитие активных микробиологических процессов.
Действенным приемом регулирования теплового режима в холодный период являются снежные мелиорации, которые одновременно являются и важным средством накопления в почве влаги. Его широко применяют в засушливых и континентальных районах Земли – на юге и юго-востоке Украины, России, в Западной Сибири, Северном Казахстане и других регионах, где снежный покров обычно невелик, а сильные морозы при небольшом снежном покрове могут сильно повредить посевы озимых, плодово-ягодные и другие культуры. Снегозадержание проводят с помощью лесных полос, кулис, высокой стерни, щитов и др.
Приемы регулирования теплового режима осуществляют с учетом почвенно-климатических и погодных условий и особенностей растений.
Источник