Меню

Метод конверта при отборе проб почвы используют для отбора проб

Отбор проб почвы и воды для химического анализа

Посев или посадка культур без предварительного анализа почвы — большая ошибка пользователей и владельцев земли. В почве могут содержаться элементы и соединения, наличие которых не совместимо с ростом и жизнедеятельностью выращиваемых растений. Бесконтрольное внесение удобрений (на всякий случай) может привести к недостатку или переизбытку какого-либо макро- или микроэлемента, что только ухудшит и без того не лучшее состояние растений.

Дефицит питательных элементов в растениях негативно влияет на их рост и развитие, нарушается обмен веществ растений, что сопровождается изменением их внешнего вида. Это приводит к тому, что одними агротехническими приемами не удается создать здоровый и красивый сад. В этом случае становится необходимым проведение химического анализа почвы, который является самым точным и надежным способом проверки почвы на качество, пригодность для использования.

Почвенный анализ позволяет установить содержание питательных веществ в почве, из которых растения потребляют необходимые элементы питания. Результаты анализа дают возможность определить вид и норму удобрений, правильное использование которых приводит к увеличению урожая, уровня рентабельности и тем самым приводит к снижению негативного экологического воздействия.

Отбор образцов почвы

Результаты любого анализа зависят от правильного отбора проб и предварительной их обработки. Отбор проб для агрохимического анализа необходимо проводить учитывая вертикальную структуру, неоднородность почвенного покрова, рельеф и климат местности. Отбор смешанных образцов лучше всего проводить в весенний период, когда на поле еще не внесены удобрения и не произведены посевы. Второй срок отбора образцов устанавливается после уборки урожая, когда основной запас доступных питательных элементов уже израсходован растениями, а отсутствие посевов не мешает производству работ.

Наиболее часто для отбора смешанных почвенных образцов применяют метод «конверта». Он заключается в том, что на каждом из участков по диагонали или по «конверту» (четыре точки по углам и одна в центре) в его пяти точках отбирают пробы.

Если площадь земельного участка меньше 10 га, она делится на три элементарных участка (наименьшая площадь, которую можно охарактеризовать одной объединенной пробой почвы). Размер элементарных участков зависит от общей площади земельного участка. Например, если земельный участок составляет 4 га, то размер элементарного участка будет 1,33 га (4:3). Такой расчет объясняется тем, что с каждого земельного участка малой площади необходимо отобрать не меньше трех смешанных почвенных образца. На площадях более 10 га размер элементарного участка составляет 3 га.

Чаще всего точечные пробы отбирают с пахотного горизонта почвы, где глубина составляет 0-20 см. Смешанные образцы почвы составляют из 20 точечных проб (каждая весом 200-300 г), 4 пробы извлекаются по периметру с разных сторон, остальные по двум диагоналям через равные интервалы (100-150 м на участках с однородным почвенным покровом (А) и 10-20 м на участках с неоднородным почвенным покровом (Б)), тщательно перемешивают и берется средняя проба не менее 1 кг.

Точечные пробы (проба определенного объема, взятая из почвенного горизонта, слоя, типичная для данного горизонта или слоя) отбирают ножом или шпателем из прикопок или почвенным буром.

Прикопка почвенная — почвенный разрез небольшой глубины (50-75 см), вскрывающий только верхние горизонты почвенного профиля.

Пробы, отобранные для проведения химического анализа, упаковывают в емкости из химически нейтрального материала или полиэтиленовые мешочки и прилагают к ним этикетки. На этикетке должны быть указаны: область, район, хозяйство; номер разреза; горизонт и глубина взятия образца; дата и фамилия исследователя.

Оборудование для отбора проб

Образцы почвы отбирают с помощью почвенного бура или щупа. Для отбора проб на сухих и пылеватых почвах используют почвенный щуп, а на каменистых или замерзших почвах – почвенный бур.

Так же существуют гидравлические или механические пробоотборники для взятия поверхностных и глубинных образцов. Они существенно облегчают отбор проб, особенно при отборе большого количества образцов с разных участков.

Если у Вас нет необходимых инструментов для отбора образцов почвы, можно использовать лопату с тщательно очищенным лезвием или другие предметы огородно-садового инвентаря, изготовленные из стали или алюминия. Поверхности инструментов должны быть без коррозии и ржавчины.

Подготовка почвы для анализа

Подготовка пробы состоит в перемешивании, измельчении и сокращении до определенной массы. Для сокращения пробы используют метод квартования. Измельченный материал высыпают на стерильный плотный лист бумаги, тщательно перемешивают, отбрасывают корни, камни и прочие твердые предметы. Затем почву распределяют на месте ровным тонким слоем (0,5 см) в форме квадрата, делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных — соединяют вместе и вновь перемешивают.

А — измельченный и перемешанный материал; Б — материал, рассыпанный тонким слоем в виде квадрата или круга; В — материал, разделенный на четыре сектора (квартование).

Почву делят до тех пор, пока не останется около 300 г и просеивают ее через сито диаметром 1 мм. После чего почву ссыпают в чистую емкость с притертой пробкой и нумеруют ее. Из полученного образца берут навески для анализа.

Если сразу сделать анализ невозможно, то почву можно хранить в холодильнике: слабо загрязненную — при температуре 0 °С в течение 72 ч, а сильно загрязненную — 48 ч.

Отбор проб воды для анализа

Читайте также:  Приготовление компост для шампиньонов

Состав воды и степень ее загрязнения зависят от разных причин: глубины отбора воды, структуры почвы в районе, наличия вблизи промышленных предприятий, сельскохозяйственных полей, свалок и т.д. Поэтому после копания колодцев и бурения скважин на воду необходимо провести анализ воды. Определение качества воды является первым и абсолютно незаменимым этапом процесса водоподготовки.

В лаборатории можно определить основные параметры качества воды, такие как жесткость воды, содержание в ней различных соединений и микроорганизмов, в том числе и содержание в ней железа. Именно эти показатели приносят наибольшее количество неприятностей пользователю в процессе эксплуатации скважины.

Отбор проб воды

Для проведения химического анализа нужно не менее 1,5 литра воды. В качестве емкостей используют стеклянную или пластиковую тару. Посуда, предназначенная для отбора проб, должна быть чистой и без запахов, предварительно промытая той же водой, которую отбирают для анализа. Застоявшуюся воду предварительно спускают в течение 10-15 минут. Это делается для того, чтобы избежать попадания в образец окалины и застоявшейся воды, тем самым получить неточный химический анализ. Затем воду осторожно заливают в пробоотборную емкость до ее переполнения.

При отборе воды из реки или родника также нужно не допускать образования воздушной прослойки, чтобы кислород воздуха не растворялся в воде при отборе и перевозке пробы — он может вступить в реакцию с примесями и исказить реальную картину. Более бутылку не открывать!

Источник

Более 300 площадок наблюдения: как в столице проводят экологический мониторинг почв

В Москве осенью завершился ежегодный отбор проб почв. Специалисты Мосэкомониторинга не только постоянно следят за состоянием воздуха и воды в мегаполисе, но и исследуют образцы почвы. Учитывая масштабы столицы, их отбирают по всему городу, в каждом округе и в разных функциональных зонах — от парков до промышленных территорий.

Мониторинг почв позволяет выяснить, какие вещества содержатся в земле, отслеживать состояние окружающей среды и оценивать эффективность природоохранных программ. Рассказываем, как и где проводят отбор почв, как проверяют образцы и какие тенденции наблюдаются в последние годы.

В столице создана огромная сеть мониторинга почв, которая охватывает всю территорию города и включает 1333 площадки постоянного наблюдения. Они расположены в общественных, жилых, производственных зонах, на особо охраняемых природных территориях, вблизи объектов транспортной инфраструктуры. Ежегодно специалисты Мосэкомониторинга отбирают пробы примерно с 300 площадок.

Метод конверта, или Как проводят отбор

Отбор проб специалисты Мосэкомониторинга проводят так называемым методом конверта. На площадке размечают квадрат со стороной пять метров (если участок небольшой, то этот размер сокращают до одного метра) и по углам квадрата, а также в центре отбирают пять точечных проб. Затем их смешивают и получается так называемая объединенная проба. Ее масса должна быть не менее одного килограмма. Точечные пробы отбирают ножом или шпателем из прикопок или почвенным буром.

Метод конверта позволяет получить более объективную характеристику исследуемой территории.

«Городские почвы очень мозаичны, поскольку существует много факторов, определяющих их состав и свойства. Например, в одной точке мы можем обнаружить высокие концентрации какого-то элемента, а буквально в трех метрах они будут уже совершенно другими, и, чтобы получить более объективную характеристику участка, нам нужно взять несколько проб и смешать их», — отмечает Алена Гавриленко.

Пробы обычно берут начиная с конца мая и до осени. В этом году отбор провели на 313 площадках постоянного наблюдения на разных типах территорий города во всех округах Москвы.

На что проверяют почву

Во время исследований специалисты изучают основные агрохимические свойства почв: рН, содержание органического углерода, макроэлементов питания растений — азота, фосфора, калия. Также контролируют возможные процессы засоления, определяют общее содержание тяжелых металлов и органических загрязнителей — бенз(а)пирена и нефтепродуктов. Химическое загрязнение почв оценивают по содержанию химических элементов и соединений.

Кроме того, в лаборатории оценивают уровень загрязнения почв тяжелыми металлами. Полученные концентрации сравнивают с утвержденными в России гигиеническими нормативами, а для комплексной оценки есть специальный геохимический показатель — суммарный показатель загрязнения (Zc).

«Все загрязняющие вещества разделены на три класса опасности, которые определяют их возможное отрицательное воздействие на почву, растения, животных и человека. Например, мы смотрим содержание в почве элементов первого класса опасности: ртути, свинца цинка, мышьяка и кадмия — и второго класса: меди, никеля, хрома. В целом мы отмечаем снижение загрязнения металлами. Например, за последние четыре года содержание свинца в московских почвах снизилось в среднем в 1,6 раза — это достаточно много», — рассказывает представитель Мосэкомониторинга.

По словам эксперта, это снижение связано в том числе с запретом на использование этилированного бензина. Кроме того, в Москве при благоустройстве и озеленении применяются экологичные почвогрунты с определенными характеристиками, в них лимитировано содержание тяжелых металлов.

Качественное топливо и общественный транспорт: есть результаты

Мониторинг почв — важный индикатор эффективности городской политики в сфере транспорта и благоустройства, он показывает, какой природоохранный эффект дают те или иные решения. Например, повышение связанности дорожно-транспортной сети, улучшение качества моторного топлива, ограничение движения грузовиков, популяризация экологичного общественного транспорта и запуск электробусов, улучшение технологий санитарного содержания города, благоустройство и озеленение. Эти меры позволили снизить негативную нагрузку на столичную экологию, что положительно отразилось в том числе и на состоянии городских почв.

«Например, существует такой показатель, как содержание нефтепродуктов. После того как стали реализовывать мероприятия новой транспортной политики, мы отмечаем стойкое снижение загрязнения почв нефтепродуктами. Если сравнить период, когда мы только начинали мониторинг — это 2005 год, и нынешнее время, то уровень загрязнения почв снизился более чем в пять раз. И сейчас он в 10 раз ниже так называемого нормативного допустимого уровня», — говорит Алена Гавриленко.

Основным источником загрязнения в Москве остается автотранспорт, поэтому проблемные территории, как правило, находятся вблизи крупных транспортных узлов. Также факторами загрязнения являются промышленные предприятия и талые воды: когда снег тает, все вредные вещества, которые он накопил, поступают в почву.

Читайте также:  Как подкормить цветы флоксы

Важная задача мониторинга — также оценить пригодность почв для растений. В целом московские почвы хорошо обеспечены элементами питания: азотом, фосфором, калием. Содержание органических веществ варьируется, но оно достаточно для того, чтобы растения чувствовали себя комфортно.

«Естественные почвы в Москве сохранились только на особо охраняемых природных территориях. В основном в городе почвы представлены так называемыми урбаноземами — это искусственно созданные почвы, почвогрунты. Тем не менее в целом они обладают теми же свойствами, что и естественные, и подвергаются воздействию тех же факторов почвообразования», — объяснила эксперт.

Она добавила, что система мониторинга почв в Москве практически уникальна. Несмотря на то что многие зарубежные страны имеют национальные стандарты качества почв, большее внимание при исследовании уделяется сельскохозяйственным и лесным землям, индустриальным комплексам. Мониторинг городских почв ведут в Нью-Йорке, но такой развитой сетью, как в Москве, где наблюдения осуществляются на государственном уровне, могут похвастаться немногие города.

Результаты мониторинга почв этого года войдут в состав государственного доклада о состоянии окружающей среды в Москве. Он будет опубликован в следующем году на официальных сайтах Мосэкомониторинга и Департамента природопользования и охраны окружающей среды.

Источник

Отбор проб почвы

Точечные пробы отбирают методом конверта по диагонали или другим способом, следя за тем, чтобы каждая проба представляла собой часть почвы, типичной для исследуемых почвенных горизонтов и ключевых участков.

Метод конверта является наиболее распространенным способом отбора смешанных почвенных образцов и чаше всего применяются для исследования почвы гумусового горизонта. При этом из точек контролируемого элементарного участка (или каждой рабочей пробоотборной площадки) берут 5 образцов почвы. Точки должны быть расположены так, чтобы мысленно соединенные прямыми линиями, давали рисунок запечатанного конверта (длина стороны квадрата может составлять от 2 до 5 – 10 м). Обычно при изучении почвы отбирают пробы гумусового горизонта с глубины около 20 см., что соответствует штыку лопаты. Из каждой точки отбирают около 1 кг (по объему около 0,5 л), но не менее 0,5 кг почвы. Почвенные образцы упаковывают в полиэтиленовые или полотняные мешочки и прилагают к ним этикетки (сопроводительные талоны).

Объединенную пробу почвы готовят из точечных проб. При определении в почве поверхностно – распределяющихся веществ (ПАУ, тяжелые металлы, радионуклиды и др.) точечные пробы обычно отбирают с помощью трубчатого пробоотборника послойно на глубине 0,5 и 20 см массой до 0,2 кг. При оценке загрязнения почвы летучими соединениями или веществами с высокой способностью к вертикальной миграции (нитрозоамины) пробы отбирают по всей глубине почвенного профиля в герметично закрывающиеся емкости. При невозможности быстрого анализа на месте пробы хранят в условиях, как правило, описанных в методиках анализа.

Определенные трудности возникают при отборе почвы для радиологических исследований, что связано с перераспределением радионуклидов в ландшафтах после поступления из атмосферы. Для снижения влияния рельефа, вида почв и растительности, а также возможности сравнения данных, отбор образцов должен производиться таким образом, чтобы их радиоактивность характеризовала как можно большую территорию, а места отбора были ограничены участками с горизонтальной поверхностью и минимальным стоком. Кроме того, образцы радиоактивных проб должны отбираться с открытых целинных участков в ненарушенной структурой. На обследуемом участке желательно выполнить предварительную гамма – радиометрическую съемку.

Измерения рекомендуется производить на высоте 1 м от поверхности и не ближе 2 – 5 м от стен строений. Одновременно с радиоактивными образцами почвы отбирают и пробы растительности. При изучении миграции радионуклидов в наземных экосистемах каждого ландшафта выбирают наиболее характерные участки на протяжении всего профиля от водораздела к пониженным элементам рельефа. Для отбора образцов закладывают разрезы размером 70х150 см и глубиной 1 – 2 м (в зависимости от типа почв) и отбирают пробы по горизонтали непрерывно по всему разрезу. Толщина отбираемых для радиометрических анализов слоев обычно не превышает 2 – 5 см.

Специфической процедурой является отбор проб с твердых, гладких и не сорбирующих поверхностей(глина, стекло, кафель, пластмасса, металл, лакокрасочные покрытия и др.). Для этой цели применяют ватно-марлевые или ватные тампоны, смоченные водой или органическим растворителем. Иногда берут мазки или смывы со стен, полов, окон производственных помещений (с площади примерно 0,5 м 2 ), а с поверхности зданий соскабливают внешний слой покрытия толщиной 1 – 2 мм с площади 0,1 – 0,25 м 2 .

№ 8. Молекулярная спектроскопия (фотометрия, спектрофотометрия)

Фотометрия — 1) общая для всех разделов прикладной оптики научная дисциплина, на основании которой производятся количественные измерения энергетических характеристик поля излучения; 2) раздел прикладной физики, занимающийся измерениями света.

Читайте также:  Состав почвы для мяты

Фото́метр — прибор для измерения каких-либо из фотометрических величин.

Виды фотометрических измерений.Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.

При использовании фотометра осуществляют определённое пространственное ограничение потока излучения и регистрацию его приёмником излучения с заданной спектральной чувствительностью.

Освещённость измеряют люксметрами, яркость — яркомерами, световой поток и световую энергию — с помощью фотометра интегрирующего. Приборы для измерения цвета объекта называют колориметрами.

Спектрометр — оптический прибор, используемый для накопления спектра, его количественного подсчета и последующего анализа с помощью различных аналитических методов. Спектрометры могут различаться по спектральному диапазону, спектральной чувствительности, оптической схеме.

Основное назначение спектрометра — количественная интерпретация получаемого спектра с целью получения аналитических данных. В большинстве случаев аналитические программы сравнивают полученный спектр со спектром вещества, чей состав известен. Различают следующие типы спектрометров: рентгенофлуоресцентный спектрометр (РФА спектрометр), который нашел широкое применение благодаря гибкости, лёгкости калибровки и хорошей точности, искровой оптико-эмиссионный спектрометр, лазерный спектрометр, ИК спектрометр, спектрометр индуктивно-связанной плазмы, атомно-абсорбционный спектрометр, масс-спектрометр, и другие.

Спектрофотометрия (абсорбционная) — физико-химический метод исследования растворов и твёрдых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200-400 нм), видимой (400-760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в спектрофотометрии зависимость интенсивности поглощения падающего света от длины волны. Спектрофотометрия широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы спектрофотометрии — спектрофотометры.

Спектрофотометр (от спектр и фотометр) — прибор для исследования спектрального состава по длинам волн электромагнитных излучений в оптическом диапазоне, нахождения спектральных характеристик излучателей и объектов, взаимодействовавших с излучением, а также для спектрального анализа и фотометрирования.

Спектрофотометры могут работать в различных диапазонах длин волн – от ультрафиолетового до инфракрасного. В зависимости от этого приборы имеют разное назначение.

№9. Устройство и работа концентрационного фотоэлектроколориметра (КФК).

Фотометрические исследования проводят с помощью фотоколориметров. Измерение оптической плотности стандартного и исследуемого окрашенных растворов всегда производят по отношению к раствору сравнения (нулевому раствору). В качестве раствора сравнения можно использовать часть исследуемого раствора, содержащего все добавляемые компоненты, кроме реагента, образующего с определенным веществом окрашенное соединение. Если раствор сравнения при этом остается бесцветным и, следовательно, не поглощает лучей в видимой области спектра, то в качестве раствора сравнения можно использовать дистиллированную воду.

Устройство и принцип действия фотометрических приборов рассмотрим на примере колориметра фотоэлектрического концентрационного КФК-2

Однолучевой фотометр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315-980 нм. Пределы измерения пропускания 100-5% (D = 0-1,3). Основная абсолютная погрешность измерения пропускания 1%.

Принципиальная оптическая схема фотоколориметра КФК-2 представлена на рис.

Свет от галогенной малогабаритной лампы (1) проходит последовательно через систему линз, теплозащитный (2), нейтральный (3), выбранный цветной (4) светофильтры, кювету с раствором (5), попадает на пластину (6), которая делит световой поток на два: 10% света направляется на фотодиод при измерениях в области спектра 590-540 нм) и 90% — на фотоэлемент (при измерениях в области спектра 315-540 нм).

Фотометр фотоэлектрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов и прозрачных твердых образцов, а также для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворах после предварительной градуировки фотометра.

№10. Эмиссионный и атомно-абсорбционный спектральный анализ.

Атомно-эмиссионным спектральным анализомназывается метод определения химического состава, основанный на изуче­нии атомных спектров вещества, возбуждаемых в горячих ис­точниках света. Спектр — это излучение, разложенное по длинам волн, заключает в себе информацию о качественном и количе­ственном составах анализируемого объекта. Принципиальная схема эмиссионного спектрального анализа сводится к следую­щему: а) перевод вещества в парообразное состояние; б) воз­буждение атомов и ионов; в) разложение испускаемого ато­мами света в спектр; д) регистрация и расшифровка получен­ных спектров.

По характерным линиям в спектрах атомов можно иденти­фицировать элементы, содержащиеся в анализируемом образце (качественный спектральный анализ), а по относительным интенсивностям спектральных линий можно определять концен­трации элементов в исследуемом образце (количественный анализ).

Спектральный анализ был разработан в 1859 г. физиком Кирхгофом и химиком Бунзеном. С помощью сконструированного ими прибора, на­званного спектроскопом, они показали, что каждому виду атомов (элементу) присущ строго определенный, характерный спектр. Они же предложили ис­пользовать спектральный метод для качественного анализа проб. Когда уче­ные обнаружили в спектрах некоторых образцов спектральные линии, которые нельзя было отнести к каким-либо известным элементам, они объяснили наличие этих линий присутствием неизвестных элементов. Так, с помощью нового метода были открыты неизвестные в то время элементы рубидий и цезий. Позднее другие исследователи с помощью спектрального анализа открыли и другие элементы: таллии, индий, галлий, гелий.

Источник

Adblock
detector