Водные свойства почв. Почвенно-гидрологические константы
Формы (категории) и состояние почвенной влаги. Почвенно-гидрологические константы, определение максимальной гигроскопичности почвы. Влагоемкость, водопроницаемость, водоудерживающая способность почв и грунтов. Доступность почвенной влаги растениям.
Рубрика | Сельское, лесное хозяйство и землепользование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.11.2015 |
Размер файла | 413,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Н. А. Качинским предложена градация почв по водопроницаемости. Если почва пропускает за 1 ч более 1000 мм воды при напоре 5 см и температуре 10 єC, водопроницаемость считается провальной, от 1000 до 500 мм — излишне высокой, от 500 до 100 — наилучшей, от 100 до 70 — хорошей, от 70 до 30 — удовлетворительной, менее 30 мм — неудовлетворительной.
Важно отметить такое свойство водопроницаемости как динамичность. Со временем водопроницаемость уменьшается
Изменение водопроницаемости почвы во времени
1 — чернозем обыкновенный; 2 — дерново-подзолистая почва;
Причиной этого является то, что при увлажнении почвы постепенно набухают и становятся всё более водонепроницаемыми. Наиболее быстро водопроницаемость снижается в почвах, сильнонасыщенных Na или Mg, например чернозёмы.
При низкой водопроницаемости в районах достаточного увлажнения может происходить вымочка культур, застаивание воды на поверхности, стекание ее по уклону и развитие эрозии.
При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается потеря поливной воды, что приводит к подъему уровня грунтовых вод. Повышенная минерализация грунтовых вод может вызвать при их капиллярном подъеме засоление почв.
Внесение органических и минеральных удобрений увеличивает водопотребление за счет почвенной влаги, но при этом снижался коэффициент водопотребления и транспарации в 1,2-1,5 раза. При применении органических и минеральных удобрений, а также комбинированной обработки почвы повышалась влагоемкость, расширялся диапазон активной влаги за счет уменьшения плотностного сложения.
Водоудерживающая способность почв — способность почвы удерживать в себе воду при условиях свободного ее оттока, т.е. способность удераживания воды после того как из почвы стекла вся гравитационная вода. Водоудерживающая способность напрямую связана с такой характеристикой как наименьшая влагоемкость, которая представляет наибольшее количество влаги, которую почва способна удерживать капиллярными силами после свободного стекания гравитационной влаги
Получается, что поступающая в почву вода атмосферных осадков или искусственно поданная при поливах заполняет почвенные поры и более или менее равномерным фронтом продвигается в них в сторону грунтовых вод. После прекращения подачи воды с поверхности часть воды из профиля почвы стечет, это как раз гравитационная вода, передвигающаяся под влиянием силы тяжести. Несколько других форм воды задержатся в почве под влиянием сорбционных и капиллярных сил В случае глубокого залегания уровня грунтовых вод (свыше б—7 м) в почве задержатся прочносвязанная максимально-гигроскопическая вода, рыхлосвязанная пленочная вода и две формы воды капиллярной— капиллярная подвешенная и капиллярная посаженная (см. рис. 9, 10). В начальный период после стекания воды к названным категориям влаги будет приплюсовываться и некоторое количество гравитационной воды, которая может задержаться в крупных порах (микроводоемчиках), открытых лишь вверх или отшнурованных перешейками (пробками) адсорбированной воды.
При высоком уровне залегания грунтовых вод (меньше 6— 7 м) после стекания гравитационной воды в нижней части профиля почвы над уровнем грунтовых вод задержится еще одна форма капиллярной влаги — вода капиллярная подпертая.
Водоудерживающая способность зависит от наименьшей влагоемкости, а значит и от гранулометрического и минералогического состава, содержания гумуса, структурного состояния, пористости и плотности почвы. Для песчаных и супесчаных почв НВ составляет от 5 до 20%, для суглинистых и глинистых — от 20 до 45%. Наибольшие значения НВ характерны для гумусированных почв тяжелого гранулометрического состава обладающих хорошо выраженной макроструктурой и микроструктурой.
Водоудерживающая способность и наименьшая влагоемкость почвы — одни из обязательных характеристик почвенного плодородия. Лишь благодаря этому свойству почва может накапливать в себе и длительно сохранять водные запасы, без которых никакая жизнь в почве невозможна.
Глава 4. Доступность почвенной влаги растениям
Почва является средой корнеобитания растений, существенно влияющей на поступление воды в растительный организм. Поступление воды из почвы к растениям является важным для рассмотрения фактором в формировании растительного покрова.
Доступность почвенной воды растениям является исключительно важной характеристикой, определяющей в значительной степени плодородие почв. Эта характеристика зависит от водного потенциала, коэффициента влагопроводности и от форм воды, содержащейся в почве.
Говоря о водном потенциале, его можно определить как количество работы, которую надо затратить, чтобы переместить единицу количества воды из сосуда со свободной чистой водой в данную точку почвенной системы (Слейчер, 1970). Водный потенциал, значение которого представляет собой отрицательную величину, во влажной почве приближается к нулю. По мере высыхания почвы ее водоудерживающие силы растут, т. е. водный потенциал уменьшается (увеличиваются его абсолютные отрицательные значения). Размерность водного потенциала эквивалентна размерности давлениям может быть выражена в Паскалях (Па). Бриггс и Шанц (1912) нашли, что при завядании растений водный потенциал почвы падает с —10 до —20 бар, а средняя величина водного потенциала, равная —15 барам, соответствует влажности устойчивого завядания (1 бар = 0,987 ат, 1 ат=105Па).
Потенциал почвенной воды на границе между почвой и корнем является очень важной почвенной характеристикой, определяющей доступность воды для растений. Вода поступает в корень в том случае, если водный потенциал корня ниже водного потенциала почвы, т. е. при наличии градиента водного потенциала, величина которого определяется соотношением скорости притока воды к корням и скорости поглощения ее корнями. Корневая система постоянно осваивает новые участки почвы. Зона наиболее быстрого поглощения воды находится обычно вблизи кончиков удлиняющихся корней. Поэтому как содержание воды, так и водный потенциал почвы сильно различаются в разных частях зоны обитания корней.
Коэффициент влагопроводности — количественная характеристика влагопроводности почвы, показывающая способность почвы проводить поток воды. Равен коэффициенту пропорциональности между скоростью потока воды и градиентом сил, вызывающих передвижение (давление, гидравлический напор, потенциал и т. п.). Размерность К. в. п. зависит от размерностей, в которых выражаются плотность потока и градиент движущих сил.
Градиент потенциала почвенной влаги
Градиент гидравлического напора
По доступности растения, различные формы воды, содержащейся в почве, подразделяют на следующие категрии.
1.Недоступная для растений. Это вся Прочносвязанная вода, составляю¬щая в почве так называемый мертвый запас воды. Недоступность этой воды объ¬ясняется тем, что всасывающая сила корней намного меньше сил, которые удер¬живают эту воду на поверхности почвенных частиц, иначе говоря, всасывающего давления почвенной воды. Мертвый запас воды в почвах соответствует приблизи¬тельно максимальной адсорбционной влагоемкости или немного превышает ее.
2.Весьма труднодоступная для растений. Эта категория представлена в основном рыхлосвязанной (пленочной) водой. Трудная доступность ее обуслов¬лена низкой подвижностью этой воды (низким коэффициентом влагопроводно- сти), в силу чего вода не успевает подтекать к точкам ее потребления, т. е. к кор¬невым волоскам. Количество весьма труднодоступной воды в почвах характери¬зуется диапазоном влажности от максимальной адсорбционной влагоемкости до влажности завядания. Содержание воды в почве, соответствующее влажности за¬вядания, является нижним пределом продуктивной влаги.
3.Труднодоступная вода лежит в пределах между влажностью завядания и влажностью разрыва капилляров. В этом интервале влажности растения могут существовать, но продуктивность их снижается. Уменьшение доступности воды отражается в первую очередь не на внешнем состоянии растений (завядание), а на снижении их продуктивности.
4.Среднедоступная вода отвечает диапазону влажности от влажности раз¬рыва капилляров до наименьшей влагоемкости. В этом интервале вода обладает значительной подвижностью, и растения поэтому могут бесперебойно снабжаться ею. Это — наиболее ценная влага, полностью доступная для растений.
Итак, почва является средой корнеобитания растений, существенно влияющей на поступления воды в растительный организм и на водообмен последнего. Благоприятные водные свойства почвы — важнейшее условие для оптимальной жизни растений, а следовательно, залог высокой их продуктивности.
Воде принадлежит главенствующая роль в почвообразовании: процессы выветривания и новообразования минералов, гумусообразование и химические реакции совершаются только в водной среде, формирование генетических горизонтов почвенного профиля, динамика протекающих в почве процессов также связаны с водой.
Вода — важная составляющая почв, заполняющая пространства между твердыми частицами. Вода поступает в почву посредством осадков, из воздуха, в незначительной степени в результате подпитки грунтовыми водами или путем целенаправленного полива. Снабжение почвы водой является основным условием развития всех жизненных процессов в ней. Пространства, или поры, между твердыми частицами почвы заполняются водой и вследствие действия капилляров служат проводниками воды до корней растений, а также выполняют роль дренажа, препятствующего процессам избыточного накопления и застоя воды.
Способность различных видов почв впитывать и сохранять влагу не одинакова. Лучше всего впитывают влагу песчаные почвы, где пространство между почвенными частицами является наибольшим, но они вследствие этого же фактора не способны удержать ее. Глинистые почвы из-за своей плотной структуры и незначительных пространств между твердыми частицами хуже впитывают воду и плохо избавляются от ее избытка, вследствие невозможности образования капилляров в слипшейся массе почвы. Глинистые почвы наиболее подвержены застойным процессам. Идеальным вариантом являются гумусные почвы, которые обладают сбалансированной структурой с оптимальным соотношением твердых частиц и пространства между ними, они хорошо впитывают влагу, удерживают ее внутри и через систему капилляров поставляют корням растений.
Вода в почве выступает и как терморегулирующий фактор, определяя в значительной степени тепловой баланс почвы и ее температурный режим. Это очень важно, ведь от величины увлажнения зависит то, как быстро нагревается и охлаждается почва. Чем больше она увлажнена, тем медленнее нагревается и медленнее охлаждается и наоборот при ее малом увлажнении. В этом сказывается компенсирующее влияние воды. Важно это ещё и потому, что растения нормально развиваются только тогда, когда в почве есть постоянное и достаточное количество воды. Как недостаток, так и избыток влаги в почве ограничивают продуктивность растений или совсем вызывают их гибель.
Исключительно велика ее роль в плодородии почвы, в обеспечении условий жизни растений, поскольку почвенная влага является главным, а во многих случаях и единственным источником воды для произрастающих на ней растений. Поэтому она является фактором сельскохозяйственного производства, ведь от воды в почве зависит растительный покров и произрастание культур, что является довольно сложным вопросом, т. к. для каждой культуры важны разные условия их “жизни”. Исходя из этого, вытекает весьма важная задача сельскохозяйственного регулирования водного режима и водного баланса почв.
Вода движется в почве. В ней в растворенном виде содержатся питательные вещества почвы, так что, по сути, это уже не вода в чистом виде, а некий почвенный раствор. Значит она является ещё и транспортой системой веществ в почве, которые благодаря передвижению с водой поступают к растениям.
Почвенная влага — это неотъемлемая часть глобального процесса почвообразования, без которой невозможно протекание остальных составляющих, а значит и развитие почвенного покрова Земли в целом.
Список использованных источников
1. В. С. Аношко, Н. К. Чертко. География почв с основами почвоведения. — Минск: БГУ, 2011г. — 271 с.: ил. + 1 электронный диск.
2. Н. В. Клебанович. Почвоведение и земельные ресурсы. Курс Лекций для студентов географического факультета. — Минск: БГУ, 201 — 304 с.
3. Роде, А. А. Вопросы водного режима почв. — Л.: Гидрометеоиздат, 1978. — 213 с.
4. А. Ф. Лебедев. Почвоведение. 1936
5. В. Н. Жолкевич, Н. А. Гусев, А. В. Капляи др. Водный обмен растений. — М.: Наука, 1989г. — 256 с.
6. Е. В. Шеин. Курс физики почв.: учебник. М.: изд-во МГУ, 2005. — 432 с.
7. Н. А. Качинский. Физика почвы. ч. 2: Водно-физические свойства и режимы почв.
8. Роде А.А. Водные свойства почв. — М., 1982. — 279 с.
Источник
Категории, формы и виды почвенной влаги. Водно-физические свойства воды
Вода как фактор плодородия и урожайности растений. Определение водообеспеченности растений. Рассмотрение категорий, видов и форм почвенной влаги. Ознакомление с физико-химическими свойствами воды. Основные виды капиллярной воды и ее распределение.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 10.11.2019 |
Размер файла | 54,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
«БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
СИБАЙСКИЙ ИНСТИТУТ (ФИЛИАЛ)
Кафедра естественных наук
Категории, формы и виды почвенной влаги. Водно-физические свойства воды
Выполнила: студентка 2 курса
Давлеткиреева Г. А.
д.б.н., доцент Хасанова Р. Ф.
1. Значение воды в почве
2. Категории, формы и виды почвенной влаги
3. Водно-физические свойства воды
Вода — третья составная часть почвы. Она притягивается твердыми частичками почвы и окружает их более или менее толстым слоем, так что воздух образует в воде маленькие пузырьки.
Наиболее обстоятельно изучали состояние воды в почве С. М. Богданов, П. С. Коссович, А. Ф. Лебедев, С. И. Долгов, Н. А. Качинский и А. А. Роде. Ими была разработана классификация форм почвенной воды.
Почвенная вода имеет большое значение, является одним из факторов плодородия и урожайности растений. От содержания и качества воды в почве зависят произрастание растений и деятельность микроорганизмов, процессы почвообразования и выветривания, производственная деятельность человека.
Вода, которая является одним из самых распространенных веществ на земле, играет важную роль во многих процессах, которые протекают в почвах. К таким процессам можно отнести образование новых минералов, выветривание, терморегуляция, различные физико-химические реакции, происходящие в почвенных растворах и т.п. Под влиянием того или иного количества воды, содержащейся в почвах, формируются те или иные их типы.
Вода может влиять не только на процессы формирования почв, но и способствовать их разрушению, к примеру, в случае водной эрозии.
Почвенную влагу можно расценивать как основу жизни на Земле. Так как наземные растения, являющиеся автотрофными организмами и переводящие неорганические вещества в органические под влиянием энергии солнечного света, как для процесса фотосинтеза, так и для всех остальных физиологических процессов нуждаются в воде. Единственным источником снабжения растения водой является влага почвы. Растения расходуют значительное количество воды не только на внутриклеточные физиологические процессы, рост и развитие тканей и органов. Большое количество воды тратится на испарение и транспирацию.
Мне кажется, что тема актуальна, поскольку, до настоящего времени почвенная влага имеет особое значение из-за ее практической значимости для почвоведения и сельского хозяйства.
Исходя из актуальности темы, была определена цель работы: рассмотреть все виды, категории и формы почвенной влаги и изучить физико-химические свойства воды.
Для достижения поставленной цели необходимо решить следующие задачи:
· изучить и понять, что представляет собой почвенная влага;
· рассмотреть категории, виды и формы почвенной влаги;
· ознакомиться с физико-химическими свойствами воды.
В качестве материалов написания курсовой работы использовалась литература по почвоведению, статьи из профессиональных журналов и интернет — ресурсы.
1. Значение воды в почве
Почва как многофазная система способна поглощать и удерживать воду. В ней всегда находится определенное количество влаги. Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении.
Почвенная вода является жизненной основой растений, почвенной фауны и микрофлоры, получающих воду главным образом из почвы. От содержания воды в почве зависят интенсивность протекающих в ней биологических, химических и физико-химических процессов, передвижение веществ и формирование почвенного профиля, водно-воздушный, питательный и тепловой режимы, ее физико-механические свойства, то есть, важнейшие показатели почвенного плодородия. Следовательно, почвенная вода оказывает прямое и косвенное влияние на развитие и урожайность растений.
Растения расходуют воду в огромном количестве. Для создания 1 г сухого органического вещества потребляется от 200 до 1000 г воды. Количество воды, затрачиваемое на создание единицы сухого вещества за вегетационный период, называется транcnupaцuoнным коэффициентом. Однако растениями усваивается только часть почвенной влаги, которая удерживается силами, меньшими, чем сосущая сила корней, — продуктивная влага. В процессе фотосинтеза вода вместе с углекислым газом — первичный источник образования органического вещества растений. В воде растворяются питательные вещества, которые с почвенным раствором поступают в растения. Растения нормально развиваются только при постоянном и достаточном количестве влаги в почве. Недостаток, как и избыток, влаги в почве ограничивает продуктивность растений. В этом случае неэффективными становятся различные приемы, направленные на повышение урожаев сельскохозяйственных культур (внесение удобрений, известкование и др.).
Водообеспеченность растений определяется не только количеством поступающей воды в почву, но и ее водными свойствами, способностью почвы впитывать, фильтровать, удерживать, сохранять воду и отдавать ее растению по мере потребления. В одинаковых климатических условиях при равной влажности почвы могут содержать разное количество доступной воды, что зависит от механического состава почв, структурного состояния, содержания гумуса и других показателей, предопределяющих их водные свойства. Поэтому создание благоприятного водного режима в почве — одно из важнейших условий получения высоких и устойчивых урожаев сельскохозяйственных культур в условиях интенсивного земледелия (Дюрягин, 1997).
2. Категории, формы и виды почвенной влаги
Вода в почвах неоднородна. Разные ее порции имеют разные физические свойства (термодинамический потенциал, теплоемкость, плотность, вязкость, удельный объем, химический состав, подвижность молекул, осмотическое давление и т. д.), обусловленные характером взаимного расположения и взаимодействия молекул воды между собой и с другими фазами почвы — твердой, газовой, жидкой. Порции почвенной воды, обладающие одинаковыми свойствами, получили название категорий или форм почвенной воды. (Воронова, 1997)
В истории почвоведения было предложено много классификаций категорий воды, содержащейся в почве. Наиболее современной и полной является классификация, разработанная А. А. Роде (1965), которая приводится ниже. Согласно этой классификации в почвах можно различать следующие пять категорий (форм) почвенной воды.
Твердая вода — лед. Твердая вода в почве — это лед, являющийся потенциальным источником жидкой и парообразной воды, в которую он переходит в результате таяния и испарения. Появление воды в форме льда может иметь сезонный (сезонное промерзание почвы) или многолетний («вечная» мерзлота) характер. Поскольку почвенная вода — это всегда раствор, температура замерзания воды в почве ниже 0°С.
Химически связанная вода (включает конституционную и кристаллизационную). Первая из них представлена гидроксильной группой ОН химических соединений (гидроксиды железа, алюминия, марганца; органические и органоминеральные соединения; глинистые минералы); вторая — целыми водными молекулами кристаллогидратов, преимущественно солей (полугидрат — CaS04*ЅН2O, гипс — CaS04*2H20, мирабилит — Na2S04*10H20). Конституционную и кристаллизационную воду иногда объединяют общим понятием гидратной или кристаллогидратной воды. Эта вода входит в состав твердой фазы почвы и не является самостоятельным физическим телом, не передвигается и не обладает свойствами растворителя.
Парообразная вода. Эта вода содержится в почвенном воздухе порового пространства в форме водяного пара. Одна и та же почва может поглощать различное количество паров воды из атмосферного воздуха, что зависит от упругости пара: чем она больше, т. е. чем ближе припочвенный воздух к состоянию насыщения водяным паром, тем больше количество парообразно поглощенной воды в почве. Вообще говоря, почвенный воздух практически всегда близок к насыщению парами воды, а небольшое понижение температуры почвы приводит к его насыщению и конденсации пара, в результате чего парообразная вода переходит в жидкую. Парообразная вода в почве передвигается в ее поровом пространстве от участков с высокой упругостью водяного пара к участкам с более низкой упругостью (активное движение), а также вместе с током воздуха (пассивное движение).
Физически связанная, или сорбированная вода. К этой категории относится вода, сорбированная на поверхности почвенных частиц, обладающих определенной поверхностной энергией за счет сил притяжения, имеющих различную природу. При соприкосновении почвенных частиц с молекулами воды последние притягиваются этими частицами, образуя вокруг них пленку. Удержание молекул воды происходит в данном случае силами сорбции.
Молекулы воды могут сорбироваться почвой как из парообразного, так и из жидкого состояния. Благодаря тому, что молекулы воды не являются энергетически нейтральными, а представляют собой диполи, они обладают способностью притягиваться полюсами друг с другом. Прочность их фиксации наибольшая у границ почвенных частиц. В зависимости от прочности подразделяется на прочносвязанную и рыхлосвязанную.
Прочносвязанная вода — это вода, поглощенная почвой из парообразного состояния. Свойство почвы сорбировать парообразную воду называют гигроскопичностью почв, а поглощенную таким образом воду — гигроскопической (Г). Таким образом, прочносвязанная вода — это вода гигроскопическая. Она удерживается у поверхности почвенных частиц очень высоким давлением — порядка (1-2) * 109 Па, образуя вокруг почвенных частиц тончайшие пленки. Высокая прочность удержания обусловливает полную неподвижность гигроскопической воды. По физическим свойствам прочносвязанная (гигроскопическая) вода приближается к твердым телам. Плотность ее достигает 1,5 — 1,8 г/см3, она не замерзает, не растворяет электролиты, отличается повышенной вязкостью и не доступна растениям.
Рыхлосвязанная (пленочная) вода. Сорбционные силы поверхности почвенных частиц не насыщаются полностью даже в том случае, если влажность почвы достигнет МГ. Почва не может поглощать парообразную воду сверх МГ, но жидкую воду может сорбировать и в большем количестве. Вода, удерживаемая в почве сорбционными силами сверх МГ, — это вода рыхлосвязанная, или пленочная. Сила, с которой она удерживается в почве, измеряется значительно меньшим давлением (по сравнению с водой прочносвязанной) — порядка (1-10)* 105 Па.
Рыхлосвязанная вода также представлена пленкой, образовавшейся вокруг почвенной частицы, но пленкой полимолекулярной. Толщина ее может достигать нескольких десятков и даже сотен диаметров молекул воды. По физическому состоянию рыхлосвязанная вода очень неоднородна, что обусловлено различной прочностью связи молекул различных слоев. Поэтому можно сказать, что она находится в вязко-жидкой форме, т. е. занимает промежуточное положение между водой прочносвязанной и свободной. Рыхлосвязанная (пленочная) вода в отличие от прочно-связанной может передвигаться в жидкой форме от почвенных частиц с более толстыми водяными пленками к частицам, у которых она тоньше, т. е. передвижение этой воды возможно при наличии некоторого градиента влажности и происходит оно очень медленно, со скоростью несколько десятков сантиметров в год. Содержание пленочной воды в почве определяется теми же свойствами почв, что и содержание максимальной гигроскопической. В среднем для большинства почв оно составляет 7-15%, иногда в глинистых почвах достигает 30-35 и падает в песчаных до 3-5%.
Свободная вода. Вода, которая содержится в почве сверх рыхлосвязанной и находится уже вне области действия сил притяжения со стороны почвенных частиц (сорбционных) и является свободной. Отличительным признаком этой категории воды является отсутствие ориентировки молекул воды около почвенных частиц. В почвах свободная вода присутствует в капиллярной и гравитационной формах.
Капиллярная вода. Она удерживается в почве в порах малого диаметра — капиллярах, под действием капиллярных или, как их еще называют, менисковых сил. Возникновение этих сил обусловлено следующими явлениями. Поверхностный слой жидкости по своим свойствам отличается от ее внутренних слоев. Если на каждую молекулу воды внутри жидкости равномерно действуют силы притяжения и отталкивания со стороны окружающих молекул, то молекулы, находящиеся в поверхностном слое жидкости, и испытывают одностороннее, направленное вниз притяжение только со стороны молекул, лежащих ниже поверхности раздела вода — воздух. Силы, действующие вне жидкости, относительно малы и ими можно пренебречь. Таким образом, поверхностные молекулы жидкости находятся под действием сил, стремящихся втянуть их внутрь жидкости. По этой причине поверхность любой жидкости стремится к сокращению, так как любая система стремится к компенсации свободной энергии (к форме сферы). Наличие у поверхностных молекул жидкости, ненасыщенных, неиспользованных сил сцепления является источником избыточной поверхностной энергии, которая также стремится к уменьшению. Это влечет за собой образование на поверхности жидкости как бы пленки, которая обладает поверхностным натяжением, или поверхностным давлением (давлением Лапласа), которое представляет собой разницу между атмосферным давлением и давлением жидкости.
Капиллярная вода по физическому состоянию жидкая. Она высокоподвижна, способна обеспечить восполнение запасов воды в поверхностном горизонте почвы при интенсивном потреблении ее растениями или при испарении, свободно растворяет вещества и перемещает растворимые соли, коллоиды, тонкие суспензии. Все мероприятия, направленные на сохранение воды в почве или пополнение ее запасов (при орошении), связаны с созданием в почве запасов именно капиллярной воды с уменьшением ее расхода на физическое испарение.
Капиллярная вода подразделяется на несколько видов: капиллярно-подвешенную, капиллярно-подпертую, капиллярно-посаженную.
Капиллярно-подвешенная вода заполняет капиллярные поры при увлажнении почв сверху (после дождя или полива). При этом под промоченным слоем всегда имеется сухой слой, т. е. гидростатическая связь увлажненного горизонта с постоянным или временным горизонтом подпочвенных вод отсутствует. Вода, находящаяся в промоченном слое, как бы «висит», не стекая, в почвенной толще над сухим слоем. Поэтому она и получила название подвешенной. вода растение почвенный влага
В природных условиях в распределении капиллярно-подвешенной воды по профилю почв всегда наблюдается постепенное уменьшение влажности с глубиной.
Подвешенная вода удерживается в почвах достаточно прочно, но до определенного предела, обусловленного разностью давлений, создаваемой в менисках верхней и нижней поверхностей водного слоя. Если этот предел разницы давлений превышен, начинается стекание воды. Капиллярно-подвешенная вода может передвигаться как в нисходящем направлении, так и вверх, в направлении испаряющейся поверхности. При активном восходящем движении воды в почвах близ поверхности происходит накопление веществ, содержащихся в растворенном виде в почвенном растворе. Засоление почв в поверхностных горизонтах обязано во многом данному явлению. Происходит это в том случае, если в почвах в пределах промачиваемого с поверхности слоя имеется горизонт скопления легкорастворимых солей или если полив почв осуществляется минерализованными водами (Воронова, 1997).
3. Водно-физические свойства воды
Водный режим почвы зависит не только от количества атмосферных осадков, но и в значительной мере от водных свойств самой почвы. К главнейшим водным свойствам относятся водопроницаемость, водоподъемная способность (или капиллярность), влагоемкость.
Водопроницаемость — это способность почвы впитывать и пропускать через себя воду. Водопроницаемость измеряется объемом воды, протекающей через единицу площади поверхности почвы в единицу времени, выражается в мм водного столба в единицу времени. Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, не насыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация — силой тяжести.
Водопроницаемость зависит от механического состава, структуры (у структурных почв выше, чем у бесструктурных), содержания гумусовых веществ (в целом от общего объема пор в почве и их размера), а также от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций — увеличивает. В легких по механическому составу почвах поры крупные и водопроницаемость всегда высокая. В почвах тяжелого механического состава с глыбисто-пылеватой структурой и плотных бесструктурных почвах водопроницаемость низкая. После оструктуривания такие почвы в несколько раз улучшают фильтрационную способность (суглинистые и глинистые почвы, обладающие водопрочной комковато-зернистой структурой, также отличаются высокой водопроницаемостью).
Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых — до 5 см. От этого свойства зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекает по поверхности, что приводит к непродуктивному расходованию влаги, могут происходить вымокание культур, застаивание воды на поверхности и развиваться эрозия почвы. При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается большая потеря на полив.
Водоподъемная способность — свойство почвы поднимать содержащуюся в ней влагу за счет капиллярных сил (вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение). Высота капиллярного поднятия воды зависит от диаметра капилляров: чем они тоньше, тем выше поднятие, и наоборот. Поэтому водоподъемная способность растет от песчаных почв к суглинистым и глинистым. Максимальная высота подъема воды над уровнем грунтовых вод для песчаных почв 0,5 — 0,8 м, для суглинистых — 2,5 — 3,5 м, в глинистых почвах — 3,0 — 6,0 м. Скорость подъема зависит от размера пори вязкости воды, обусловливаемой ее температурой. По крупным порам вода поднимается быстрее, чем в почвах с тонкими капиллярами. С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли также оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью.
Благодаря капиллярным явлениям и водоподъемной способности почв грунтовые воды участвуют в дополнительном снабжении растений водой, особенно в засушливые годы, развитии восстановительных процессов и засолении почвенного профиля.
Влагоемкость — способность почвы впитывать и удерживать определенное количество воды. Выражается в % к весу сухой почвы. Эта способность зависит от гранулометрического состава, содержания гумуса, состава поглощенных катионов. Высокая влагоемкость характерна для глинистых почв, богатых коллоидами, с высоким содержанием гумуса. Высокой влагоемкостью обладают почвы, содержащие известь, хлориды, слабовлагоемкие песчаные почвы.
Различают следующие виды влагоемкости: максимальную гигроскопическую, капиллярную, полевую и полную.
Максимальная гигроскопическая влагоемкость (МГВ) — это наибольшее недоступное растениям количество влаги (мертвый запас влаги), которое прочно удерживается молекулярными силами почвы (адсорбцией). Величина этой влагоемкости зависит от суммарной поверхности частиц, а также содержания гумуса: чем больше в почве илистых частиц и гумуса, тем она выше.
Капиллярная влагоемкость — максимальное количество воды (капиллярно-подпертой влаги), которое удерживается в почве над уровнем грунтовых вод при заполнении капиллярных пор. Кроме свойств почвы, величина капиллярной влагоемкости зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается и на границе капиллярной каймы равна наименьшей влагоемкости.
Наименьшая влагоемкость (НВ), или предельная полевая влагоемкость (ППВ) — это наибольшее количество воды, которое остается в почве после ее полного увлажнения и свободного стекания избыточной воды. Величина наименьшей влагоемкости зависит от гранулометрического и минералогического состава, плотности и пористости почвы. Она соответствует величине капиллярно-подвешенной воды. Наименьшая влагоемкость — важнейшая характеристика водных свойств почвы, дающая представление о наибольшем количестве воды, которое почва способна накопить и длительное время удерживать. Она составляет (в % от веса абсолютно сухой почвы): для песчаных — 4 — 9, супесчаных — 10 — 17, легко- и среднесуглинистых — 18 — 30, тяжелосуглинистых и глинистых — 23 — 40. Наибольшие значения ППВ характерны для гумусированных почв тяжелого механического состава, обладающих хорошо выраженной макро- и микроструктурой.
Полной влагоемкостью (ПВ) называется наибольшее количество воды, которое может вместить почва при полном заполнении всех ее пор водой при отсутствии оттока (численно равна пористости почвы).
Оптимальной влажностью для большинства культурных растений условно принято считать влажность, приблизительно равную 50 % полной влагоемкости данной почвы. Для большинства зерновых культур оптимальная влажность составляет 30 — 50 %, для зернобобовых — 50 — 60 %, технических растений и корнеплодов — 60 — 70 %, сеяных луговых трав (злаков и бобовых) — 80 — 90 % ПВ почвы. Поэтому оптимальная влажность почвы для разных растений и почв должна несколько отклоняться от условно принятой.
Полевая влажность (WП) характеризует содержание влаги в почве на данный момент, выражается в % к массе сухой почвы.
Из общего количества влаги, содержащейся в почве при ее полном насыщении, выделяют такие пограничные значения влажности, при которых меняются поведение воды и ее доступность растениям. Границы значений влажности, характеризующие пределы появления различных категорий почвенной влаги, называются почвенно-гидрологическими константами. Наиболее широко используются следующие: максимальная гигроскопическая влагоемкость, влажность разрыва капилляров (ВРК), влажность завядания (ВЗ), наименьшая влагоемкость (НВ) и полная влагоемкость (ПВ).
При влажности НВ вся система капиллярных пор заполнена водой, поэтому создаются оптимальные условия влагообеспеченности растений. По мере испарения и потребления воды растениями теряется сплошность заполнения водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, при которой происходит разрыв сплошного заполнения капилляров водой, называется влажностью разрыва капилляров (ВРК). Это важная гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65 — 70 % НВ.
Влажность завядания растений — это почвенная влажность, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, т.е. это нижний предел доступной растениям влаги (численно равна 1,5 * МГ). Влажность завядания зависит от вида растений и свойств почвы. Чем тяжелее механический состав почвы, чем больше в ней органического вещества, тем выше ВЗ. В среднем она составляет: в песках — 1 — 3 %, в супесях — 3 — 6 %, в суглинках — 6 — 15 %, в торфяных почвах — 50 — 60 %.
Для растений доступна только та часть почвенной влаги, которая может быть усвоена в процессе жизнедеятельности. Она называется продуктивной влагой, так как используется для образования урожая и вычисляется как разница между ППВ и ВЗ. Зная количество продуктивной влаги, можно рассчитать урожай растений (1 % продуктивной влаги дает 1 ц зерна) и дефицит влаги.
Продуктивный запас влаги (ПЗВ) в определенном слое (или почвенном профиле) вычисляют, зная общий запас воды (ОЗВ) в этом слое и запас труднодоступной воды (ЗТВ). Запас воды определяют для каждого почвенного горизонта по формуле:
где В — запас воды, м 3 /га для слоя Н, WП — полевая влажность, dV — объемная плотность почвы, г/см 3 , Н — мощность горизонта, см. Запас труднодоступной воды рассчитывают по той же формуле, но вместо WП берут ВЗ. Для пересчетов запасов воды, выраженных в м 3 /га, в мм их умножают на 0,1 (запас воды в 1 мм водного столба на площади 1 га равен 10 т воды). Разность между этими показателями дает продуктивный запас влаги: ПЗВ = ОЗВ — ЗТВ. Оценка запасов продуктивной влаги представлена в таблице 1(Белобров, 2004).
Источник