Гранулометрический состав
Гранулометри́ческий соста́в (механический состав, почвенная текстура) — относительное содержание в почве, горной породе или искусственной смеси частиц различных размеров независимо от их химического или минералогического состава. Гранулометрический состав является важным физическим параметром, от которого зависят многие аспекты существования и функционирования почвы, в том числе плодородие.
Гранулометрический состав [1] — содержание в почве механических элементов, объединенных по фракции.
Содержание
Фракции частиц при гранулометрическом анализе почв
В почвах и породах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует.
Исторически первая классификация фракций предложена А. Аттербергом в 1912 и была основана на изучении физических свойств монофракциальных смесей. Их анализ показал резкие качественные различия, в частности, в липкости при достижении размеров 0,002, 0,02 и 0,2 мм.
Шкала Аттерберга легла в основу более новых зарубежных классификаций. В СССР и России была принята несколько иная классификация Н. А. Качинского.
Шкала Качинского | |
---|---|
Граничные значения, мм | Название фракции |
до 0,001 | Ил |
0,001—0,005 | Мелкая пыль |
0,005—0,01 | Средняя пыль |
0,01—0,05 | Крупная пыль |
0,05—0,25 | Тонкий песок |
0,25—0,5 | Средний песок |
0,5—1 | Крупный песок |
Вместе с этими в классификации Качинского выделяются фракции физического песка и физической глины, соответственно, крупнее и мельче 0,01 мм. 1—3 мм — фракция гравия, крупнее 3 мм — каменистая часть почвы.
Классификации почв по гранулометрическому составу
В настоящее время получили распространение два основных принципа построения классификаций:
- На основании содержания физической глины с учётом доминирующей фракции и типа почвообразования. Разработана Н.А. Качинским и принята в России и в некоторых других странах.
- На основании относительного содержания фракций песка, пыли и глины по Аттербергу. Международная классификация, классификации общества почвоведов (SSSA) и общества агрономов (ASSA) США. Для определения названия почвы используют треугольник Ферре.
Однозначного перехода от одной классификации к другой не существует, однако используя кумулятивную кривую выражения результатов гранулометрического состава можно назвать почву по обеим классификациям.
Влияние гранулометрического состава на свойства почв и пород
Гранулометрический состав определяет многие физические свойства и водно-воздушный режим почв, а также химические, физико-химические и биологические свойства.
Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые почвы могут иметь проблемы с воздухосодержанием, лёгкие — с водным режимом.
Разные фракции обычно представлены различными минералами. Так, в крупных преобладает кварц, в мелких — каолинит, монтмориллонит. По фракциям различается способность образовывать с гумусом органоминеральные соединения.
Методы определения (гранулометрия)
- Ситовой гранулометрический анализ — этот метод применяется для определения гранулометрического
состава песчаных и супесчаных почв.Разделение материала на гранулометрические фракции производится при помощи стандартного набора сит с последующим взвешиванием выделенных фракций.
Способы выражения
При определении гранулометрического состава почв выявляется процентное содержание фракций механических элементов. Например, почва содержит 23,4% физической глины.
Влияние гранулометрического состава на продуктивность растений
Продуктивность растений на почвах различного гранулометрического состава может существенно различаться, что объясняется различием в свойствах почв. Оптимальный гранулометрический состав зависит от условий влагообеспеченности и технологии возделывания. В засушливых условиях низкий запас влаги в лёгких почвах (супесях и песках) и слабый капиллярный подъём приводят к существенному снижению урожайности. В условиях хорошего и избыточного увлажнения такие почвы лучше аэрируются и растения на них чувствуют себя лучше. Низкий запас элементов питания в лёгких почвах можно легко устранить при внесении удобрений, которые имеют высокую эффективность на таких почвах вследствие малой буферности.
См. также
- Микроагрегатный состав
- Агрегатный состав
Примечания
- ↑ ГОСТ 27593-88(2005). ПОЧВЫ. Термины и определения. УДК 001.4:502.3:631.6.02:004.354
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Гранулометрический состав» в других словарях:
Гранулометрический состав — (a. granulometric composition; н. Kornverteilung; ф. composition granulometrique, granulometrie; и. composicion granulometrica, granulometria) распределение зёрен (кусков) по крупности в массивах г. п., горной массе, почве или… … Геологическая энциклопедия
гранулометрический состав — Количественное распределение частиц пробы в зависимости от их размера, выражается в процентах массы, прошедшей или оставшейся на выбранных ситах, по отношению ко всей массе пробы. [ГОСТ Р 50724.3 94] Тематики ферросплавы … Справочник технического переводчика
гранулометрический состав — Содержание в горной породе или почве зерен разного размера, выраженное в процентах от массы или количества зерен исследованного образца … Словарь по географии
гранулометрический состав — 4.2.43 гранулометрический состав (particle size distribution): Распределение твердого топлива из бытовых отходов на фракции по размеру частиц. Источник: ГОСТ Р 54235 2010: Топливо твердое из бытовых отходов. Термины и определения оригинал … Словарь-справочник терминов нормативно-технической документации
гранулометрический состав — granuliometrinė sudėtis statusas T sritis Standartizacija ir metrologija apibrėžtis Procentinis skirtingų matmenų dalelių kiekis birioje medžiagoje. atitikmenys: angl. fractional composition; granulometric composition vok. Kornaufbau, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
гранулометрический состав — granuliometrinė sudėtis statusas T sritis chemija apibrėžtis Procentinis skirtingų matmenų dalelių kiekis birioje medžiagoje. atitikmenys: angl. fractional composition; grading; granulometric composition rus. гранулометрический состав;… … Chemijos terminų aiškinamasis žodynas
гранулометрический состав — granuliometrinė sudėtis statusas T sritis fizika atitikmenys: angl. fractional composition; granulometric composition vok. Kornaufbau, m; Korngrößenverteilung, f; Kornzusammensetzung, f rus. гранулометрический состав, m; фракционный состав, m… … Fizikos terminų žodynas
гранулометрический состав — granuliometrinė sudėtis statusas Aprobuotas sritis statyba apibrėžtis Įvairių medžiagų (grunto, nešmenų, skaldos ir t. t.) įvairaus dydžio dalelių masių procentai tirtame bandinyje, prilyginant jo masę 100%. atitikmenys: angl. grading; grain size … Lithuanian dictionary (lietuvių žodynas)
Гранулометрический состав — ситовой состав, зерновой состав количественное распределение частиц в пробе в зависимости от размера, выраженное в % по массе продукта, прошедшего через сито (набор сит) или оставшегося на каждом сите (наборе сит) … Энциклопедический словарь по металлургии
ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ — ситовой состав, зерновой состав количественное распределение частиц в пробе в зависимости от размера, выраженного в % по массе продукта, прошедшего через сито (набор сит) или оставшегося на каждом сите (наборе сит) … Металлургический словарь
Источник
ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ ПОЧВ
Лекция 6
Почвоведение
Твердая фаза минеральных почв и почвообразующих пород состоит из элементарных частиц различного размера, которые называют механическими элементами. Под элементарной почвенной частицей, или гранулой, понимают обособленную минеральную, органо-минеральную или органическую частицу кристаллического или аморфного строения, все молекулы которой находятся в химической взаимосвязи. По происхождению механические элементы бывают минеральные, органические и органо-минеральные. Они представляют собой обломки горных пород, отдельные первичные и вторичные минералы, гумусовые вещества и продукты их взаимодействия с минеральными компонентами почвы.
В почве механические элементы находятся в раздельно-частичном состоянии в виде совокупности индивидуальных зерен или гранул, как в песках и супесях. В суглинках и глинах под действием различных факторов механические элементы соединены в агрегаты. Чтобы перевести их в раздельно-частичное состояние, агрегаты разрушают механическим или химическим путем.
Количественное определение содержания в почве элементарных частиц — главная задача механического или гранулометрического анализа. Результаты механического анализа используют для установления гранулометрического состава почвы — важной генетической и агрономической характеристики. При генетической классификации почв их разновидности определяют по гранулометрическому составу верхних почвенных горизонтов и почвообразующих пород. От гранулометрического состава в значительной степени зависят уровень почвенного плодородия и особенности использования почв.
МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫ, ИХ КЛАССИФИКАЦИЯ И СВОЙСТВА
Механические элементы, близкие по размерам, объединяют во фракции. В России наиболее широко распространена классификация механических элементов, разработанная А. Н. Сабаниным и В. Р. Вильямсом и уточненная Н. А. Качинским.
Камни – более 3 мм, гравий – 3-1 мм, песок -1-0,05 мм (крупный 1-0,5; средний 0,5-0,25; мелкий 0,25-0,05), пыль – 0,05-0,001 мм (крупная 0,05-0,01; средняя 0,01-0,005; мелкая 0,005-0,001), ил 0,001-0,0001 (грубый 0,001-0,0005; тонкий 0,0005-0,0001), коллоиды – менее 0,0001 мм.
Частицы размером более 1 мм называют почвенным скелетом, менее 1 мм —мелкоземом.
Отдельные фракции механических элементов заметно различаются по химическому и минералогическому составу, физико-химическим и водно-физическим свойствам.
Общая закономерность заключается в том, что по мере уменьшения размера фракций в них снижается содержание кварца, увеличивается количество слюд и вторичных минералов. Чем меньше размер механических элементов, тем ниже в них содержание кремния как основного элемента кристаллической решетки первичных минералов. Наоборот, содержание алюминия, железа, кальция, магния существенно возрастает при переходе от песчаных фракций к илистой. Содержание гумуса и емкость катионного обмена также возрастают с уменьшением размера механических элементов.
Каждая из фракций имеет свои характерные особенности. В случае доминирования какой-либо фракции в гранулометрическом составе она будет отражать определенные состав и свойства.
Камни представляют собой обломки горных пород. Наличие камней в почве затрудняет ее эффективное использование, поскольку мешает работе сельскохозяйственных машин и орудий, ухудшает заделку семян и развитие растений. Каменистость почв оценивают в зависимости от содержания каменистого материала. Менее 0,5% камней – не каменистая; 0,5-5% — слабокаменистая; 5-10% средне-; более 10% — сильнокаменистая.
При содержании каменистого материала менее 0,5 % он не мешает обработке почвы. Если почва слабокаменистая, при условии, что каменистый материал представлен мелким щебнем или галькой, ее обработка не отличается от обработки некаменистой почвы. Однако при этом происходит ускоренный износ рабочих органов обрабатывающих орудий.
При средней каменистости почвы необходимо вычесывать крупный каменистый материал. Однако мелкие камни, остающиеся после вычесывания, способствуют быстрому износу орудий, обрабатывающих почву. Для успешного возделывания полевых культур на сильнокаменистых почвах следует проводить сложные мелиоративные работы по выбору и удалению каменистого материала с полей. Без проведения специальных мелиоративных работ сильнокаменистые почвы можно использовать для возделывания плодово-ягодных культур.
Валунный тип каменистости чаще всего встречается в северо-западных районах Нечерноземной зоны. Щебенчатые почвы широко представлены в горных и предгорных районах.
Гравий состоит из обломков первичных минералов. При высоком содержании гравия в почвах можно проводить ее обработку, но при этом почвы имеют малоблагоприятные свойства — провальную водопроницаемость, отсутствие водоподъемной способности, низкую влагоёмкость, что отрицательно влияет на рост и развитие сельскохозяйственных культур.
Песчаная фракция состоит из первичных минералов, прежде всего кварца и полевых шпатов. Эта фракция отличается высокой водопроницаемостью, некоторой капиллярностью и влагоёмкостью, не набухает, не пластична. Характеризуется крайне низкой поглотительной способностью. Для возделывания полевых культур пригодны пески с влагоёмкостью не менее 10%,для произрастания лесных культур — не менее З. 5 %.
Фракция крупной пыли по минералогическому составу приближается к песчаной, имеет невысокую поглотительную способность и влагоёмкость, не пластична, слабо набухает, отличается низкой величиной удельной поверхности 1. 2 м 2 /г.
Фракция средней пыли характеризуется низкой удельной поверхностью —2. 10 м 2 /г, не способна к коагуляции, но удерживает влагу и набухает. Вследствие повышенного содержания слюд отличается связностью и пластичностью, имеет плохую водопроницаемость.
Почвы, обогащенные крупной и средней пылью, легко распыляются, склонны к заплыванию и уплотнению, отличаются слабой водопроницаемостью и отсутствием структурообразующего эффекта.
Фракция мелкой пыли состоит не только из первичных, но и вторичных минералов. В связи с этим фракция мелкой пыли имеет свойства, не присущие более крупным фракциям. Она способна к коагуляции и структурообразованию, обладает поглотительной способностью, содержит гумусовые вещества в повышенных количествах. Ее удельная поверхность превышает 50 м 2 /г. Однако высокое содержание мелкой пыли в почвах в свободном, не агрегированном состоянии придает им неблагоприятные свойства: плотное сложение, плохую водопроницаемость, чрезмерное набухание и усадку, липкость, трещиноватость, а также избыточное количество влаги, недоступной для растений.
Ил состоит преимущественно из высокодисперсных вторичных минералов. Из первичных минералов встречаются кварц, ортоклаз, мусковит. Илистая фракция имеет большое значение в создании почвенного плодородия. Благодаря высокой удельной поверхности, достигающей 200. 250 м 2 /г, она играет главную роль в физико-химических процессах, протекающих в почве. Ил отличается высокой поглотительной способностью, содержит много гумуса, элементов зольного и азотного питания растений. Особо важная роль в структурообразовании и формировании почвенного поглощающего комплекса (ПИК) принадлежит коллоидной части этой фракции.
Водно-физические и физико-механические свойства почв, обогащенных илистой фракцией, в значительной мере определяются ее способностью к коагуляции и склеиванию механических элементов в агрегаты. Эта способность зависит от минералогического и химического состава почвы, обогащённости ее гумусом, соединениями кальция и железа, а также от состава поглощенных катионов. Необратимая коагуляция илистой фракции способствует структурообразованию. Структурная почва даже при высоком содержании ила характеризуется благоприятными физическими свойствами.
В некоторых случаях высокое содержание ила негативно влияет на свойства почв. При развитии восстановительных процессов в результате переувлажнения, высоком содержании в ППК обменных ионов натрия или водорода, большом количестве минералов группы монтмориллонита в малогумусных почвах значительная часть ила находится в свободном состоянии и легко пептизируется водой. Почвы, содержащие много водопептизируемого ила, при увлажнении заплывают, содержат мало воздухоносных пор, характеризуются повышенной плотностью, набухаемостью и липкостью, низкой водопроницаемостью, склонны к коркообразованию.
Таким образом, с уменьшением размера почвенных частиц изменяются их свойства. Особенно контрастные различия между фракциями механических элементов видны при сопоставлении их водно-физических и физико-механических свойств.
Крупные фракции не пластичны, не набухают, не способны к обменному поглощению катионов и не содержат гумуса. Они не могут образовывать капилляры и поглощать влагу, но отличаются высокой водопроницаемостью. С уменьшением размера фракций их свойства меняются на прямо противоположные. При этом довольно резкие изменения свойств происходят у фракций размером 0,01 мм. С учетом этого все фракции механических элементов по предложению Н.М. Сибирцева разделяют на две большие группы: физический песок и физическую глину.
К физическому песку относят все механические элементы мелкозема, размер которых больше 0,01 мм, т. е. песок крупный, средний, мелкий и крупную пыль. Группу физической глины составляют частицы, размер которых меньше 0,01 мм, — пыль средняя, мелкая, ил и коллоиды.
КЛАССИФИКАЦИЯ ПОЧВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ
Относительное содержание в почве фракций механических элементов называется гранулометрическим составом. Его определяют с помощью механического анализа, результаты которого выражают в процентах от массы абсолютно сухой почвы.
Классификация почв по гранулометрическому составу основана на соотношении физического песка и физической глины. Ее основы разработал Н. М. Сибирцев и в последующем существенно откорректировал Н. А. Качинский. Классификация Н. А. Качинского построена с поправкой на генезис почв с учетом того, что одно и то же содержание физической глины по-разному сказывается на свойствах подзолистых, степных и солонцовых почв, для которых имеются различные шкалы.
Классификация существует уже длительное время и была разработана исходя из того, что свойства почв в основном зависят от гранулометрического состава.
Гранулометрический состав, за редким исключением, почвы наследуют от почвообразующей породы. При широком варьировании гранулометрического состава почвообразующих пород на них формируются и различные по гранулометрическому составу почвы даже в пределах одного типа.
Для почв, развитых на песчаных почвообразующих породах, характерно очень низкое содержание пылеватых и илистых частиц и преобладание песчаных фракций. В почвах, сформированных на суглинистых моренных отложениях, наряду с песчаными частицами заметную роль играют фракции пыли и ила. Характерные особенности гранулометрического состава почв, образовавшихся на лёссах, лёссовидных и покровных суглинках, — высокое содержание фракции крупной пыли, а также отсутствие или очень незначительное количество песчаных частиц.
Гранулометрический состав почв, сформированных на одинаковых почвообразующих породах, также может различаться, и в некоторых случаях довольно существенно, что связано со спецификой почвообразования. Развитие солонцового процесса, оподзоливания, лессиважа, осолодения, оглинивания сопровождается отчётливым перераспределением механических элементов, в результате чего в почвенном профиле формируются горизонты, относительно обедненные или обогащенные тонкодисперсными частицами.
Возможны следующие варианты изменения гранулометрического состава по профилю почв:
• верхняя часть профиля наиболее обогащена илистыми и мелкопылеватьтми Частицами. В нижележащих горизонтах по мере приближения к цочнообразующей породе содержание тонкодис Персных частиц уменьшается а крупнопьглеватых и песчаных постепенно увеличивается, количество грубообломочного материала также возрастает. Содержание илистыхчастиц и физической глины в почве всегда выше, чем в почвообразующей породе. Такое распределение механических элементов Типично для бурых лесных и дерново-карбонатных почв, формирующихся на элювии плотных осадочных или изверженных пород, и связано с процессом оглинивания, наиболее интенсивно протекающим в верхней биохимически активной части почвенного профиля;
• содержание фракций механических элементов практически не изменяется в пределах почвенного профиля; оно такое же, как и в почвообразующей породе. Такая картина наблюдается в почвах, где не происходит существенной трансформации минеральной части под влиянием процесса почвообразования, типичных и обыкновенных черноземах, темнокаштановых почвах и др.;
• верхние горизонты почвы обеднены илистой фракцией, максимальное содержание этой фракции в средней части почвенного профиля, где формируются иллювиальные или метаморфические горизонты. Содержание ила в почвообразующей породе чаще всего выше, чем в верхней части профиля почвы.
Формирование горизонтов, обогащенных илистой фракцией, возможно двумя путями. В одном случае это связано с более интенсивным выветриванием первичных и образованием вторичных глинистых минералов в средней части почвенного профиля (процесс оглинивания) без поступления тонкодисперсных частиц из верхних горизонтов. Так образуются метаморфические горизонты, в частности в коричневых почвах, В другом случае дифференциация почв по гранулометрическому составу связана с развитием определенных почненных процессов. Под их воздействием происходит вынос ила и коллоидов из верхних элювиальных горизонтов и аккумуляция их в средней части профиля с образованием иллювиальных горизонтов. При этом верхние горизонты почвы относительно обогащаются крупнопылеватыми и песчаными частицами. Таким образом, в результате оподзоливания и лессиважа формируются иллювиальные горизонты в подзолистых, дерново-подзолистых и серых лесных почвах, оподзоленных черноземах; в результате солонцового процесса — в солонцах и солонцеватых почвах; в результате осолодения — в солодях.
Дифференциация почв по гранулометрическому составу может быть обусловлена не процессами выветривания и почвообразования, а исходной неоднородностью почвообразующей породы. Например, на севере таежно-лесной зоны значительные площади занимают почвообразующие породы, представляющие собой морену, перекрытую маломощными песчаными или супесчаными наносами. Подзолистые почвы, формирующиеся на них, имеют резко дифференцированный профиль. Песчаный или супесчаный гранулометрический состав верхних горизонтов на определенной глубине резко изменяется на суглинистый или глинистый.
Источник