О влажности, требуемой растениям и влагоемкости почвы
Для нормального роста растениям нужна вода. Основное количество воды растения берут из почвы. За тысячелетия выращивания различных культур накопилось понимание, какой культуре какая влажность нужна. Однако, только с возникновением научной агрономии этот накопленный опыт был систематизирован и выражен в цифрах и методах, которые может каждый повторить и получить такой же результат, вне зависимости от субъективных ощущений.
Итак, растениям нужна вода. Определить количество воды в почве довольно просто, если вы располагаете временем. Этот метод называет выпариванием. Для этого надо взять порцию грунта, точно его взвесить, после чего хорошо прогреть на умеренной температуре, например, 60-80 градусов, и снова взвесить. Разность веса и будет испарившаяся вода. Например, было 130 грамм, стало 100 грамм, значит 30 грамм была вода и абсолютная влажность грунта составляла 30г/100г = 30%.
Это старый и надежный способ, однако он не очень удобный, так как занимает много времени и требует энергии на выпаривание.
Есть надежные и точные профессиональные механизмы (тензиометры) для быстрого определения влажности, но их стоимость слишком высока для обычного огородника.
Как альтернатива дорогим устройствам повсеместно доступны дешевые измерители влажности почвы, которые надо втыкать в грунт, и они показывают какое-то абстрактное число. О таком устройстве пойдет речь ниже, а пока продолжим с теоретической частью.
Знание абсолютной влажности (далее АВ) грунта малополезно, так как никакое растение не сможет забрать всю влагу из грунта вплоть до 0% АВ. А до какого уровня АВ растения могут забирать воду из грунта зависит от его состава, структуры и других факторов. Поэтому, чтобы свести это все общим понятиям было введено понятие влагоемкости. Причем не одной влагоемкости, но несколько разных ее видов. Мы не будем рассматривать все. Рассмотрим две основные и это будет достаточно хорошим приближением, чтобы можно было принимать решение о поливе.
Полная влагоемкость — количество воды в почве, которую залили так, что воздуха в ней не осталось, а дальнейшую воду она удерживать более не может (вода стекает). Здесь информация о ней только для справки, практической ценности для нас не имеет, хотя, в некоторой литературе по выращиванию культур указана влажность почвы в процентах от полной влагоемкости. Наименьшая влагоемкость (НВ, она же общая влагоемкость — ОВ) – это то количество воды, которое почва удерживает, условно, не превращаясь в болото. Научное определение более точное, но для практики огородника лучшее понимание дает такое просто объяснение.
В советской литературе часто можно встретить влажность в % ППВ (полной полевой влажности). В ППВ учитываются некоторые эффекты почвы, но полученное значение мало отличается от НВ, поэтому простому огороднику вполне можно использоваться значение НВ.
Теперь, если подумать, то понятно, что разные виды почв при одной и той же абсолютной влажности будут иметь разную НВ (сравните суглинок и супесью). Для растений же максимальной точкой увлажненности почвы как раз и является наименьшая влагоемкость, так как большая влажность уже не дает возможность дышать корневой системе, т.е. продолжительная жизнь растения невозможна, кроме каких-то особенный культур.
По этой причине, когда в литературе или в справочниках указывают влажность почвы для какого-то растения, то имеют ввиду влажность в процентах от общей влагоемкости.
Поясню на примере.
Предположим абсолютная влажность 10%. Полученная наименьшая влагоемкость составила, например, 260 грамм на 1 кг почвы. Рассчитаем влажность почвы в процентах от НВ.
10% абсолютной влажности означают отношение воды к сухой почве составляет 0.1.
В/СП=0.1
Но, для 1 кг (берем 1 кг, так как для него рассчитаны данные по НВ, это удобно для сравнения)
В+СП=1 кг
Получаем
(1-СП)/СП=0.1
1-СП=0.1СП
1.1СП=1
СП=1/1.1
СП=0,91
В=0,091
Итак, воды в этом грунте содержится 91г на 1000г.
91г/260г=0,35=35% НВ
Влажность грунта по наименьшей влагоемкости составляет всего 35%. Это очень низкое значение и редкое растение сможет нормально развиваться в таких условиях. Например, для картофеля требуется влажность в диапазоне 60-80%
Как же определить наименьшую влагоемкость? Это можно сделать довольно легко с вполне приемлемой точностью, но это займет пару дней.
Наберите 2-3 кг почвы в емкость и хорошо просушите ее в духовке при температуре 60-100 градусов в течение дня, перемешивая каждые пару часов. И оставьте в духовке остывать до следующего утра. Вы получите почву почти с нулевой абсолютной влажностью.
Найдите емкость объемом минимум 1-2л, в которой вы сможете сделать снизу отверстие. Сделайте в нем отверстие около 5мм. Засыпьте туда сухую почву (лучше целое число килограммов). Почва не должна высыпаться через отверстие. Если это происходит, то надо положить на него мелкую сетку. Уплотните почву в этой емкости, но без фанатизма. Равномерно заливайте воду, пока она не начнет литься из отверстия снизу. Дайте почве постоять минут 30, чтобы она вся пропиталась равномерно. Еще пролейте и дайте всей лишней воде уйти через отверстие. После того, как вода прекратит капать из отверстия, пересыпьте и взвесьте мокрую почву, чтобы определить сколько воды смогла удержать почва.
Например, у вас было 500 г почвы в начале, стало 630. Значит почва удержала 130 грамм и общая влагоемкость составила 260г на 1 кг почвы.
Влагоемкость почвы меняется очень медленно и если вы не вносили значительных количеств органики, то в течение сезона она будет стабильной. Поэтому достаточно один раз измерить ее в начале сезона и у вас будет точка отчета для всех измерений до следующего года.
Теперь, о том, как ускорить измерения влажности почвы.
Я купил дешевый прибор 3 в 1 на али экспрессе: https://aliexpress.ru/item/32900387780.html
По заявлению производителя он умеет измерять влажность, освещенность и PH.
На самом деле он измеряет только освещенность и проводимость почвы. Освещенность он измеряет в «попугаях», но их можно откалибровать по люксметру.
Измерение PH насколько сложная задача, что он в принципе не способен это сделать. Для этого покупайте обычные лакмусовые бумажки – лучше способа в домашних условиях нет.
А вот влажность его можно заставить измерять в адекватных единицах, есть провести калибровку для конкретной почвы.
Я снял видео, о том, как провести калибровку этого измерителя и подобных ему:
После проведения калибровки, вы сможете быстро получать примерное значение абсолютной влажности для почвы, по которой проводилась калибровка.
Если у вас есть датчик влажности для ARDUINO, то вы можете откалибровать его подобным же образом и тогда полив станет очень точным под требования растения.
Примеры измерений откалиброванным прибором показаны в этом видео
Проанализируем результаты замеров.
Рекомендуемая влажность почвы для картофеля 60-80%. Если мы знаем, что НВ это 260г на 1 кг почвы, 80% от 260 это 208г воды на 1кг и это 208/1000=20% абсолютной влажности. 60% НВ это 16% АВ. Таким образом, для картофеля на этих конкретных почвах требуется АВ от 16% до 20%, что эквивалентно показаниям на приборе от 5 до 9.
Для картофеля при НВ 20% рост останавливается, а при более 80% начинается гниение.
В показанном примере в наиболее сухих местах прибор показал значение 2, что соответствует примерно 10% АВ. 20% НВ это 5% АВ, так что рост еще не остановился, но воды уже критически мало и ожидать большой урожай без полива не приходится. Урожай особенно сильно пострадает, если полив не будет произведен в момент интенсивного роста клубней.
Для огурцов рекомендуемый диапазон 75-90%. Прибор показал 7. Это примерно 16-20%. 75% НВ это 20% АВ. Таким образом, на следующий день после полива у посаженных огурцов влажность грунта была на минимальном допустимом уровне.
В теплицах под помидорами показания приборы были 4-6, что означает 15-20% АВ. Для томатов рекомендуется около 80% НВ, что для этой почвы эквивалентно 20% АВ. Казалось бы, томаты политы автоматической системой нормально. Однако, здесь надо внести поправку на грунт. В теплицах грунт несколько другой, более насыщен органикой, поэтому его значение НВ должно быть больше, а значит и влажно по НВ скорее всего окажется ниже 20%. Поэтому полив был увеличен. Но правильным было бы провести отдельную калибровку для этого грунта.
Дальнейший рост растений и урожай подтвердил все указанные измерения. Таким образом, даже дешевый и неточный инструмент при должной калибровке может быть надежным подспорьем в уходе за растениями.
Источник
Крупнозернистая почва имеет высокую влагоемкость имеет низкую влагоемкость
Почва – один из важнейших элементов экологической системы Земли. Наряду с солнечным светом, водой, температурой окружающей среды она – компонент внешней среды жизнедеятельности человека. Будучи одним из элементов биосферы, почва во многом определяет гигиеническое состояние внешней среды, оказывая большое влияние на состояние здоровья людей и санитарно-гигиенические условия жизни. Человек, добывая из почвы воду, производя различные земляные, подземные сельскохозяйственные работы, постоянно подвергается различным воздействиям отдельных почвенных факторов.
Почва – природное образование, состоящее из генетически связанных между собой горизонтов, формирующихся в результате преобразования поверхностных слоев земной коры под воздействием воды, воздуха и живых организмов. Почва является одним их элементов биосферы, обеспечивающих циркуляцию химических веществ в системе « окружающая среда – человек».
Почва состоит из материнской породы (минеральные соединения), различных органоминеральных комплексов, органического вещества, гумуса (перегноя), живых организмов, воздуха, почвенной влаги.
Поверхностный слой почвы представляет собой сложный комплекс, на 90-99% состоящий из минеральных соединений и на 1-01% — из органических веществ. Минеральная часть почвы – это в основном песок, глина, известь и ил с входящими в них солями различных металлов (алюминия, кальция, магния и др.), органическая – перегной, или гумус. Образующийся из продуктов разложения и остатков растительных и животных организмов. Этот слой почвы содержит огромное количество микроорганизмов.
В зависимости от геологического строения различают песчаную (80% и более песка), супесчаную, глинистую (свыше 60% глины), суглинистую, солончаковую – богатую хлоридами, черноземную (20% перегноя), торфяную и др.
Гигиеническое значение состава и свойств почвы. Почва состоит из твердых частиц и свободных заполненных воздухом или собой промежутков между ними. К частицам почвы с диаметром более 3 мм относятся камни и гравий, от 1до 3 мм – крупный песок и менее 1 мм – мелкий песок, глина, пыль и ил. Механические свойства почвы, размеры частиц, их характер определяют такие ее гигиенические свойства, как пористость, воздухо- и водопроницаемость, влаго- и теплоемкость, тепловой режим. Почва состоит из крупных (камни, галька, гравий) и мелких частиц (мелкий и глинистый песок). Крупнозернистые почвы обладают хорошей воздухопроницаемостью, а мелкозернистые почвы – значительной водопроницаемостью, высокой гигроскопичностью и капиллярностью.
Одно из важнейших гигиенических свойств – воздухопроницаемость. Под воздухопроницаемостью почвы понимают ее способность в большей или меньшей мере пропускать воздух. Воздухопроницаемость почвы определяется величиной ее пор. У крупнозернистых почв она выше, чем у мелкозернистых, и поэтому в таких почвах создаются лучшие условия для притока кислорода и окисления органических веществ, что способствует самоочищению от отбросов.
Важное гигиеническое свойство почвы – влагоемкость. Под влагоемкостью понимают количество влаги, которое может быть поглощено единицей объема почвы, способность почвы удерживать в себе воду с помощью сорбционных и капиллярных сил. Эта способность зависит от общего объема пор, от размера пор: чем они мельче, тем больше воды поглощает и удерживает почва. Торфянистая почва может удерживать 3-5 кратное количество воды, песчаная – 20%, глинистая – 70% воды по массе. От влагоемкости зависит и уровень стояния грунтовых вод от поверхности почвы. Если он высокий, почва заболачивается, фундаменты и стены зданий отсыревают, влажность воздуха в помещениях повышается и оценивается как гигиенически неблагоприятная. На такой почве затруднена тренировка на открытом воздухе, поскольку она долго не просыхает после дождя или полива.
Температура поверхности почвы оказывает наибольшее влияние на температуру приземного слоя воздуха, жизнедеятельность почвенных микроорганизмов, процессы разложения в ней органических веществ, а также на тепловой режим помещения первого и подвалов. Темные почвы, богатые перегноем, и сухие прогреваются быстрее, чем светлые и сырые. Почва, покрытая растительностью, меньше нагревается и излучает тепла. Искусственные покрытия из бетона и камня, асфальта усиливают излучение тепла, значительно повышая температуру приземного слоя воздуха.
Самоочищение почвы. Почва постоянно загрязняется, в том числе продуктами жизнедеятельности человека и животных, и если бы она не обладала способностью обезвреживать их, жизнь на Земле стала бы невозможна. Самоочищением почвы называется ее способность превращать опасные в эпидемиологическом отношении органические вещества в неорганические – минеральные соли и газы. Самоочищение почвы начинается с того, что попавшие в нее органические вещества вместе с содержащимися в них патогенными бактериями и яйцами гельминтов фильтруются через нее и адсорбируются ею. Под влиянием биохимических, биологических, геохимических и других процессов загрязнители, проходя через почву обесцвечиваются, теряют дурной запах, ядовитость, вирулентность и другие отрицательные свойства.
Углеводы окисляются до углекислоты и воды; жиры распадаются на глицерин и жирные кислоты, окисляются также до углекислоты и воды; белки расщепляются на аминокислоты, из которых выделяется азот в форме аммиака, в дальнейшем окисляющийся в азотистую и азотную кислоты. Разложение и минерализация органических веществ в почве происходят при активном участии микроорганизмов, содержащихся в ней. Этот процесс может протекать аэробно и анаэробно. С гигиенической точки зрения предпочтителен аэробный процесс разложения органических веществ6 в этом случае не образуются дурнопахнущие газы, ухудшающие гигиенические качества воздуха и воды.
Эпидемиологическое значение почвы. Почва – чрезвычайно благоприятная среда обитания для бактерий, актиномицет, микоплазм, грибов, грибков, водорослей, лишайников, простейших. В ней находится от 5000 до 500000 простейших микроорганизмов на 1 г почвы.
Комплексное определение гигиенической опасности почвенного фактора
Степень опасности | Характеристика почвы | Число личинок и куколок на 25 м² почвы | Число яиц гельминтов в 1 кг почвы | Титр Е. coli¹ | Титр CL. perfringens² | Санитарное число (число Хлебникова)³ |
Безопасная | Чистая | 0 | 0 | 1,0 и больше | 0,1 и больше | 0,98-1,0 |
Относительно безопасная | Слабо загрязненная | 1-10 | До 10 | 1,0-0,01 | 0,01-0,001 | 0,85-0,98 |
Опасная | Загрязненная | 10-100 | 11-100 | 0,01-0,001 | 0,001 и меньше | 0,70-0,85 |
Чрезвычайно опасная | Сильно загрязненная | 100 и больше | Более 100 | 0,001 и меньше | 0,0001 и меньше | 0,7 и меньше |
Примечания. 1. Наименьший вес почвы (г), в которой содержится одна кишечная падочка. 2. Наименьший вес почвы (г),в котором содержится один анаэробный микроорганизм. 3. Отношение почвенного белкового азота (азот гумуса) в мг/кг ко всему количеству органического азота в почве (мг/кг).
Через почву передаются многочисленные инфекционные заболевания. В этом состоит ее эпидемиологическое значение. Патогенные микробы, попадая в почву с выделениями человека и животных, загрязняют ее. Наибольшего внимания заслуживает роль почвы в передаче патогенных анаэробов. Возбудители столбняка, газовой гангрены и ботулизма, будучи кишечными сапрофитами теплокровных животных и человека, попадают с фекалиями в почву и образуют там споры, сохраняющие свою жизнедеятельность годами. На глубине нескольких сантиметров они уже защищены от губительного действия солнечных лучей и размножаются, находя здесь питательные вещества, влагу, кислород воздуха, проникающего в почвенные поры. Многочисленные возбудители болезней могут выживать в почве довольно долго.
Сроки выживания в почве патогенных микробов
Источник