Меню

Какое растение дает урожай морского коралла

Кораллы — это животные или растения? Давайте разбираться

Здравствуйте, дорогие ребята! Рубрика «Проекты» нашла для вас новую интересную информацию, которой вы непременно сможете поделиться на исследовательских занятиях, посвящённых морским глубинам и их обитателям. Задайте окружающим вопрос на засыпку: коралл это животное или растение? Ответ на него и объяснение этому вы найдёте в данной статье.

Коралловые рифы

Если вы когда-нибудь ныряли на морскую глубину и видели там причудливых форм и ярких окрасок колышущиеся кораллы, то, скорее всего, подумали, что это морские водоросли. И это совсем неудивительно. Достаточно увидеть, как выглядят эти жители моря.

Многие похожи на красивые кустики с множеством веточек, растущих год за годом вверх подобно деревьям. Некоторые смотрятся как уникальные цветы, которых не встретишь в садах и полях.

Потому-то даже учёные долго не могли определить, к какому виду живых организмов отнести такую красоту. Лишь в 1827 году впервые аргументированно доказал, что кораллы – это вовсе не морские растения, исследователь из Франции Пейсоннель. Так что же или кто же это тогда?

Удивлю ли я вас, решительно заявив, что коралловые рифы состоят из малюсеньких животных – полипов?! Это такой класс кишечнополостных беспозвоночных, которые могут жить колониями или поодиночке. Всего их сегодня насчитывается около 6 000 видов.

Низшие многоклеточные животные появились одними из первых в древние времена. У них всего одна полость – кишечная, в которой переваривается пища. Потому их и называют так — кишечнополостные.

Кроха-полип может вырасти в длину от миллиметра до нескольких сантиметров. Но бывают и исключения. Так, представители мадрепорового вида достигают размеров с полметра в диаметре.

Из многочисленных маленьких организмов получается большое единое целое, которое по внешнему виду часто напоминает куст, растущий на морском дне и притягивающий наш взгляд.

Знаете ли вы, что? Недалеко от северо-восточного побережья Австралии расположен самый длинный коралловый риф в 2500 километров. Называется он Большой Барьерный риф. Природный объект, видимый даже из космоса, насчитывает около 8000 лет и находится под охраной ЮНЕСКО.

Как устроены коралловые животные?

Созданы эти донные микроорганизмы достаточно примитивно.

Тело кораллового полипа напоминает цилиндр, на конце которого есть щупальца. Некоторые полипы – обладатели скелета, состоящего из кальция. Как правило, они неподвижные и не передвигаются по морскому дну, ограничиваясь только изгибами и движениями щупальцев. Зато умеют есть! Ведь раз они относятся к животным, значит, для своего роста должны питаться.

Как вы думаете, чем питаются маленькие донные жители? В ежедневном меню у кораллового полипа планктон и водоросли, а у больших по размеру представителей в рационе могут быть даже креветки и мелкая рыбёшка.

Для поедания пищи у этих животных есть рот, спрятанный между щупальцами. В кишечной полости у полипа находятся реснички, благодаря которым животное живёт. Они создают водный поток, с которым в маленький организм поступают еда и кислород и выбрасываются отходы.

У кораллов, живущих поодиночке, есть подошва, которой они крепятся к морскому дну и с её помощью могут даже передвигаться. Коралловые полипы, проживающие колонией, объединяются общим телом с нижними концами кишечных полостей.

Место жительства и образ жизни кораллов

Где живут удивительной красоты животные? Большинство из них выбирают тёплое тропическое море, в котором вода не охлаждается ниже +20 градусов. Глубина, где обитают кораллы, составляет не более 20 метров, потому что именно там проживает много планктона – пищи для полипов.

Помимо тёплой воды и мелководья для кораллов очень нужен солнечный свет, потому за всем разнообразием этих животных нужно ехать на экватор. Конечно, есть и любители большой глубины и те, которым не страшны морозы. Так, батипатес забирается на морское дно на 8000 метров, а среди холодостойких представителей такой вид как герсемия.

Растут кораллы очень медленно: всего от 1 до 3 сантиметров в год. Поэтому необходимо сотни и тысячи лет, чтобы на морском дне сформировались рифы или целые коралловые острова – атоллы.

Когда коралл погибает, он превращается в твёрдый камень. Окаменелый полип служит местом для роста новых животных.

Знаете ли вы, что? Для коралла обязательно нужна солёная вода. Даже малейшее попадание пресной воды в место обитания коралловых полипов для них губительно.

Какие бывают кораллы?

Среди кораллового царства выделяют некоторые основные виды:

  • мадрепоровые с каменистым скелетом;
  • альционарии – мягкие кораллы;
  • горгонарии- роговые кораллы в виде веера;
  • морские перья;
  • губчатые, с крупными порами.

Кроме того, их подразделяют на шести- и восьмилучевые.

Цветовая гамма коралловых животных поражает своей палитрой. На морском дне чаще всего можно встретить красные и коричневые колонии. Немного реже в природе появляются кораллы оранжевого цвета, а вот увидеть чёрную, зелёную или розовую колонию гораздо труднее. Кроме того, не каждый умелец нырять наблюдал на морском дне фиолетовые или яркие жёлтые полипы.

Красных животных называют «кровавая пена» или «цветком крови», а черных – «королевскими».

Есть ли польза от коралловых животных?

Как вы думаете, несут ли какую-то пользу кораллы помимо того, что они могут радовать глаз тех, кто доберётся до морских глубин?

На самом деле, предназначение у кораллов намного шире, нежели только эстетическое.

  1. Во-первых, они образуют целую морскую экосистему, где проживают многие водные жители, и вместе с губками, устрицами и прочими организмами, которые живут, не отрываясь от морского дна, образуют «сидячий бентос». Это уютное местечко для желающих без опаски вывести мальков. Это столовая для тех, кто хочет пообедать. Это просто дом для разных рыбок, морских звёзд, угрей, скатов, ежей и морских огурцов.
  2. Во-вторых, для морских обитателей это своего рода баня – достаточно бочком потереться о жёсткий коралл, чтобы очистить рыбью чешую и кожу от паразитов и старых отмерших слоёв.
  3. В-третьих, кораллы – источник кальция для медицинских препаратов.

И наконец, кораллы служат материалом для изготовления украшений. Говорят, что изделия с кораллом помогают при головной боли.

Вот теперь вы можете уверенно сказать всем, что кораллы – это животные, а также поведать о них много интересного.

А прямо сейчас я предлагаю вам совершить удивительное путешествие в загадочный мир коралловых рифов. И увидеть все своими глазами. Это очень красиво)

На блоге еще много информации об удивительных существах, живущих на нашей планете. Вот например, вы уже знате, кто такой «летающий аметист»? А о «хозяине гор» слышали что-нибудь?

«ШколаЛа» желает вам удачи в вашем выступлении и отправляется за новыми знаниями. Не пропустите выход новых интересных статей! Подпишитесь на новости блога!

Источник

Какое растение дает урожай морского коралла

Автор: Tim Wijgerde, Ph.D.

Понимание того, что кораллы, как и все другие животные, должны питаться должным образом, чтобы расти, наконец-то проникло в среду аквариумистов. Благодаря работам ученых, изучавших кораллы, таких как Thomas Goreau и Leonard Muscatine наши знания о том, как питаются кораллы, постоянно возрастали. На сегодняшний день мы знаем, что кораллы, которые образуют взаимовыгодный симбиоз с динофлагеллятами (Symbiodinium spp.) получают большую часть углеродных питательных веществ от этих, так называемых, зооксантелл (Wijgerde 2013a). Однако, содержащие только углерод вещества, такие как глюкоза и глицерин, недостаточны сами по себе для роста кораллов. Для роста кораллам требуются и другие элементы, такие как азот, фосфор и сера. Существующее на сегодня представление заключается в том, что зооксантеллы не предоставляют своему кораллу-хозяину эти элементы в количестве достаточном, чтобы он мог полностью положиться только на симбиоз. Именно по этой причине, кораллы также питаются, получая органические питательные вещества из внешней среды. Действительно, обеспечение кораллам внешнего источника органических питательных веществ, оказывает влияние на их рост. Это поднимает важные вопросы, такие как: чем питаются кораллы, как кормление влияет на факторы окружающей среды, и что это означает для аквариумистов и для ведения экономически-эффективного аквариумного хозяйства.

Чем питаются кораллы?

В естественных условиях кораллы получают большую часть органического углерода от симбиотических зооксантелл и, в некоторых случаях, от сверлящих водорослей, которые проживают внутри их скелета (Muscatine и пр. 1990; Fine и Loya 2002). Используя энергию света, зооксантеллы (рода Symbiodinium) и сверлящие водоросли (рода Ostreobium) преобразуют неорганические соединения, полученные от коралла и из морской воды (углекислый газ, бикарбонат, аммоний, нитрат, фосфат) в органические молекулы, такие как глюкоза и глицерин. Этот процесс известен как фотосинтез или фотоавтотрофия (от греческих слов phs, или свет, autos, или сам, и troph, или питание), и это позволяет зооксантеллам питаться самим и кормить коралла-хозяина, поскольку излишки полученных органических соединений высвобождаются в клетки коралла. Неорганические продукты жизнедеятельности коралла (углекислый газ, аммоний) также перерабатываются зооксантеллами. Кроме того, азотофиксирующие цианобактерии поставляют зооксантеллам аммиак, который они производят из растворенного азота (N2). Этот обмен питательными веществами между кораллами, зооксантеллами и бактериями позволяет им расти в том, что иногда называют “пустынным морем”, в море с низким содержанием питательных веществ (Muscatine 1990; Lesser et al. 2007).

Читайте также:  Удобрение для декоративной розы

Недостаток фотосинтеза, однако, в том, что он, кажется, не способен обеспечить кораллы достаточным для роста тканей и синтеза органического матрикса (см. ниже) количеством органического азота и фосфора. Поэтому кораллы должны питаться органическими веществами, что называется гетеротрофией, или гетеретрофным питанием (от греческих слов heteros, или различный, и troph, или питание). Ниже я опишу различные внешние источники пищи, которые кораллы могут использовать. Важно отметить, что не каждый вид кораллов может быть способен к использованию всех этих источников. Вдобавок, степень, в которой коралл является авто- или гетеретрофным, зависит от условий окружающей среды, таких как наличие света и частиц пищи.

(прим. переводчика — автор, конечно же, знает, что кораллы являются гетеротрофными организмами, и в другой своей статье он об этом пишет: “Несмотря на то, что кораллы, как и все другие животные, сами по себе являются гетеротрофами, внутри их тканей происходят гетеро- и автотрофные процессы (кроме кораллов без зооксантелл).”, статья “Как питаются кораллы”, авторы: T. WIJGERDE, M.SC., F. HOULBRÈQUE, PH.D. & C. FERRIER-PAGИS, PH.D.).

Органическое вещество в виде частиц (particulate organic matter, POM): планктон и детрит

Кораллы способны использовать в пищу широкий спектр органических частиц, включая живые организмы, их части и экскременты (детрит). Живые организмы можно разделить на бентосные (живущие на субстрате и/или присоединенные к нему) и пелагические (живущие в толще воды) группы. Также они могут быть разделены по размеру.

Бактерии и простейшие

Хотя вероятно, что кораллы глотают и переваривают даже вирусы (фептопланктон, размер частиц 15 N), после чего они изъяли содержимое гастроваскулярной полости десяти полипов из каждой колонии. Затем те колонии, в которых были обнаружены частицы морского растения, были вымыты, извлечены, и ткани были проанализированы на наличие 15 N. Это показало, что O. crispata потребляла частицы Halophila ovalis, и, возможно, переваривала и усваивала питательные вещества, полученные от этого растения. Это исследование наводит на мысль, что кораллы, живущие поблизости от зарослей морской травы, могут питаться перемещающимися частицами растений и их выделениями. Так же, как и в исследованиях Leal и пр. (2013), степень переваривания и усваивания частиц морских растений, нуждается в определении.

Способность кораллов питаться зоопланктоном интенсивно изучалась годами, особенно то, что касалось мадрепоровых кораллов (Houlbrèque и Ferrier-Pagès 2009; Ferrier-Pagès и пр. 2011). В основном, эти кораллы прекрасно приспособлены к поимке зоопланктона, благодаря мощным книдоцитам, содержащим капсулы, заполненные нейротоксинами, и лассо-подобные стрекательные нити. К тому же, эти кораллы используют мукус (слизь) для поимки живой добычи. Используя микроскопические ворсинки, называемые цилиями, коралловые полипы транспортируют добычу в рот. Зоопланктон, также, может быть переварен снаружи мезентериальными филаментами.

В природе, зоопланктон, пойманный жесткими кораллами, включает в себя ракообразных, таких как копеподы (веслоногие), амфиподы (бокоплавы), остракоды (ракушковые), мизиды, червей, таких как полихеты и щетинкочелюстные (морские стрелки, arrow worms), и личинок различных животных. В аквариуме многое из этой природной добычи недоступно, и обычным кормом являются живые или мертвые артемия (Artemia) и мизиды (Mysis). Исследования показали, что науплии артемии, не смотря на то, что они недоступны кораллам в природе, являются хорошо подходящей пищей, значительно увеличивающей рост кораллов (см. ниже).

Видео Galaxea fascicularis и Stylophora pistillata, питающихся науплиями артемии.
G. fasicularis переваривает науплий артемии посредством мезентериальных филаментов,
в то время, как S. pistillata заглатывает их.

Черные кораллы, родственные мадрепоровым, также обладают способностью ловить и парализовать зоопланктон. Лабораторные эксперименты над Antipathes grandis показали, что его полипы могут ловить амфиподов, копеподов и щетинкочелюстных червей. Так же, как и у жестких кораллов, поимка осуществляется с помощью щупалец и мукуса, после чего цилии, располагающиеся на эктодерме, транспортируют пищу в рот (Bo 2009). Черные кораллы с большими полипами, такие как Antipathes и Cirrhipathes spp., способны проглотить копеподов размером, по меньшей мере 1700 µm.

Октокораллы (восьмилучевые) очень различны в своей способности ловить и удерживать зоопланктон, и мягкие кораллы выглядят наименее приспособленными к этому виду пищи. Например, мягкие кораллы рода Sinularia, Sarcophyton, Cladiella, Nephthea, Dendronephthya и Paralemnalia не могут удержать большой зоопланктон после поимки (Fabricius и пр. 1995a). К примеру, Dendronephthya hemprichi может ловить только маленький и медленно плавающий планктон, такой как личинки брюхоногих и двустворчатых моллюсков, остракоды, амфиподы, морские инфузории (tintinnids) (реснитчатые (Ciliates)), полихеты и икра рыб. Частицы менее 300 µm схвачены и проглочены менее чем за 10-20 секунд, в то же время, добыча размером 750 µm и больше, захватывается с трудом и, как правило, высвобождается в течение минуты. Занимательно, что когда Dendronephthya spp. захватывает больший зоопланктон, он не выглядит парализованным даже через несколько минут, даже если был захвачен несколько раз. Возможно так происходит потому, что Dendronephthya spp. и другие мягкие кораллы не обладают достаточно развитыми книдоцитами, чтобы эффективно парализовать достаточно крупную добычу. Действительно, было обнаружено, что капсулы с нематоцистами в книдоцитах у мягких кораллов развиты слабо (Fabricius и Alderslade 2001).

Горгонарии — октокораллы, которые, в основном, хорошо приспособлены к ловле зоопланктона. Известно, что несколько видов горгонарий, включая такие тропические виды, как Subergorgia suberosa, Melithaea ochracea и Acanthogorgia vegae, в лабораторных условиях были способны поймать активно плавающих науплий артемии (Dai и Lin 1993; Lin и пр. 2002).

Гидроиды (семейство Milleporidae, или огненные кораллы, и семейство Stylasteridae, или кружевные кораллы), имеют мощные книдоциты на своих щупальцах, позволяющие им эффективно захватывать зоопланктон. Действительно, эти кораллы, как известно, являются активными потребителями зоопланктона (Lewis 2006). Их нематоцисты выстреливают с такой силой, что даже человеческая кожа к ним чуствительна; прикосновение к этим кораллам вызывает интенсивное жжение и сыпь. В отличие от других кораллов, обездвижеванием и поглощением добычи занимаются два разных типа полипов. Гидроид жалит жертву оборонительными стрекающими полипами, называемыми дактилозоидами (прим. переводчика — удлиненные тонкие полипы без устья, живущие в дактилопорах гидроидных, снабженные многочисленными стрекательными клетками), после чего добыча заглатывается и переваривается с помощью гастрозоидов. Каждый гастрозоид окружен от пяти до пятнадцати дактилозоидами, которые гораздо длиннее и тоньше.

Кораллы с крупными полипами могут целиком съесть маленькую рыбку, что иногда и наблюдается в аквариумах. Это могут быть ослабленные по некоторым причинам рыбы, в силу чего ставшие беззащитными перед щупальцами и книдоцитами больших кораллов. Scolymia spp., Fungia spp. и Trachyphyllia geoffroyi хорошие примеры кораллов, которые демонстрируют такое поведение.

Интересным источником пищи для кораллов являются другие кораллы. На рифе кораллы были замечены в поедании соседних колоний, на которые они нападали и переваривали удаленно, с помощью мезентериальных филаментов. Это поведение может быть формой как межвидовой так и внутривидовой конкуренции, но также предоставляет кораллам дополнительный источник пищи.

Детрит — это собирательный термин для органических частиц, который образуется из фекалий, остатков пищи и отмирающих организмов. Частицы детрита обычны для кораллового рифа и аквариума, они медленно опадают на дно в виде осадка. Этот осадок содержит бактерии, простейших, микроскопических безпозвоночных, микроводоросли и органические вещества. Во взвешенном состоянии он может служить пищей для кораллов, особенно для видов, растущих в турбулентном течении. Экспериментально было подтверждено, что многие мадрепоровые кораллы могут проглатывать и усваивать детрит (например Anthony 1999, 2000; Anthony и Fabricius 2000; Roff и пр. 2009), который попал на мукус кораллов.

Читайте также:  Фертильность почвы что это такое

В то время, как жесткие кораллы могут проглатывать детрит, когда он имеется в их распоряжении, было обнаружено, что для некоторых горгонарий взвешенный детрит является основным источником пищи. Например средиземноморские горгонарии Corallium rubrum, Paramuricea clavata и Leptogorgia sarmentosa получают большую часть углерода из детрита (Ribes и пр. 1999; Tsounis и пр. 2006). Это также верно для нескольких их тропических собратьев, таких как Menella и Swiftia spp. Эти горгонарии с готовностью захватывали и глотали маленькие частицы рыбьего корма в аквариуме.

Горгонария (Menella sp.) питающася гранулированным органическим веществом, размером 5-800 µm (сухой рыбий корм). Хотя сухой рыбий корм технически не детрит, но по сути то же самое, поскольку является неживым органическим веществом, произведенным из животных и растений.

Кораллы, живущие на глубине, также используют детрит как основной источник питания. Глубоководный мадрепоровый коралл Lophelia pertusa (так же, как горгонарии и черные кораллы) ловит морской снег, или детрит, который приносят в глубину нисходящие потоки из верхних океанических слоев, (Bo 2009; Davies и пр. 2009). Однако надо заметить, что слишком много осадка вредно для кораллов и рифов. Сильный осадок буквально душит риф, блокируя свет, питание и газообмен (Erftemeijer и пр. 2012).

Растворенные органические вещества (dissolved organic matter, DOM) являются важным источником пищи для многих кораллов. Не смотря на то, что кораллы выделяют органические вещества посредством мукуса, они потребляют растворенные органические соединения из воды. С помощью радиоактивных меток было обнаружено, что мадрепоровые кораллы потребляют из воды растворенную глюкозу. С точки зрения экологии, кораллы могут абсорбировать аминокислоты и мочевину из морской воды (Grover и пр. 2006, 2008). Хотя эти субстанции присутствуют на коралловых рифах в незначительных концентрациях, они представляют собой значительный источник органического азота. Для Stylophora pistillata, поглощение аминокислот может составлятьдо 21% от азотного бюджета, хотя соотношение между этим и другими источниками питательных веществ зависит от того, что кораллу доступно. Аминокислоты важны для синтеза органического матрикса, это такая межклеточная белковая структура, которая важна для роста скелетов кораллов (см. ниже). Интригует, что кораллы усваивают также мочевину из воды. Вероятно, кораллы таким образом приспособились к присутствию других животных на рифе, таких как рыбы, которые массово производят большое количество азотных соединений ежедневно.

Кораллы не только потребляют органические соединения, они также, кажется, способны обнаруживать в воде их присутствие. Многие наблюдали, как кораллы выпускают щупальца после добавления планктона или органических веществ в аквариумную воду. Добавление аминокислот — глицина, аланина или глутамата, приводит к распусканию щупалец, набуханию тканей (цененхимы) и, иногда, к выпуску мезентериальных филаментов (Goreau и пр. 1971). Так же, как человеческий язык имеет рецепторы для распознавания многих веществ, так и кораллы имеют развитые рецепторы, которые позволяют им распознавать такие органические соединения, как аминокислоты. Способность обнаруживать аминокислоты в воде может помочь кораллам подготовиться к охоте на зоопланктон.

Обзор различных источников пищи, используемых кораллами для поучения энергии и питательных веществ. Источники могут быть разделены на внешние и внутренние. Внутренние источники включают в себя азотофиксирующих бактерий, которые преобразуют растворенный азот (N2) в аммиак (NH3), процесс, называемый диазотрофией (азотофиксацией), и зооксантелл, которые преобразуют аммиак в аминокислоты и белки. Кроме того, зооксантеллы преобразуют углекислый газ (CO2) в глицерол (глицерин), глюкозу, жирные кислоты и аминокислоты, посредством процесса, известного как фотосинтез, являющегося формой автотрофии. Главная часть этих органичеких соединений перемещается к клеткам кораллов-хозяев, которые используют их, главным образом, чтобы удовлетворить свои энергетические потребности. Внешние источники включают в себя частицы органики и растворенные органические вещества, которые кораллы получают из окружающей воды. Кораллы питаются фитопланктоном и бентосными водорослями (травоядность), зоопланктоном, маленькими рыбками и другими кораллами (плотоядность), бактериями и простейшими (микрогетеротрофия), взвешенными частицами вещества (детритоядность),и, наконец, растворенными органическими соединениями, такими как мочевина и аминокислоты. Получение частиц органики и растворенных органических веществ из окружающей водной среды известно как гетеротрофия, и органические соединения, приобретенные в результате этого процесса, используются кораллом для производства энергии и роста. Изображения: Ben Mills (органические соединения), Edward Palincsar (неорганический азот), NOAA (фитопланктон), Toby Hudson (бентосные водоросли), Woods Hole Oceanographic Institution and Ria Tan (взвешенные частицы вещества), Uwe Kils (зоопланктон), Tim Wijgerde (рыбы, другие кораллы), Incnis Mrsi (растворенные органические вещества), NIAID/NIH (бактерии) и D. Munaretto (простейшие).

В общем ясно, что кораллы способны усваивать органические соединения из широкого диапазона источников, что подчеркивает разнообразие и эффективность кораллов как всеядных существ.

Растворенные неорганические вещества

Хотя эта статья, в основном, о питании органическими соединениями, кораллы также поглощают из воды и неорганические вещества. Я коротко упомяну самые важные элементы, поглощаемые в неорганической форме. Вот некоторые из них: неорганический азот (растворенный азот/N2, аммоний /NH4 + и нитрат/NO3 — ) и фосфор (фосфат, HPO4 2- ), неорганический углерод (углекислый газ/CO2, бикарбонат/HCO3 — ), щелочный металлы (натрий/Na + , калий/K + ), щелочноземельные металлы (кальций/Ca 2+ , магний/Mg 2+ , стронций/Sr 2+ ), переходные металлы (например цинк/Zn 2+ , железо/Fe 2/3+ , медь/Cu 2+ , марганец/Mn 2+ ), металлоиды (бор/В), и неметаллы (йод как йодид/I — и йодат/IO3 — , кислород/O2). Поглощение неорганического азота и фосфора происходит из-за присутствия симбиотических зооксантелл, которые в процессе жизнедеятельности преобразуют их в органические соединения. Кальций и магний важны для процесса кальцификации, а углекислый газ и бикарбонат, помимо этого, еще и для фотосинтеза. Микроэлементы, такие как цинк и йод, используются для функционирования ферментов, и, возможно, для производства гормонов, а кислород важен для дыхания.

Влияние питания на физиологию и рост кораллов

Влияние питания на физиологию и рост кораллов было хорошо изучено и рассмотрено в недавних обзорах Houlbrèque и Ferrier-Pagès (2009) и Ferrier-Pagès и пр. (2011). До сих пор большинство исследований влияния питания на рост и физиологию кораллов, были сфокусированы на зоопланктоне, главным образом на науплиях артемии.

Фотосинтез и плотность зооксантелл

Исследования показали, кто кормление зооксантельных кораллов увеличивает темпы фотосинтеза, за счет увеличения плотности популяции зооксантелл и содержания в них хлорофилла. У S. pistillata, плотность популяции зооксантелл удвоилась через несколко недель кормления зоопланктоном, как при сильном, так и при слабом освещении. Количество динофлагеллят, находящихся в клетках коралла-хозяина, также увеличивается, до четырех зооксантелл на клетку. Более интенсивный фотосинтез позволяет кораллу преобразовывать больше энергии света в химическую энергию, которая может быть использована для роста. Причина, по которой коралл демонстрирует возрастание плотности зооксантелл при кормлении, скорее всего в том, что увеличение количества азотных соединений (такие как аммоний/NH4 + ), выделяемых кораллами, способствует росту зооксантелл. Зооксантеллы, в свою очередь, благодаря кормлению, производят больше аминокислот для коралла-хозяина, что положительно сказывается на росте тканей и на синтезе органического матрикса (Swanson и Hoegh-Guldberg 1998; Wang и Douglas 1999).

Кальцификация и органический матрикс

В дополнение к стимуляции фотосинтеза, кормление повышает скорость кальцификации у зооксантельных мадрепоровых кораллов. После восьми недель кормления зоопланктоном (науплии артемии) скорость кальцификации у Stylophora pistillata удвоилась.За это явление, возможно, ответственны различные механизмы. В первую очередь, кормление, возможно, увеличивает кальцификацию за счет увеличения производства бикарбоната. Благодаря кормлению возрастает масса ткани, что приводит к увеличению производства метаболического CO2. Часть этого CO2 ферментативным образом преобразуется в бикарбонат, который может быть использован в качестве основы для кальцификации. Stylophora pistillata, как было вычислено, может получить примерно 75% необходимого бикарбоната посредством собственного метаболизма. Во-вторых, большее количество пищи обеспечивает больше химической энергии, как непосредственно, так и косвенно, увеличивая фотосинтетическую активность (см. выше), что, в свою очередь, позволяет большему количеству ионов кальция перемещаться к растущему скелету. И, наконец, кормление может стимулировать кальцификацию, ускоряя синтез органического матрикса за счет увеличения поставки аминокислот. Органический матрикс — это межклеточная белковая структура, которая вырабатывается клетками кораллов и нужна для формирования скелета. Она обеспечивает центры кристаллизации для роста арагонита (карбоната кальция), стимулирует и регулирует их формирование (Allemand и пр. 1998, 2004). Поскольку органический матрикс богат аминокислотами, такими как аспарагиновая кислота, кормление может ускорять синтез органического матрикса, и, соответственно, кальцификации, за счет увеличения поставки этой аминокислоты.

Читайте также:  Как обработать грядки осенью после сбора урожая


Некоторые примеры активно питающихся кораллов с расправленными щупальцами.
Вверху слева: Acanthastrea lordhowensis.
Вверху справа: Caulastraea sp.
Внизу слева: Tubastraea sp.
Внизу справа: Trachyphyllia geoffroyi.

Нужно отметить, что у усиленного кормления кораллов могут быть свои недостатки. В нашей лаборатории в Wageningen UR, мы изучали, как кормление зоопланктоном влияет на скорость кальцификации коралла Galaxea fascicularis в темноте и на свету. Хотя кормление мало влияло на рост при наличии света, в условиях полной темноты скорость кальцификации питающихся кораллов была близка к нулю (Wijgerde и пр. 2012b). Наша текущая гипотеза заключается в том, что в темноте кальцификация угнетается усиленным кормлением вследствие временного ацидоза тканей коралла, вызванного возросшей метаболической активностью. Питаясь в ночное время, кораллы могут тратить энергию на рост тканей и синтез органического матрикса, а не на кальцификацию.

Вслед за увеличением фотосинтеза, плотности зооксантелл, скорости кальцификации и синтеза органического матрикса, кормление зоопланктоном увеличивает содержание белков и жиров в мягких тканях коралла. В результате продолжительного кормления науплиями артемии, увеличивается концентрация насыщенных и ненасыщенных жирных кислот, а также спиртов и стеринов. Увеличение запасов липидов позволяет кораллам легче справляться со стрессом и, что более важно, с обесцвечиванием. Когда высокая температура воды вызывает потерю зооксантелл, кораллы не могут больше использвать фотосинтез и должны полагаться на охоту и на резервы энергии, чтобы выжить (Grottoli и пр. 2006).

Схема, демонстрирующая воздействие питания на кораллы. Питающийся коралл демонстрирует (1) вдвое большую концентрацию белков и фотосинтетическую активность на единицу площади поверхности скелета; (2) вдвое большую скорость кальцификации в дневное и ночное время; (3) вдвое увеличившийся синтез органического матрикса в темноте и на 60% увеличившийся синтез в дневное время (Houlbrèque и Ferrier-Pagès 2009).

Факторы, влияющие на питание кораллов

Течение важно для кораллов по различным причинам. Кроме улучшения газообмена и обеспечения удаления продуктов жизнедеятельности, течение позволяет кораллам питаться взвешенными частицами (Wijgerde 2013 и ссылки там). Поскольку важность движения воды довольно очевидна, течение — один из наиболее хорошо изученных факторов, влияющих на захват добычи кораллами.

В зависимости от своей скорости, течение может оказывать как благоприятное, так и не благоприятное воздействие на питание кораллов. Более сильное течение повышает приток частиц пищи, тем самым принося пользу с точки зрения кормления. В то же время, более быстрый поток увеличивает кинетическую энергию частиц, что ограничит способность коралловых полипов к захвату пищи. Кроме того, сильный поток воды приводит к деформации полипов, что уменьшает область захвата и эффективность. Этот механизм поясняет, почему схема зависимости между скоростью течения и способностью коралла захватывать добычу, для некоторых кораллов, напоминает колокол, с точками оптимума, лежащими между скоростью течения от 5 до 10 см/с. Ниже графики иллюстрируют, как течение влияет на питание четырех различных кораллов: октокораллы Acanthogorgia vegae, Melithaea ochracea и Subergorgia suberosa, и мадрепоровый коралл Galaxea fascicularis. График отражает особенности влияния течения на каждый вид кораллов. Разное влияние течения на способность захватывать пищу может быть объяснено различием в морфологии полипов (см. ниже).

Кроме скорости течения, размер колонии влияет на гетеротрофное питание. Размер колонии может влиять на питание отдельного полипа как благотворно, так и не благотворно, вследствие взаимодействия полипа с колонией. Негативное влияние включает затенение полипов (т.е. полипы накрывают и загораживают друг друга) и снижение концентрации частиц, в результате чего уменьшается возможность захвата пищи у расположенных ниже по течению полипов (Hunter 1989). Позитивное влияние включает в себя возникновение турбулентных потоков внутри колонии и выделение мукуса полипами, стоящими выше по течению, что увеличивает возможность захвата пищи полипами, стоящими ниже по течению (Wijgerde 2013 и ссылки там).

Хотя полипы в колониях могут показывать более высокие способности к поглощению пищи, по сравнению с одиночными полипами, колония в целом выглядит менее эффективной. В нашей лаборатории мы обнаружили, что только 7.7% полипов на маленькой Galaxea fascicularis захватили зоопланктон. Это означает, что в пересчете на полипы, этот коралл захватил меньше пищи, чем отдельный полип. Это наблюдение хорошо совпадает с фактом замедления темпов роста Galaxea с увеличением ее размера (Schutter и пр. 2010; Wijgerde и пр. 2012a). После 245 дней содержания, маленькая колония Galaxea продемонстрировала сокращение темпов роста на 76% (с 2.5 до 0.6 % /в день) по сравнению с одиночным полипом.

Концентрация пищи — хорошо изученный фактор, влияющий на питание кораллов. Высокая концентрация пищи увеличивает частоту столкновений добычи с коралловыми полипами, что оказывает положительное влияние на питание. Изначально была установлена линейная зависимость между концентрацией добычи и количеством поглощенного корма. Однако, когда концентрация пищи становится достаточно высокой, наблюдается эффект насыщения. Это вызвано тем, что коралловые полипы ограничены максимальным количеством пищи, которую они могут захватить, проглотить и переварить за определенный промежуток времени. Этот эффект проиллюстрирован на графике ниже, который отображает зависимость темпов поглощения пищи от доступности добычи для кораллов Galaxea fascicularis и Stylophora pistillata.

Морфология коралловых полипов — это еще один фактор, влияющий на питание кораллов. К примеру, Subergorgia suberosa обладает большими полипами, которые легко деформируются сильным течением. Это помогает понять, почему эта разновидность коралла эффективно питается в довольно узком диапазоне скоростей течения, как видно на графике выше. Melithaea ochracea, напротив, имеет полипы меньшего размеры, которые в меньшей степени деформируются сильным течением. Возможно это является причиной, почему он питается в более широком диапазоне скоростей течения.

Хотя большие полипы деформируются легче, они могут обладать более высокой способностью захвата пищи. Как видно на графике выше, более крупные полипы Galaxea fascicularis (

5 мм диаметр кораллита) захватили гораздо больше добычи, чем значительно меньшие полипы Stylophora pistillata (

1 мм диаметр кораллита). Это, вероятно, является следствием того, что полипы G. fascicularis способны к внешнему пищеварению большего количества пищи.

Другим следствием размеров полипов является максимальный размер добычи, которую коралл способен проглотить. Виды, обладающие мелкими полипами, могут захватывать добычу, сравнимую по размерам с копеподами и личинками различных животных, тогда как виды, обладающие крупными полипами (например Fungiidae, Mussidae and Flabellidae), в состоянии съесть рыбку или креветку.

Эпибионтные плоские черви

Последний фактор, который я бы хотел здесь упомянуть, это наличие эпибионтных ацеломорфных плоских червей. Этих плоских червей аквариумисты обычно называют планариями, хотя, на самом деле, это черви рода Waminoa и Convolutriloba. Предположительно, эти черви могут отрицательно влиять на кораллы, уменьшая количество падающего света и поедая их мукус (Barneah и пр. 2007; Naumann и пр. 2010). Кроме того, Waminoa конкурирует с кораллом хозяином Galaxea fascicularis за пищу, и ворует его еду (Wijgerde и пр. 2011b, 2012c).

Когда кормили G. fascicularis, положительное влияние концентрации пищи на питание было обнаружено только для полипов, свободных от плоских червей. Если концентрация плоских червей была высокой (

3-4 плоских червя на полип), питание G. fascicularis ограничивалось примерно 2.5 жертвы/см 2 ч. Основываясь на этих наблюдениях, эпибионтных плоских червей можно классифицировать как паразитов, а не как комменсалов, так как их присутствие негативно влияет на рост и здоровье кораллов. Действительно, данные полевых исследований свидетельствуют, что плоские черви вызывают некроз тканей у кораллов (Hoeksema и Farenzena 2012).

Источник

Adblock
detector