Меню

Какую окраску почв обуславливают гумусовые вещества

Органическое вещество почв, гумус, гуминовые кислоты и гуматы.

Терминология. Содержание в природных объектах. Химическое строение гуминовых веществ.Схема трансформации гуминовых кислот в гуматы.

Почва включает органические и неорганические вещества. Наличие органического вещества в почве (ОВП) — основной признак, отличающий ее от материнской горной породы, а количество и природа ОВП в значительной степени определяет направление процессов почвообразования, генетические, биохимические, химические и физические свойства почв и их плодородие.

Органическое вещество почвы включает всю органическую массу, в том числе гумус и неразложившиеся остатки растений и животных организмов. Процесс разложения ОВП состоит из двух стадий: распада исходных органических остатков до промежуточных и конечных продуктов минерализации, и синтеза сложных молекул гуминовых кислот, аминокислот и полипептидов, называемого гумификацией. Доказано, что стадии гумификации (образованию гумуса) подвержено не более 30% от первоначальной массы органического вещества. Остальная его часть минерализуется полностью до конечных продуктов (СО 2 , воды и др.), а высвобождающиеся при этом азот, фосфор и сера потребляются растениями или (при их избытке) вымываются из почв.

Термин «гумус» как понятие конечного результата гумификации существует в науке более 200 лет. Однако, еще за 100 лет до нашей эры индейцы племени Анастази, жившие в Северной Америке на территории штатов Калифорния, Утан, Аризона и Нью Мехико широко использовали некий «черный материал» для земледелия на песчаных почвах и в производстве гончарных изделий. Не случайно именно на этой территории расположено крупнейшее в США месторождение леонардитов ( гуматсодержащих лигнитов) карьер Mesa Verde.

Гумус — это продукт трансформации остатков растительных и живых организмов, гораздо более устойчивый к дальнейшему разложению, чем исходная биомасса.

Почему неумолимый процесс разложения мертвого органического вещества в почве не доходит до конца (т.е. до углекислоты и воды), а останавливается на определенной стадии, где сравнительно простые продукты разложения — фенолы, углеводы и аминокислоты — начинают превращаться в гораздо более сложные соединения — гумус, сохраняющийся в почве на протяжении тысячелетий ? На этот вопрос пока не существует ответа. Но какими бы гипотезами не объяснялся этот таинственный феномен природы, для практики важен сам факт существования гумуса и его огромное влияние на процессы жизнеобеспечения растительного и живого мира.

Гумусовые (или гуминовые) вещества – это высокомолекулярные компоненты гумуса, которые обуславливают такие его характеристики, как коричнево-черный цвет, гидрофильность, молекулярную гибкость и свойства полиэлектолита. Многие из компонентов гумуса — гетерогенные, относительно большие устойчивые органические комплексы. Гумусовые вещества – это уникальные природные соединения. Они, по мнению одного из ведущих почвоведов России Дмитрия Орлова, не случайный продукт в цепи органических остатков, а необходимое связующее звено в эволюции живой и неживой материи, важнейший фактор устойчивости жизненных процессов. Это один из фундаментальных продуктов природы, который участвует в поддержании жизни на нашей планете.

Гумусовые вещества могут быть подразделены на три главные фракции: гумины (ГМ),гуминовые кислоты (ГК) ифульвокислоты (ФК). Это подразделение условно и основано на растворимости каждой фракции в воде, отрегулированной по различному уровню рН.

Схема образования гумусовых веществ из ОВП показана на рис. 1, а некоторые из главных особенностей гумусовых веществ представлены в табл. 1.

Рис. 1. Схема образования гумусовых веществ

Таблица 1. Общие свойства трех главных компонентов гумуса

Источник

Значение гумуса для растений, состав и свойства удобрения

С этим понятием приходится сталкиваться многим людям, но далеко не все знают, что такое гумус. В переводе с латинского языка «humus» означает «земля», «почва» и является основным органическим веществом, содержащим питательные вещества, которые просто необходимы растениям.

Гумусовые же вещества относятся к особой группе химических соединений, свойственных земному почвенному покрову, то есть являются специфичными только для почвы. Наверняка, что такое гумус, теперь стало понятно, а из чего же он образуется? Из остатков растений, животных и микробов в результате взаимодействия с различными компонентами окружающей среды. Химический состав гумуса является довольно-таки сложным.

характеристики

темный окрас, который отсутствует в растениях.

В состав гумуса входит очень ценная гуминовая кислота, содержащая очень много углеродов (примерно 60%), кислорода (около 35%), азота (в среднем 5%), фосфор, сера, железо и так далее. Исходя из вышесказанного, вытекает ещё один ответ на вопрос о том, что такое гумус. Гумус — это термин, объединяющий огромный комплекс химических веществ, содержащих в своем составе органическую часть (гуминовую и фульвокислоты), неорганическую составляющую (химические элементы, имеющие неорганическое происхождение, или, другими словами, минералы, которые входят в число гуматов и фульватов). Но об этом сейчас поговорим более подробно.

Как образуется гумус?

С понятием гумуса вы уже познакомились, следующим открытым остаётся вопрос о том, что такое гумус почвы, и как он образуется? Гумус почвы – это не что иное, как продукт жизнедеятельности различных организмов, в первую очередь дождевых червей. Процесс образования гумуса является долговременным. Растительность, продукты метаболизма, животные останки – всё это является пищей для организмов, которые обитают в почве. Какая-то часть всего этого поддаётся минерализации, а другая — биохимическому ферментативному разложению и окислению (гумификации), в ходе которого происходит синтез органических соединений, и образуется гумус. Перегной в нем преобладает, а также гумусовые кислоты, которые со временем преобразуются, окисляясь в результате до углекислого газа и воды. Очень важным является то, что пути преобразования гумуса – минерализация или гумификация – зависят напрямую от почвенных и климатических условий. В достаточно теплых и влажных климатах процесс окисления происходит очень быстро, и практически весь опад растительности минерализуется, что не дает гумусу в почве накапливаться.

В холодных климатах трансформация опадов немного замедлена, да и количество их невелико,

в результате этого содержание гумуса в почве небольшое. Оптимальными для гумификации являются умеренные климаты без переувлажнения. Итак, из всего вышесказанного можно сделать соответствующие выводы: чтобы получить хороший урожай, растению просто необходим углекислый газ; углекислый газ в почве, как правило, образуется в результате разложения остатков растений, животных и микробов при взаимодействия с различными компонентами окружающей среды (микроорганизмами, насекомыми, червями, грибами и так далее); переработанные органические остатки растений, животных и микробов и образуют гумус-перегной, являющийся важнейшим компонентом плодородия почвы.

Функции гумуса

Создает прочную почвенную структуру, благодаря чему обеспечивается благоприятная циркуляция воды, воздуха необходимой температуры и предопределяется хороший рост корней в почве. Гумус также способствует приданию связанности легким почвам и разрыхлению плотных почв.

Химическая функция.

Является отличным хранилищем питательных элементов. В результате деятельности различных микроорганизмов гумус со временем разлагается (процесс минерализации), в результате чего происходит освобождение заключенного в нем азота, фосфора, калия и других элементов. Биологическая функция. Гумус создает благоприятные условия для развития и дальнейшей деятельности различных микроорганизмов.

Типы гумуса

  • Мор (гумус подзолистой почвы) — очень грубый, большое количество детрита, формирующегося при низкой биологической активности в условии кислой реакции среды.
  • Модер (гумус дерново-подзолистой почвы), формирующийся при средних биологических активностях в условии кислой реакции среды и слабо взаимодействующий с минеральной частью почв.
  • Мюлль (гумус черноземов), формирующийся при очень высоких биологических активностях в условии нейтральной реакции среды, активно взаимодействующий с минеральной частью почв.
  • Анмоор (гумус дерново-глеевой почвы), формирующийся во временно увлажнённых почвах. Торф алиготрофный, являющийся «бедным гумусом» верховых болот.

торф эутрофный, являющийся «богатым гумусом» низинных болот.

Значение гумуса в плодородии почв Гумус активно участвует в процессе почвообразования.

Ему отводится самая главная роль непосредственно в формировании профиля почв. Гумус способствует склеиванию почвенных частиц в агрегаты (комочки), создает агрономические ценные структуры и благоприятные для жизни растений физические свойства почвы.

содержит основные питательные элементы для растений и различные микроэлементы, становящиеся доступными для растений после процесса минерализации. Гумусовые вещества являются пищей для почвенных микроорганизмов. От содержания гумуса в почвах зависит интенсивность различных химических и биологических процессов, которые обуславливают накопление веществ, необходимых растениям. Гумус также способствует приданию почве темной окраски, тем самым земля лучше поглощает солнечную энергию. Состав и свойства гумуса Это удобрение является сложным динамическим комплексом органических соединений, которые образуются при разложении различных органических остатков.

Читайте также:  Декабристы цветы условия выращивания

В составе гумуса почвы можно выделить специфическую часть (примерно 90 %), состоящую из гумусовых веществ, и неспецифическую часть (остальная часть), состоящую из негумифицированных органических веществ. Гумусовые вещества почв, в свою очередь, представлены: гуминовыми кислотами — высокомолекулярными азотсодержащими органическими соединениями, имеющими циклическое строение, не растворимыми в воде и кислотах, но растворимыми в слабых щелочах, в состав гуминовых кислот входят углероды (около 50%), водород (5%), кислород (40%), азот (5%); гуматами, образующимися в результате взаимодействия гуминовых кислот с минеральной частью почв; гуматы щелочей являются хорошо растворимыми в воде, образуют тем самым коллоидные растворы; гуматы же кальция и магния не являются растворимыми в воде, образуют водопрочную структуру; фульвокислотами — высокомолекулярными азотсодержащими органическими кислотами, растворяющимися в воде, различных кислотах и растворах щелочей, кроме того, они способны растворяться в некоторых органических растворителях; в состав фульвокислот входят углерод, водород, кислород и азот, также хочется отметить, что эти кислоты способствуют активному разрушению минеральной части почвы.

Обо всех заслугах гуминовых веществ до сих пор еще не известно, поэтому ниже приведены только основные из них, прочно укоренившиеся в теории и практике. Таким образом, гумус — удобрение, способствующее: стимулированию дыхания растений даже при остром дефиците кислорода; повышению качества сельскохозяйственной продукции; усилению фотосинтеза, стимулированию активности ферментов, которые напрямую связаны с фотосинтетическими реакциями; ускорению транспорта и циркуляции пищевых веществ непосредственно внутри растений; росту и развитию растений; активизированию корнеобразования и развития почек; повышению устойчивости к внешним неблагоприятным воздействиям; образованию прочных соединений с металлами, поглощению фосфатов, нитратов и многих других; увеличению кислотности на поверхности корней; повышению устойчивости растений к действиям пестицидов и гербицидов, уменьшению накопления их в конечной продукции.

Использование гуминовых веществ в медицине По результатам различных проведённых фармакологических тестов с целью выявления, что такое гумус, препараты, в основу которых входят гуминовые вещества, можно использовать в наше время медицине и ветеринарии в роли неспецифического лекарства, способствующего повышению сопротивляемости организма к воздействиям различных вредных факторов.

Медицинские лекарства на основе данных гуминовых веществ в наше время уже существуют в продаже. Их активно применяют при лечении радикулитов разных форм, заболеваний ушей и носа, фарингита, ринита, артрита, полиартрита, артроза и многих других заболеваний. Преимуществом данных препаратов является то, что они нетоксичны. Загадки гуминового вещества Вот и подошёл к своему логическому заключению рассказ о том, что такое гумус почвы, о его образовании, свойствах и функциях.

Единственное, что хочется добавить, так это несколько слов о загадках гуминовых веществ.

Не свойственен постоянный химический состав, они не обладают определенной молекулярной массой и постоянным единственным цветом. Гуминовые вещества до сих пор изучаются химиками, почвоведами, гидробиологами, медиками, фармацевтами с целью объяснения всех загадок, хранящихся в них, которых, по прогнозам, будет разгадано еще очень много.

Источник

МОРФОЛОГИЯ ПОЧВ

МОРФОЛОГИЯ ПОЧВ – сумма внешних признаков, которые являются результатом процессов формирования и поэтому отражают происхождение (генезис) почв, историю их развития, их физические и химические свойства. Морфологические признаки доступны простому визуальному наблюдению, но для более точного анализа используют как простые приспособления (например, лента с сантиметровыми делениями для определения мощности почвы), так и достаточно сложные приборы (поляризационные микроскопы, применяемые для изучения микроскопических морфологических признаков).

В качестве основных морфологических признаков почвы выделяют: почвенный профиль, окраску и цвет почв, почвенную структуру, гранулометрический (механический) состав почв, сложение почв, новообразования и включения.

Почвенный профиль.

При рассмотрении достаточно глубокого почвенного разреза можно увидеть, что почвенная толща имеет слоистое строение.

Эта псевдослоистость обусловлена разделением почвенной толщи на почвенные горизонты, каждый из которых более или менее однороден по механическому, минералогическому, химическому составу, физическим свойствам, структуре, цвету и другим признакам. Почвенные горизонты обособляются постепенно в процессе формирования почвы, отсюда их другое название – «генетические» горизонты. Однако даже в окончательно сформированных почвах горизонты, как правило, не имеют резкой границы и постепенно переходят один в другой. Совокупность генетических горизонтов образует почвенный профиль.

Принцип расчленения почвенной толщи на генетические горизонты установлен впервые В.В.Докучаевым, им же были введены для них первые буквенные обозначения.

В различных типах почв генетические горизонты существенно отличаются, однако в первом приближении выделяют два типа строения почвенного профиля – автоморфный и гидроморфный.

Две системы символов генетических горизонтов почв: без скобок указано обозначение горизонта, принятое в нашей стране, в скобках указано обозначение горизонта, принятое на Международном обществе почвоведов (Международное общество почвоведов (International Association of Soil Science) было основано в 1924, его члены – научные учреждения и ученые более 100 стран, местопребывание общества – Амстердам).

Почвенный профиль автоморфных почв.

Автоморфные почвы – это почвы, формирование которых проходит в условиях хорошо дренируемых водоразделов, т.е. под влиянием атмосферной влаги, систематические нисходящие токи которой обуславливают перемещение химических элементов сверху вниз. Режим почвенной влаги в этих условиях может быть как промывным, так и непромывным. Грунтовые воды расположены относительно глубоко.

Формирование профиля автоморфных почв схематически изображено на риc. 1.

Основные генетические горизонты почвенного профиля этого типа.

Перегнойно-аккумулятивная часть профиля. Здесь преобразуется отмершее органическое вещество, систематически накапливается почвенный перегной и гумус и аккумулируются зольные элементы, необходимые для нормального питания растений. В перегнойно-аккумулятивной части профиля идут не только процессы накопления: часть химических элементов в виде подвижных как органических, так и неорганических соединений выносится за пределы гумусового горизонта, однако, в целом, преобладает тенденция к накоплению. Цвет этой части профиля меняется от черного, бурого и коричневого до светло-серого, что обусловлено составом и количеством гумуса. Мощность этой части профиля меняется в различных почвах от нескольких сантиметров до 1 метра. В эту часть профиля входят следующие горизонты:

Горизонт А0 (0) самая верхняя часть почвенного профиля. Это легкая подстилка (степной войлок), представляющая собой опад растений на различных стадиях разложения – от свежего до почти разложившегося.

Горизонт Ат(Н) поверхностный горизонт почвы, состоящий из насыщенного водой торфа.

Горизонт А1 (А) верхний темный горизонт почвы, содержащий наибольшее количество органического вещества (в том числе, и наибольшее количество гумифицированного органического вещества). Этот горизонт еще называют гумусовым горизонтом.

Переходная часть профиля представляет собой постепенный переход от гумусового горизонта к почвообразующей породе, здесь происходят различные, часто противоположно-направленные процессы.

Для верхнего горизонта переходной части профиля характерно вымывание подвижных соединений в более низкие почвенные горизонты, в некоторых почвах очень сильное (например, в подзолистых). В этом случае обособляется самостоятельный горизонт вымывания А2 (Е), откуда вынесены все более или менее подвижные соединения. Горизонт вымывания также называют элювиальным горизонтом, он резко выделяется в почвенном профиле своим внешним видом. Вследствие вымывания у него белесая, напоминающая цвет золы окраска, он бесструктурный или слойный, рыхлый. Элювиальный горизонт обеднен илистыми частицами, гумусом и другими соединениями частицами за счет вымывания их в нижележащие слои и относительно обогащен остаточным кремнеземом.

В нижней половине переходной части профиля преобладает вмывание, т.е. выпадение (осаждение) соединений тех химических элементов и мелких частиц, которые были вымыты из верхней части почвенной толщи. Глубина перемещения частиц и соединений в разных условиях различна, однако, в общем, более растворимые соединения мигрируют глубже, чем менее растворимые, поэтому понятие горизонта вмывания несколько неопределенно. Обычно в качестве горизонта вмывания (или иллювиального горизонта) выделяют горизонт, характеризующийся накоплением глины, окислов железа, алюминия и марганца.

Этот горизонт четко выделяется своей бурой, охристо-бурой или красновато-бурой окраской, оструктуренностью и большей (по сравнению с другими почвенными горизонтами) плотностью. Иллювиальный горизонт обозначают символом В.

В почвах, где не наблюдаются существенные перемещения веществ, в почвенной толще нет обособления элювиального и иллювиального горизонтов. В таких почвах символом В обозначают переходный слой между гумусовым горизонтом и почвообразующей породой, характеризуемый постепенным ослаблением процессов аккумуляции гумуса, разложения первичных минералов, он может подразделяться на В1 – горизонт с преобладанием гумусовой окраски, В2 – подгоризонт с более слабой и неравномерной гумусовой окраской и В3 – подгоризонт окончания гумусовых затеков.

Читайте также:  Нехватка фосфора у томатов чем подкормить

Горизонт Вк – максимальная аккумуляция карбонатов, обычно располагается в средней или нижней части профиля и характеризуется видимыми вторичными выделениями карбонатов в виде налетов, прожилок, псевдомицелия, белоглазки, редких конкреций.

Горизонт G – глеевый, характерен для почв с постоянно избыточным увлажнением, которое вызывает восстановительные процессы в почве и придает горизонту характерные черты – сизую, серовато-голубую или грязно-белую окраску, наличие ржавых и охристых пятен, слитость, вязкость и т.д.

Почвообразующая порода.

Ниже переходной части профиля залегает материнская (почвообразующая) горная порода, на которой сформировалась данная почва. В почвоведении эта порода обозначается как горизонт С, она уже не затронута специфическими процессами почвообразования (аккумуляцией гумуса, выносом элементов и т.д.), однако верхняя часть горизонта несет следы почвообразования в виде соединений, привнесенных сюда из верхней части почвенного профиля.

Подстилающая горная порода.

Горизонт D (R) подстилающая горная порода, залегающая ниже материнской (почвообразующей) горной породы и отличающаяся от нее своими свойствами.

Почвенный профиль гидроморфных почв, т. е. почв, формирование которых происходит в условиях близкого расположения грунтовых вод. В этом случае процесс почвообразования идет под воздействием грунтовых вод, которые периодически или постоянно обогащают почвенную толщу определенным химическими элементами и создают специфическую геохимическую обстановку. Режим почвенной влаги в этих условиях соответствует выпотному или застойному.

При близком залегании грунтовых вод и капиллярном их подъеме в почвенную толщу различные соединения выпадают примерно в той же последовательности, как и при нисходящем движении вод. Однако в то время как при нисходящем движении ближе к поверхности расположены менее растворимые соединения, при восходящем движении грунтовых вод картина обратная – более растворимые соединения находятся близко к поверхности или располагаются непосредственно на ней.

Почвенный профиль гидроморфных почв состоит, во-первых, из более или менее выраженной перегнойно-аккумулятивной части, и во-вторых, из системы минерально-аккумулятивных горизонтов, каждый из которых называется по слагающему его соединению. На рис. 2 выделяется (снизу вверх) карбонатный, гипсовый и сульфатно-натриевый горизонты.

Помимо двух основных типов строения почвенного профиля – автоморфного и гидроморфного, в природе встречаются многочисленные случаи переходного строения, это объясняется сменой условий автоморфного и гидроморфного почвообразования.

Кроме этих горизонтов выделяются переходные горизонты, для которых используются двойные обозначения, например, А1А2 – горизонт, прокрашенный гумусом и имеющий признаки оподзоленности (вымывания элементов), А2В – горизонт, имеющий черты элювиального горизонта А2 и иллювиального В, А1С – переходный горизонт от гумусового к материнской породе и т. д.

Второстепенные признаки обозначаются индексом с дополнительной малой буквой, например Вg – иллювиальный горизонт с пятнами оглеения, Сk – карбонатная почвообразующая порода и т.д.

Кроме обозначения горизонта индексом, почвоведы обязательно используют и словесные названия этих горизонтов: гумусовый, подзолистый, глеевый, торфянистый, солонцовый, иллювиально-гумусовый, погребенный и т. д.

Обычно переход между генетическими горизонтами постепенный, поэтому граница между горизонтами, в известной мере, условна и представлена не линией, а некоторой переходной полосой. Иногда переход между горизонтами четкий, но граница при этом бывает не обязательно ровной, а языковатой. В этом случае масса верхнего горизонта в виде языков и потеков заходит в пределы нижерасположенного генетического горизонта. Учет плотности почв значительно облегчает выделение горизонтов и установление их границ.

Приведенная система выделения почвенных горизонтов и их буквенных обозначений является наиболее распространенной в нашей стране, однако кроме нее есть много других подобных систем. Сейчас разрабатывается система более сложной индексации горизонтов почвенного профиля.

Окраска и цвет почвы

– наиболее выразительные морфологические признаки, по которым выделяются генетические горизонты в профиле и устанавливаются их границы. Эти признаки характеризуют тип почвообразования и состав почвообразующих пород.

Понятия цвет и окраска в почвоведении различаются. Термин окраска более общий и характеризует изменения (неоднородность, пятнистость) цветовых характеристик горизонта. Термин цвет колористическое понятие, относится непосредственно к сочетанию тонов, интенсивности и другим хроматическим параметрам. Многие почвы получили свое название по преобладающему цвету: черноземы, красноземы, сероземы и т.д.

Окраска отдельного почвенного горизонта может быть однородной и неоднородной. Однородная – весь горизонт однообразно окрашен в какой-либо цвет, часто осветляется к нижней границе. Неоднородная – горизонт окрашен в различные цвета, при этом форма участков разного цвета может быть различной (пятна, полосы, мраморовидность). Окраска почвенной массы никогда не бывает «чистой» (монотонной), а сопровождается дополнительными тонами, придающими ей тот или иной оттенок.

Цвет почвы зависит от наличия в почве того или иного количества красящих веществ. Верхние горизонты окрашены гумусом в темные цвета (серые и коричневые). Чем больше гумуса содержит почва, тем темнее ее цвет. Железо и марганец придают почве бурые, охристые, красные тона. Белесые, белые тона предполагают наличие процессов оподзоливания (вымывания продуктов разложения минеральной части почв). Белый цвет может быть признаком осолодения, засоления, окарбоначивания, т. е. присутствия в почве кремнезема, каолина, углекислого кальция и магния, гипса и других солей. Синие (сизые) и зеленые цвета всегда связаны с переувлажнением почв и с присутствием специфических минералов, содержащих закись железа.

Цвет нижних горизонтов почвенного профиля, в основном, определяется окраской почвообразующих пород, их составом и степенью выветривания. Наиболее характерны различные оттенки коричнево-бурого цвета, обусловленные окраской плейстоценовых отложений – широко распространенных почвообразующих пород.

Цвет почвы в значительной степени зависит от степени влажности и источника освещения, поэтому окончательное определение цвета принято делать по образцам в сухом состоянии при рассеянном дневном освещении.

Определение цвета носит несколько субъективный характер. Чтобы избавиться от субъективизма в описании цвета почв на протяжении всей истории почвоведении различные авторы пытались унифицировать почвенные цвета. В нашей стране наиболее широкое применение получил треугольник цветов С.А.Захарова (рис. 3). В вершинах этого треугольника – белый, черный и красный цвета, а по сторонам и медианам нанесены названия различных цветов, производных от смешения трех основных. За границей широко используются цветные таблицы Манселла, где каждый цвет характеризуется тоном (оттенком), интенсивностью (степенью осветленности) и насыщенностью тона (чистотой спектрального цвета) и может быть обозначен буквенно-цифровыми индексами, удобными для создания базы данных с целью компьютерной обработки информации.

Структурность почв

– это способность почвы естественно распадаться на отдельности (агрегаты), состоящие из склеенных перегноем и иловатыми частицами механических элементов почвы. Форма структурных отдельностей, их размер и прочность четко отражают характер процессов, протекающих в почве.

Структура почвы оказывает влияние на аэрацию почвы и ее водопроницаемость, определяет устойчивость почвы против эрозии. На образование почвенной структуры оказывают влияние: корневая система травянистой растительности, деятельность почвенной фауны, а также различные физические процессы: увлажнение и высыхание, замерзание и оттаивание, нагревание и охлаждение. Главными клеющими веществами почв при их оструктуривании являются: гумус, глинистое вещество, гидроксиды железа и алюминия. Поэтому песчаные почвы, лишенные глинистых частиц и содержащие мало гумусовых веществ, бесструктурны. Важную роль структурообразования в гумусовом горизонте играют травянистые растения, создающие своей корневой системой комковатую структуру.

По форме структурные отдельности подразделяются на три основных типа: кубовидный тип (отдельности имеют одинаковые размеры по всем трем измерениям и обычно представлены неправильными многогранниками), призмовидный тип (преобладает одно из трех измерений, в силу чего отдельность более или менее вытянута вверх); плитовидный тип (отдельность уплощена по высоте и развита по двум другим измерениям). В нашей стране используют классификацию структурных отдельностей по форме, размеру и характеру поверхности, разработанную в 1927 С.А.Захаровым.

Название структуры почвы дается по преобладающим отдельностям. Каждому типу почв и каждому генетическому горизонту характерны определенные типы почвенных структур. Например, для гумусовых горизонтов характерна зернистая, комковато-зернистая, порошисто-комковатая структура; для элювиальных горизонтов – плитчатая, листоватая, чешуйчатая, пластинчатая; для иллювиальных – столбчатая, призматическая, ореховатая, глыбистая и т.д.

В полевых условиях для определения структуры почв из исследуемого горизонта ножом вырезают небольшой образец грунта и подбрасывают его несколько раз на ладони до тех пор, пока он не распадется на структурные отдельности. Их рассматривают и определяют степень их однородности, размер, форму, характер поверхности.

Изменение условий почвообразования отражается на структуре гумусового горизонта. Прочность структурного пахотного горизонта имеет важно для земледелия.

Читайте также:  Какую почву любят апельсины

Большое значение для агрономической характеристики почвы имеет водопрочность структуры почвы, т.е. образование прочных, не размываемых в воде отдельностей. Почвы, обладающие водопрочной структурой, имеют благоприятный для развития растений водно-воздушный режим, механические свойства и т.д. Почвы, не имеющие такой структуры, быстро заплывают, становятся непроницаемыми для воды и воздуха, а при высыхании растрескиваются на крупные глыбы.

Гранулометрический (механический) состав почв.

Гранулометрическим (механическим) составом почвы называется весовое соотношение в почве частиц разного размера. Под частицами разного размера подразумеваются группы частиц, диаметр которых лежит в определенных пределах. Каждая из таких групп называется гранулометрической (механической) фракцией почвы.

Группировка механических элементов по размерам называется классификацией механических элементов. В нашей стране применяется классификация Н. А. Качинского (таблица 1).

Таблица 1. КЛАССИФИКАЦИЯ МЕХАНИЧЕСКИХ ЭЛЕМЕНТОВ ПОЧВ (Н.А.Качинский, 1965)
Название механических элементов Диаметр механических элементов, мм
Физический песок (> 0,01 мм) Камни > 3
Гравий 3–1
Песок крупный 1–0,5
Песок средний 0,5–0,25
Песок мелкий 0,25–0,05
Пыль крупная 0,05–0,01
Физическая глина ( 1 мм) с точки зрения водно-физических свойств не активна, инертна; она не способна удерживать влагу. Песок (d = 1,0–0,05 мм) обладает слабой водоудерживающей способностью. Пыль (d = 0,05–0,001 мм) очень хорошо удерживает воду и обладает хорошей водоподъемной способностью; ил (d 80 > 85 > 65

Механический состав почвы является важной характеристикой, необходимой для определения производственной ценности почвы, ее плодородия, способов обработки и т.д. От механического состава зависят почти все физические и физико-механические свойства почвы: влагоемкость, водопроницаемость, порозность, воздушный и тепловой режим и др. В полевых условиях определение механического состава производится по степени пластичности – наощупь. При известном навыке почвы можно достаточно четко разделять на глинистые, суглинистые, супесчаные и песчаные:

Песчаные почвы – бесструктурны, не обладают связностью, сыпучи, при большом увлажнении можно скатать в шарик.

Супесчаные почвы – в сухом состоянии сыпучи, бесструктурны, во влажном состоянии легко скатываются в шар, но «шнура» или «колбаски» не образуют.

Суглинистые почвы – в сухом состоянии легко втираются в кожу, во влажном состоянии пластичны и легко раскатываются в «шнур» или «колбаску». Чем тоньше «шнур» или «колбаска», тем данная почва ближе к глине.

Глинистые – в сухом состоянии при растирании на ладони дают тонкий однородный порошок (пудру), хорошо втирающийся в кожу, во влажном состоянии раскатываются в длинный, тонкий шнур, легко сворачиваемый в кольцо без трещин.

Окончательное название почвы по механическому составу производится в лаборатории при помощи специального анализа, и на основании этого дается название почвы. Общее название почвы по механическому составу дается по данным механического анализа верхнего горизонта (0–25 см). Например, чернозем южный, глинистый.

Сложение почвы.

Под сложением почвы понимают внешнее выражение степени и характера ее плотности и порозности. Сложение оказывает большое влияние на сопротивление почвы почвообрабатывающим орудиям, на ее водопроницаемость и в значительной степени на глубину проникновения в нее корней растений.

Порозность почвы.

Почвенные частички и структурные элементы, входящие в состав почвы, прилегают друг к другу не всеми своими плоскостями, а лишь отдельными точками или гранями, вследствие чего сама почва приобретает характер пористого тела, пронизанного целой системой трещин, пор, ячеек, пустот. Общий объем всех этих воздушных пор, полостей, трещин и пр. в определенном объеме почвы называют порозностью или скважностью почвы. Суммарный объем почвенных пор составляет от 25 до 60% объема почвы.

На порозность почвы большое влияние оказывает, прежде всего, структурное строение почвы: чем почвы структурнее, тем общая порозность больше (поскольку, помимо заключенных в комках пор, эти почвы имеют промежутки, находящиеся между структурными отдельностями). Всякое разрушение почвенной структуры, могущее произойти в результате воздействия на почву природных факторов или вследствие неправильной обработки почв, ведет за собой уменьшение общей порозности почвы. Заметное влияние на порозность почв оказывает также органическое вещество почв: чем органического вещества больше, тем больше порозность (так, например, порозность песка около 30%, а торфа – около 85%). Порозность заметно меняется в зависимости от глубины почвенного слоя: в верхних слоях она больше, в нижних – меньше. Объясняется это большим содержанием гумуса и лучшей структурой верхних горизонтов, большим воздействием на верхние слои почвы корней растений и роющих животных, а также меньшим давлением вышележащих слоев.

Размеры почвенных полостей различны, начиная от тончайших, так называемых капилляров, и кончая порами с диаметром 10 мм и крупнее. В связи с этим, помимо общей скважности, различают еще капиллярную и некапиллярную скважность почвы. Во всякой почве всегда есть оба вида скважности, причем преобладание того или иного вида зависит от механического и структурного состава почв.

Каждый вид скважности имеет различное значение в почвообразовательных процессах: капиллярная порозность, обычно заполненная водой, затрудняет свободный доступ воздуха в почву и продвижение атмосферной влаги из верхних горизонтов в нижние. Наличие же некапиллярной скважности устраняет эти нежелательные явления, создавая благоприятные условия как для почвообразовательных процессов, так и для развития растений. См.также ТИПЫ ПОЧВ.

Плотность почвы

– это интегрированная плотность всех компонентов ее твердой фазы – различных минералов и органических веществ.

Степени плотности почв в сухом состоянии:

1). Рассыпчатое сложение – почва обладает сыпучестью, отдельные частицы не сцементированы между собой.

2). Рыхлое сложение – лопата легко входит в почву на полный «штык», почва хорошо оструктурена, но структурные агрегаты плохо сцементированы между собой.

3). Уплотненное сложение – лопата легко входит в почву на «полштыка», нож легко входит в стенку разреза, почва рассыпается на структурные и механические составляющие, во влажном состоянии обладает слабой связанностью.

4). Плотное сложение – лопата или нож с трудом входят в почву на глубину 4-5 см, почва с трудом разламывается руками; в сухом состоянии монолитна, выбивается крупными глыбами, во влажном состоянии – вязкая масса.

5). Очень плотное (слитое) сложение – почти не поддается копанию лопатой (входит в почву не глубже 1 см), нужны лом, кирка. В сухом состоянии монолитна, крупноглыбиста, нож не входит в стенку разреза, во влажном состоянии очень вязкая и упругая.

Сложение почв зависит от ее механического и химического состава и от ее влажности. Это свойство имеет большое практическое значение в сельском хозяйстве и характеризует ее с точки зрения трудности обработки.

В пределах почвенного профиля сложение почвы (т.е. ее плотность и порозность) может сильно изменяться. Верхнему гумусово-аккумулятивному горизонту чаще всего бывает присуще рыхлое сложение и большая меж- и внутриструктурная порозность. Сложение иллювиального горизонта, как правило, более плотное, трещиноватое.

Новообразования и включения

– это локальные обособленные вещества, отличающиеся по своему строению и вещественному составу от вмещающей их почвенной массы. Возникают в результате действия различных почвообразовательных процессов.

Каждое новообразование формируется в определенных условиях и поэтому является индикатором почвенных процессов, либо протекавших ранее, либо идущих сегодня – это делает новообразования важными диагностическими признаками для классификации почв.

Почвенные новообразования очень разнообразны и различаются по форме, цвету, химическому и минералогическому составу. Могут быть представлены налетами, пятнами, примазками, потеками, прожилками по ходам землероев и корням растений, а также более плотными формами – конкрециями или стяжениями, плотными сцементированными железистыми прослойками и др.

К включениям относятся инородные тела, происхождение которых не связано с процессом почвообразования: обломки горных пород, не связанных с материнской породой, валуны, щебень, захороненные остатки раковин, кости современных и вымерших животных, остатки материальной культуры человека (обломки кирпича, керамики, стекла, археологические находки и др.).

Включения различного характера часто помогают судить о происхождении почвообразующей породы и возрасте почв.

Вильямс В.Р. Почвоведение, 1949
Почвы СССР. М., Мысль, 1979
Глазовская М.А., Геннадиев А.Н. География почв с основами почвоведения, М., МГУ, 1995
Максаковский В.П. Географическая картина мира. – В кн.: Общая характеристика мира, часть I. Ярославль, Верхне-Волжское книжное издательство, 1995
Практикум по общему почвоведению. Изд-во МГУ, Москва, 1995
Добровольский В.В. География почв с основами почвоведения. М., Владос, 2001
Заварзин Г.А. Лекции по природоведческой микробиологии. М., Наука, 2003
Восточно-европейские леса. История в голоцене и современность. Книга 1. М., Наука, 2004

Источник

Adblock
detector