Меню

Контролируемые условия выращивания это

Обзор субстратов для малообъемного выращивания: плюсы и минусы

Все больше тепличных хозяйств в России предпочитают малообъемную технологию выращивания сельхозкультур. Рынок быстро реагирует на потребности агропрома и предлагает разные виды субстратов, так что выбрать подходящий зачастую бывает непросто

О том, какими свойствами они обладают и как не запутаться в их разнообразии, рассказывает агроном-консультант компании ТЕХНОНИКОЛЬ, кандидат с.-х. наук Александра Старцева.

Преимущества малообъемной технологии

Переход тепличных хозяйств на малообъемную технологию связан с ее очевидными преимуществами: пористость субстратов намного выше, чем в почве (в каменной вате, например, она доходит до 95-97%). Это сокращает энергетические затраты растений на преодоление сопротивления почвы, что обеспечивает дополнительную прибавку урожая. Капиллярные свойства субстрата, а также поддержание необходимого объема дренажа в процессе выращивания дают возможность кислороду беспрепятственно поступать к корням: содержание воздуха в корневой зоне может составлять 35-40%. За счет благоприятной аэрации и более точного регулирования влажности формируется меньшая масса корней, но с лучшими поглотительными свойствами. Малообъемная технология позволят лучше контролировать условия выращивания культур. В результате уменьшается расход воды, удобрений, пестицидов, а также снижаются трудозатраты.

Но используя малообъемную технологию, агроном должен тщательного соблюдать необходимые условия, регулярно контролировать среду обитания корней и быстро реагировать на потребности растений. Каждый вид субстрата имеет свои специфические свойства, преимущества и недостатки, которые нужно учитывать для эффективного управления ростом культур.

Субстраты делятся на две большие группы: неорганические (минеральная вата, стекловата, пемза, перлит, вермикулит, гравий, гранитный щебень, песок, керамзит, цеолиты, гидрогель) и органические (торф, кокос, опилки, древесная кора, рисовая шелуха).

Наиболее распространены торф, кокос и минеральная вата. Некоторые субстраты можно комбинировать, составляя из них смеси для получения необходимых свойств. Например, торф смешивают с перлитом для улучшения дренажных возможностей субстрата.

При выборе субстрата важно обращать внимание на его структуру и прочность, водно-физические, биологические и химические характеристики.

Свойства твердой фазы

Каменная, или минеральная вата – это расплавленные при высокой температуре (1400-17000 С) вулканические породы. По химический составу этот субстрат близок к почве, основным компонентом которой также является кремнезем (диоксид кремния). Кремнезем обладает высокой твердостью и прочностью. Соединения кремния играют роль минерального каркаса почвы, он входит в состав наиболее устойчивых к разрушению минералов. Добавление доломита позволяет получить более тонкое и длинное волокно, что положительно влияет на пористость, структуру и прочность субстрата. Так, например, толщина волокна субстрата SPELAND всего 3-5 мкм.

Торф и кокос – органические компоненты, которые могут со временем разлагаться и давать усадку. Прочность и необходимые водно-физические свойства кокосового субстрата сохраняются благодаря разному соотношению мелкой и крупной фракции. Чем мельче фракции кокоса, тем быстрее он усаживается и теряет механическую стабильность.

В минеральной вате прочность, механическая стабильность и долгосрочность использования обеспечиваются хаотичным расположением волокон: в кубиках оно вертикально-хаотичное для улучшения дренажных свойств, а в матах – горизонтально-хаотичное, за счет чего питательный раствор распределяется равномерно по всему объему субстрата.

Кроме того, благодаря легкости и пористости (95-97% порового пространства) каменная вата легче транспортируется, чем торф и кокос.

Водно-физические свойства складываются из трех составляющих: твердая (обеспечение прочности), жидкая (распределение питательного раствора) и газообразная (обеспечение корней достаточным количеством кислорода).

Распределение воды

Субстраты обладают разными водно-физическими свойствами. На влагоемкость кокоса влияет соотношение крупной и мелкой фракции – чем мельче фракция, тем субстрат более влагоемкий. При этом он быстрее усаживается, а преобладание крупной фракции делает субстрат более пористым и долговечным.

В минеральной вате содержится больше доступной воды, чем в торфе и кокосе. После стекания раствора в субстрате из каменной ваты остается около 80-85% питательного раствора, 10-15% объема занимает воздух и 3-5% составляют сами волокна.

Средние значения доступной влаги для минваты – 60-80%, для торфа и кокоса – 30-40%, содержание связанной воды в каменной вате составляет в среднем 4-7%, тогда как в торфе и кокосе – 30-40%.

В каменной вате легкодоступной для растений воды больше, чем в любом виде субстрата. Это означает, что при таком снижении влаги, когда на других субстратах уже наблюдается увядание растений, на минеральной вате они все еще способны поглощать воду. Но на минвате испарение воды из субстрата происходит более интенсивно, чем в других средах. Это связано с хорошими капиллярными свойствами каменной ваты, поэтому ее полив проводятся чаще. Торф – наиболее влагоемкий субстрат, и поливать его можно реже. Если в хозяйстве есть проблемы с системой полива, то лучше использовать торф. Перерыв в поливах, возможный на торфе, на каменной вате будет губительным.

Большое значение имеет градиент влажности субстрата: влага должна распределяться максимально равномерно по его высоте. Важно, чтобы каменная вата была пропитана сверху донизу, как губка, а внизу не происходило застоя влаги. Этого можно добиться благодаря выбору качественного субстрата, а также правильной стратегии полива. При поливе под действием силы тяжести питательный раствор постепенно опускается вниз. Избыток жидкости проходит через дренажные отверстия. В то время как свежий воздух втягивается в верхние слои мата, обеспечивая корневую систему новой порцией кислорода.

Поэтому при использовании субстратов из каменной ваты многое будет зависеть от стратегии поливов, которая является одним из основных рычагов управления развитием растений. Перед применением минеральной ваты надо убедиться, что поверхность пола теплицы выровнена, чтобы влага внутри матов распределялась равномерно.

Влагоемкие субстраты способствуют вегетативному росту растений и быстрому увеличению корневой системы. Более сухие субстраты обеспечивают генеративное развитие культур. Кокосовый субстрат в начале выращивания направляет растения вегетативно, поэтому он хорошо подходит для летнего оборота.

Аэрация субстрата

Плотность субстрата не должна быть слишком высокой. Чем она больше, тем ниже порозность и тем меньше у корней доступа к кислороду. При этом устойчивость субстрата к деформации будет выше. Плотность каменной ваты SPELAND подобрана в зависимости от требований культур: у матов SPELAND VEGA она составляет 72 кг/м3, кубиков SPELAND MID – 85 кг/м3, SPELAND FLORA – 85 кг/м3.

Читайте также:  Какие свойства почв есть

Чрезмерная плотность субстрата сдерживает образование новых корней, которые в основном и поглощают калий, кальций и магний. В процессе минерализации торф со временем уплотняется, что может привести к дефициту кислорода в корневой зоне. При недостатке кислорода снижается поглощение воды растениями, наблюдается отток калия, магния, фосфора и сульфатов из корня в питательный раствор. Кроме того, в анаэробных условиях накапливается нитрит-ион, который оказывает токсичное действие на корневую систему. Кокос более длительный срок сохраняет свою структуру по сравнению с торфом. А каменная вата дает минимальную усадку за счет равномерного распределения волокон.

Качественные характеристики органических субстратов могут различаться не только в зависимости от производителя, но и даже внутри одной партии. Далее рассмотрим биологические и химические свойства некоторых субстратов.

Биологические свойства

Органические субстраты являются благоприятной средой для развития микроорганизмов. В них изначально могут присутствовать патогены (например Pitium, Fusarium).

Каменная вата – практически стерильный субстрат, так как при изготовлении он подвергается действию высоких температур.

Минвата обладает высокой устойчивостью к патогенам. В то же время ее трудно заселить полезными микроорганизмами – для них там нет питания. Только через определенный период, когда у растений появляется корневая система, биопрепараты становятся оправданными, так как микроорганизмы смогут функционировать за счет корневых выделений и отмерших корней. Применение биопрепаратов необходимо начинать на этапе выращивания рассады, чтобы наполнить субстрат полезными микроорганизмами, которые будут сопротивляться патогенам.

Преимущество использования органических субстратов заключается в более простом способе утилизации. Утилизация минеральной ваты достаточно затратна.

При нагревании кокосового субстрата более 28ОС происходит разложение органического вещества, а снижение кислорода провоцирует активность анаэробных микроорганизмов. Из-за этого в корневую среду выделяются фенольные вещества, которые могут обжечь растения.

Химические свойства

В отличие от торфа минеральная вата инертна и не обладает буферностью, в результате чего ею легко управлять в процессе выращивания растений. Если торф и кокос в связи с высокой емкостью катионного обмена способны прощать ошибки агрохимиков, то каменная вата быстро откликается на изменение питательного раствора. А это требует четкого соблюдения технологии питания растений.

Перед посадкой кокос промывают от солей, используя повышенные дозы кальциевой селитры для насыщения поглощающего комплекса. В зависимости от характеристик торфа его подготовка может включать раскисление, иначе повышенная кислотность субстрата будет блокировать часть кальция и магния.

Минеральная вата не требует промывания, ее сразу насыщают питательным раствором. Субстраты с ограниченной катионной адсорбционной способностью не влияют на состав раствора, которым они наполняются в начале периода посева, и поэтому нет никаких оснований вносить в них удобрения заранее. В таких случаях состав питательного раствора, используемого для насыщения, соответствует тому составу субстратного раствора в корневой среде, который необходим в начале вегетационного периода.

Если поливная вода содержит много балластных веществ (натрий и хлор), то лучше использовать минеральную вату, так как ее легко промыть от токсичных элементов. В то время как емкость катионного обмена в кокосе будет задерживать данные ионы и препятствовать полноценному питанию.

В процессе минерализации органического вещества в торфе может накапливаться аммиачный и нитратный азот, что оказывает токсичное действие на корни растений.

В закрытых системах с рециркуляцией дренажного раствора применение кокоса и торфа недопустимо, так как мелкие частицы засоряют систему фильтрации. В странах с ограниченными водными ресурсами законодательство обязывает хозяйства пользоваться рециркуляцией дренажного раствора. Это позволяет снизить расход воды и удобрений на 25-30%, а по сравнению с выращиванием на торфе без рециркуляции раствора расход воды и удобрений снижается в 1,5-2 раза.

Таким образом, идеальный субстрат для малообъемной технологии выращивания растений должен быть легок в управлении, иметь большую порозность, низкую насыпную плотность, благоприятную аэрацию и высокую влагоудерживающую способность. Корни в таком субстрате свободно распределяются по всему объему, формируется сильная корневая система, обладающая высокой поглотительной способностью.

Так, например, каменная вата SPELAND легко управляема и процессы, происходящие в ней, более предсказуемые, чем в почве и органических субстратах. Это возможно благодаря небольшому объему, постоянству химического состава и природы минеральной части субстрата, а также отсутствию буферности, микроорганизмов и органического вещества. Она устойчива к высоким температурам и действию химических соединений. После пропарки и обеззараживания каменная вата не теряет своих свойств. В ней можно выращивать почти все овощи, кроме корнеплодов.

Каждый субстрат имеет свои преимущества и недостатки, производители овощей выбирают наиболее подходящий к конкретным условиям материал, и каменная вата с каждым годом занимает все большие площади тепличных хозяйств.

(Автор: агроном-консультант компании ТЕХНОНИКОЛЬ, кандидат с.-х. наук Александра Старцева).

Источник

Способ выращивания растений в контролируемых условиях

Использование: сельское хозяйство и биотехнология, в частности при выращивании растений в контролируемых условиях гидропоники. Сущность изобретения: выращивание растений осуществляют путем посева на вертикально расположенную инертную подложку, например, выполненную из стеклоткани, имеющую развитую капиллярную систему. Полив и подкормку проводят питательным раствором, который подают сверху вниз, при концентрации азота, фосфора и калия 0,1 — 5,0% . При этом на стадии формирования корневой системы соотношение N:P:K равно (4-5) : (1-4) : (1-2) соответственно, на стадии формирования биомассы соотношение N:P:K равно 2:(4-5) : (4-3) и на стадии созревания культуры P:K поддерживают в пределах 5:(3-5) соответственно, при модуле кислотности pH 5 — 9. Дополнительно в питательный раствор вводят микроэлементы и один раз в неделю растения поливают только дистиллированной магнитоэлектрической водой. При этом стимулирование роста растений проводят указанным способом. 6 з.п. ф-лы.

Изобретение относится к способам выращивания растений, преимущественно плодово-овощных, ягодных, злаковых, лекарственных и других культур, и может найти применение в промышленном производстве сельскохозяйственной продукции, в том числе в зонах повышенного загрязнения окружающей среды, а также в космосе и т.п. изолированных системах.

Читайте также:  Тест разнообразие почв 4 класс планета знаний

Известен способ выращивания сельскохозяйственных культур, например капусты, включающий посев на открытую предварительно удобренную почву посадочного материала, уход за растениями на всех стадиях их развития путем полива водой и подкормки удобрениями, регулирование физиологических свойств растений путем окучивания корнеплодов, удаления усов у клубники и т.п. и сбор урожая (Г. Е.Исаев и др. Индустриальное овощеводство. М., Россельхозиздат, 1987 г).

Известный способ носит сугубо сезонный характер (как правило, в условиях средних широт снимают один урожай в год), осуществляется в естественных климатических условиях соответствующего региона под воздействием факторов внешней среды, характеризуется сравнительно небольшими объемами продукции с единицы занимаемых под культуру сельскохозяйственной продукции (например, сбор клубники составляет около 3 кг с куста, томатов — 15-20 кг с куста, огурцов — от 1 до 2 кг с куста). Выращивание сельскохозяйственных культур на открытой почве в условиях воздействия факторов внешней среды неизбежно связано с необходимостью организации борьбы с сорняками и вредителями растений с применением пестицидов и гербицидов, что приводит к загрязнению продукции и окружающей среды. Кроме того, крупномасштабное производство сельскохозяйственной продукции по известному способу требует применения дорогостоящей техники и сельскохозяйственных орудий поддержания их в работоспособном состоянии и обеспечения горючесмазочными материалами, что снижает производительность труда и вызывает повышение трудоемкости и себестоимости производства продукции растениеводства.

Наиболее близким к предлагаемому решению по технической сущности и достигаемому эффекту является способ выращивания сельскохозяйственных культур, например томатов и огурцов, включающий посев на искусственно созданный почвенный слой посадочного материала, уход за растениями на всех стадиях их развития в условиях управляемого воздействия на их физиологические свойства в теплицах и сбор урожая.

К основным недостаткам этого решения относятся: — необходимость создания в теплицах искусственного почвенного слоя с использованием наиболее плодородных почв с большим содержанием гумуса, что наносит непоправимый ущерб естественным сельскохозяйственным угодиям и приводит к повышению трудоемкости и себестоимости продукции; — прерывистость цикла производства, связанная с необходимостью ежегодной замены почвенного слоя в теплицах, что снижает объемы съема продукции с единицы производственных площадей и приводит к дополнительному повышению трудоемкости и себестоимости производства сельскохозяйственной продукции; — необходимость применения гербицидов в связи с интенсивным развитием в условиях теплицы вредителей растений, что приводит к загрязнению продукции и окружающей среды; — практическая неосуществимость создания в условиях теплицы наиболее благоприятных условий для управляемого воздействия на физиологические свойства растений за счет обеспечения данного регулирования микроклимата, продолжительности освещения и режимов подкормки растений на всех стадиях их развития; — и, как следствие перечисленных выше недостатков, низкая производительность труда и не отвечающие все возрастающим потребностям человечества в продукции растениеводства урожайность (например, сбор клубники с одного куста составляет 4-6 кг, томатов 20-40 кг) и требованиям к ее качеству.

Предлагаемое изобретение направлено на решение задачи резкого повышения производительности труда и урожайности выращиваемой продукции с единицы занимаемой производственной площади, а также обеспечение ее высоких потребительских качеств (экологической чистоты).

Решается поставленная задача тем, что в способе выращивания растений, включающем посев посадочного материала, уход за растениями на всех стадиях их развития путем полива водой и подкормки удобрением в условиях управляемого воздействия на их физиологические свойства и сбор урожая, посев производят на расположенную в вертикальной плоскости инертную подложку, одну сторону которой периодически освещают, другую постоянно держат затемненной, а полив и подкормку осуществляют путем периодической подачи сверху вниз на затемненную сторону подложки 0,1-10%-ного водного питательного раствора на основе солей азота (N), фосфора (Р) и калия (К) с модулем кислотности рН 5-9, соотношение компонентов которого изменяют по мере развития растений, причем все операции, начиная от посева до сбора урожая, выполняют в замкнутом изолированном от воздействия факторов внешней среды помещении.

Перечисленные выше отличительные от прототипа признаки достаточны для осуществления изобретения во всех случаях, на которые распространяется испрашиваемый объем правовой охраны.

Совокупность существенных признаков изобретения позволяет обеспечить в условиях замкнутого изолированного от воздействия факторов внешней среды и практически стерильного помещения тонкое регулирование по заданным программам освещения, микроклимата и режима подкормки и тем самым создать наиболее благоприятные условия для развития растений и выращивания их в течение всего года, а следовательно, существенно повысить их урожайность и потребительские качества при одновременном повышении производительности труда, снижении трудоемкости и себестоимости производства продукции.

В частных случаях использования изобретения на стадии формирования корневой системы растений соотношение компонентов раствора N:P:K поддерживают в пределах от 4:1:1 до 5:4:2. Это позволяет существенно укрепить и развить корневую систему растений.

На стадии формирования биомассы соотношение компонентов раствора N:P:K поддерживают в пределах от 0:4:4 до 2:5:3. Это стимулирует развитие биомассы (куста, стебля и т.п.) и образование крупных плодов.

На стадии созревания растения и/или их плодов соотношение компонентов раствора N: P: K поддерживают в пределах от 0:5:3 до 0:5:5. Это позволяет обеспечить максимальный набор плодами витаминов (а 5-6 раз больше, чем в теплице).

Согласно изобретению в помещении может быть создано разрежение.

Это создает возможность выращивания высокогорных растений, например, жень-шеня.

В отдельных случаях осуществления изобретения затемненную сторону подложки выполняют из материала с развитой капиллярной системой, например из стеклоткани.

Это позволяет существенно улучшить условия подвода питательного раствора к корневой системе растений.

Согласно изобретению на всех стадиях развития растений периодически производят дополнительное стимулирование их роста путем ионизации воздуха и/или изменения концентрации СО2 от 0,3 до 5%.

Благодаря этому сокращается вегетационный период развития растений, а следовательно, увеличивается цикличность посева и урожайность с единицы производственной площади.

Кроме того, растения подвергают воздействию регулируемого электрического поля напряжением 5-10 тыс.вольт.

Это позволяет развить каппиллярную систему растений и тем самым увеличить приток питательных веществ и, следовательно, повысить урожайность и качество продукции.

Читайте также:  Технология выращивания томатов по методу маслова

Согласно изобретению каждый седьмой день растения сажают на голодную диету, осуществляя полив в этот день их корневой системы дистиллированной магнитнообработанной водой. Это создает предпосылки для лучшей усваимости растениями удобрений в последующие дни.

На стадии развития биомассы в питательный раствор дополнительно вводят микроэлементы.

Благодаря этому увеличиваются размеры, количество и качество плодов.

Возможность осуществления изобретения подтверждается следующими примерами.

П р и м е р 1. В замкнутом изолированном от воздействия факторов внешней среды и практически стерильном помещении (вход в помещение через специальные тамбуры — санпропускники, подача воздуха — через фильтры) на несущих конструкциях монтируют вертикально расположенные инертные подложки, одну сторону которых периодически освещают, а другую постоянно держат затемненной. В самом общем виде подложка представляет собой два параллельных полотнища полимерной пленки, между которыми расположена армирующая сетка, например сетка Рабица.Пленка, расположенная со стороны источника света, должна быть светонепроницаемой или светоотражающей. На описанную выше вертикальную подложку высаживают саженцы клубники ремонтантных сортов с плотностью посадки 99 кустов на 1 м 2 посевной площади, закрепляя их в соосно расположенных отверстиях в образующих подложку пленках. После посадки саженцев на их корневую систему, расположенную с затемненной стороны подложки сверху вниз, периодически подают 0,1%-ный водный питательный раствор на основе солей азота (N), фосфора (Р) и калия (К), поддерживая рН раствора равным 6,2 и соотношение компонентов N: P: K на стадии формирования корневой системы равным 5: 2:1, на стадии формирования биомассы и плодов — 0:4:4 и на стадии созревания плодов 0:4:3. На стадии формирования плодов в раствор дополнительно вводят микроэлементы (цинк, марганец). При этом в течение всего процесса выращивания в помещении поддерживают регулируемые по заданной программе режимы освещения и микроклимата и подкормки. Одновременно по заданной программе производят ионизацию воздуха и стимуляцию развития капиллярной системы растений путем воздействия на них регулируемым электрическим полем напряжением 5 тыс. вольт. Через два месяца после посева саженцев начинают сбор урожая. Кусты ремонтантного сорта Кардинал плодоносят при этом без перерыва в течение 3 лет при годичном сборе 8 кг с одного куста.

Периодически один раз в неделю проводят лишь полив корневой системы клубники дистиллированной водой.

Технический результат, получаемый при выращивании клубники заявленным способом состоит в 10-кратном увеличении урожайности, достигаемой в среднем 8 кг клубники с одного куста за год против среднестатистического значения урожайности известного субстратного способа 0,7 кг клубники с одного куста за год (см. данные ЦСУ по сельскому хозяйству за 1992 г.).

Одновременно с этим выращивание клубники заявленным способом по сравнению с известным позволяет: — получать экологически чистый продукт, содержащий в 5-6 раз больше витаминов, причем равномерно в течении года; — снизить себестоимость клубники за счет упразднения трудоемких и энергоемких операций, применяемых в технологии выращивания клубники в известном субстратном способе.

П р и м е р 2. Как и в примере 1 на вертикально расположенную подложку, затемненная сторона которой выполнена из стеклоткани, высевают семена перца болгарского, приклеивая их к стеклоткани, предварительно пропитанной питательным раствором. По мере развития растения корневая система распределяется по стеклоткани, а ростки тянутся к свету. При формировании стеблей они подвязываются к вертикально расположенным шпалерам. В течение формирования растения концентрацию раствора изменяют от 3 до 5%, рН 5,9-6,7, соотношение компонентов N: P: K на стадии формирования корневой системы поддерживают равным 4: 3: 1, на стадии формирования стебля 2:4:3, на стадии созревания плодов 0: 3: 5. Подачу раствора, режим освещения и микроклимат в помещении регулируют по заданной программе. В процессе выращивания перца периодически производят дополнительную стимуляцию роста растений путем изменения концентрации СО2 в помещении до 5%.

Технический результат, получаемый при выращивании заявленным способом перца болгарского, также как и при выращивании клубники, состоит в преимуществах по урожайности, экологической чистоте и себестоимости продукта. При этом урожайность повышается с 0,5-0,6 кг с куста в известном способе до 4,5-5 кг с куста за тот же период в предлагаемом способе выращивания.

1. СПОСОБ ВЫРАЩИВАНИЯ РАСТЕНИЙ В КОНТРОЛИРУЕМЫХ УСЛОВИЯХ, включающий посев, уход за растениями на всех стадиях их развития путем полива водой и подкормки удобрениями в условиях управляемого воздействия на их физиологические процессы и сбор урожая, отличающийся тем, что посев производят на расположенную в вертикальной плоскости инертную подложку, выполненную из материала с развитой капиллярной системой, одну сторону которой освещают, а другую постоянно держат затемненной, полив и подкормку осуществляют путем периодической подачи питательного раствора сверху вниз на затемненную сторону подложки в концентрации 0,1 — 5,0 % солей азота, фосфора и калия, при этом на стадии формирования корневой системы соотношение N : P : K поддерживают в пределах (4 — 5) : (1 — 4) : (1 — 2) соответственно, на стадии формирования биомассы соотношение N : P : K — 2 : (4 — 5) : (4 — 3) и на стадии созревания культуры соотношение Р : К поддерживают в пределах 5 : (3 — 5) соответственно при модуле кислотности питательного раствора pH 5 — 9.

2. Способ по по.1, отличающийся тем, что затемненную сторону подложки выполняют из стеклоткани.

3. Способ по п. 1, отличающийся тем, что периодически на всех стадиях развития растений проводят дополнительно стимулирование роста путем ионизации воздуха и/или изменения концентрации CO2 в пределах 0,3 — 5,0 %.

4. Способ по п.1, отличающийся тем, что в процессе выращивания растений в культивационном сооружении создают разрежение.

5. Способ по п.1, отличающийся тем, что растения подвергают воздействию регулируемого электрического поля напряжением 5000 В.

6. Способ по п.1, отличающийся тем, что один день в неделю растения поливают только дистиллированной магнитоэлектрической водой.

7. Способ по п.1, отличающийся тем, что в питательный раствор дополнительно вводят микроэлементы.

Источник

Adblock
detector