Меню

Методы исследования биологической активности почв

Методы определения биологической активности почв

Биологическая активность почвы выражается суммарным проявле­нием активности биохимических процессов и характеризует размеры и направление превращения веществ и энергии в почве, происходящего под действием живых организмов.

Показатели биологической активности почвы могут быть использованы при тестировании состояния почв. При загрязнении почв небольшими количествами органических соединений может наблюдаться возрастание некоторых показателей биологической активности, так как более интенсивно развиваются группы микроорганизмов, участвующих в переработ­ке дополнительных субстратов (фенолов, углеводородов). При загрязне­ниях тяжелыми металлами, оксидами серы, большими количествами раз­личных органических веществ преобладает токсический эффект, вследствие чего биологическая активность подавляется.

В качестве показателей активности, характеризующих экологическое состояние почвы, в литературе чаще всего рекомендуются следующие: выделение почвами диоксида углерода (дыхание почвы), активность ферментов, токсичность почв по отношению к тестовым организмам, различные аппликационные методы.

Интегральной характеристикой напряженности микробиологических процессов является скорость выделения углекислого газа. В большинстве случаев чем она выше, тем лучше экологическое состояние почвы. В оптимальных условиях скорость выделения углекислого газа может достигать нескольких кг/га в час.

Так как интенсивность дыхания почвы является исключительно вариабельной величиной и зависит от большого количества факторов (температурного режима, влажности, состояния фитоценоза и др.), для оценки экологического влияния загрязнений необходимо проводить сравнение данных, полученных на различных участках в близких условиях.

Для школьного мониторинга доступен абсорбционный метод Штатнова в котором количество выделившегося в течение определенного времени углекислого газа определяют по нейтрализации им раствора щелочи.

Определение дыхания почвы этим методом заключается в том, что поверхность почвы изолируют от окружающего воздуха сосудом, под которым помещают чашку с 2 мл 0,1 н. раствора КОН для поглощения угле­кислого газа. Через определенное время (0,5-1 час) сосуд-изолятор сни­мают, щелочь оттитровывают 0,05 н. раствором НCl по фенолфталеину до обесцвечивания. Одновременно делают контрольные измерения (изо­лятор и щелочь ставят не на почву, а в какой-либо плоскодонный сосуд и также изолируют от воздуха). По разнице титрования определяют коли­чество выделившегося из почвы углекислого газа. Расчет проводят по формуле:

где F — скорость выделения углекислого газа из почвы, кг/га в час;

а — объем 0,05 н. НС1, пошедший на титрование щелочи при определе­нии содержания углекислого газа в воздухе контрольного сосуда, мл;

б — объем 0,05 н. НС1, пошедший на титрование щелочи при определе­нии содержания углекислого газа в воздухе сосуда-изолятора на почве, мл;

1,1 — масса углекислого газа, эквивалентная 1 мл 0,05 н. раствора кис­лоты, мг;

100 — пересчетный коэффициент (1 мг/см 2 =100 кг/га);

S — площадь почвы под сосудом-изолятором, см 2 ;

t — время экспозиции, час.

Тестировать активность различных групп почвенных микроорганизмов в почвах можно при помощи различных аппликационных методов. Наиболее распространенным является измерение скорости распада целлюлозы. Этот метод был рекомендован академиком Е. Н. Мишустиным.

Для проведения исследований берут стерильную тонкую суровую льня­ную ткань (неотбеленную). Определяют массу 1 дм 2 этой ткани, затем ее полосы (шириной обычно 10 см, длина зависит от глубины изучаемого почвенного слоя) пришивают к полимерной пленке. В почве вырывают свежие разрезы, в которые помещают полосы ткани, полиэтилен с обрат­ной стороны придавливают почвой и разрез засыпают. Верхняя грань тка­ни должна быть на 3,5 см погружена в почву. Через определенное время ткань извлекают из разреза, отмывают и взвешивают. Потеря массы ха­рактеризует интенсивность разложения клетчатки. Для определения ди­намики процесса повторные куски ткани извлекают последовательно че­рез разные интервалы времени.

Для оценки интенсивности разложения клетчатки (% за сезон) исполь­зуется следующая шкала:

очень слабая Меньше 10%

очень сильная больше 80 %

Шкала интенсивности позволяет определить микробиологическую активность почв: чем выше процент разложения клетчатки, тем она выше.

7.2.5. Качественное определение химических элементов в почве [16,30]

Определение химического состава почвы чаще всего начинают с ана­лиза водной почвенной вытяжки, так как хорошо растворимые соединения почвы в первую очередь поглощаются растениями. Избыточные количе­ства растворимых солей (более 0,2% от массы сухой почвы) создают по­вышенную концентрацию ионов в почвенном растворе, а это снижает пло дородие почвы и ее экологическое состояние. С агрономической точки зрения наиболее вредными для растений считаются гидрокарбонаты, кар­бонаты и сульфаты натрия, а также хлориды (особенно магния и кальция). По степени экологической опасности химические вещества, попадающие в почву различными путями, делят на 3 класса: 1 — кадмий, ртуть, свинец, цинк, фтор, мышьяк, селен, бенз(а)пирен; 2 — кобальт, молибден, бор, медь, хром, никель, сурьма; 3 — ацетофенон, барий, вольфрам, марганец, вана­дий, стронций.

При анализе почв прежде всего следует обратить внимание на кислот­ность почвенной вытяжки. Помимо того, что кислотность почвы — один из наиболее важных агрохимических показателей, по ее величине можно предсказать наличие тех или иных микроэлементов в почве, а также оце­нить их подвижность (табл. 7.15).

Сухой остаток почвенной вытяжки — это общее содержание раство­римых солей в водной почвенной вытяжке. Его определяют путем выпа­ривания в фарфоровой чашке некоторого объема фильтрата. Прокалива­нием можно разделить сухой остаток на минеральный и органический.

В прокаленную и взвешенную фарфоровую чашку наливают при помо­щи пипетки по 25-50 мл фильтрата водной вытяжки столько раз (по мере выпаривания), чтобы в сумме получить от 100 до 250 мл вытяжки (в зави­симости от засоленности почвы — чем выше засоленность, тем меньший объем вытяжки берут на анализ). После выпаривания жидкости чашку помещают в сушильный шкаф и высушивают ее содержимое при темпе­ратуре 105°С в течение 3-4 ч. (до постоянной массы). Содержание сухого остатка выражают в процентах:

а) к воздушно-сухой почве:

б) к абсолютно сухой почве:

m1 — масса чашки с сухим остатком, г,

m2— масса пустой чашки, г,

V1 — общий объем фильтрата, мл,

V2 — объем фильтрата для анализа, мл,

m — масса почвы для приготовления вытяжки, г,

у — влажность воздушно-сухой почвы, %.

Рассчитанное значение общего солесодержания в процентах к воздушно-сухой массе почвы заносится в табл. 17 экопаспорта.

Если содержимое чашки после взвешивания озолить и прокалить, то потеря от прокаливания даст ориентировочное содержание в вытяжке органических веществ, а остаток в чашке — содержание минеральных солей. Озоление и прокаливание можно провести на газовой горелке или в муфельной печи при температуре не выше 525°С. Расчет ведут аналогично сухому остатку (минеральная часть); органический остаток узнают по разности между сухим остатком и минеральной частью.

По количеству минерального остатка судят о засоленности почвы (табл. 7.16)

Довольно точное представление о степени засоленности почвы дает определение плотности водной вытяжки из почвы ареометром или при помощи пикнометра (взвешиванием).

Карбонат-ионы. Небольшое количество почвы помещают в фарфо­ровую чашку и приливают пипеткой несколько капель 10%-ного раствора соляной кислоты. Образующийся по реакции оксид углерода СО2 выделяется в виде пузырьков (почва «шипит»). По интенсивности их выделения судят о более или менее значительном содержании карбонатов.

Почву, вскипающую от 10%-ного раствора соляной кислоты, относят к группе карбонатных почв. Для такой почвы проводят анализ водной вытяжки. Если почва не «вскипает», то для качественных реакций готовят не водную, а солянокислую вытяжку.

Хлорид-ионы. К 5 мл фильтрата, помещенного в пробирку, прибавля­ют несколько капель 10%-ного раствора азотной кислоты и по каплям 0,1 М раствор нитрата серебра. Образующийся осадок в виде белых хлопьев указывает на присутствие хлоридов в количестве десятых долей процента и более. При содержании сотых и тысячных долей процента хлоридом осадка не выпадает, но раствор мутнеет.

Сульфат-ионы. К 5 мл фильтрата добавить несколько капель концентрированной соляной кислоты и 2-3 мл 20%-ного раствора хлорида бария. Если образующийся сульфат бария выпадает в виде белого мелкокристаллического осадка, это говорит о присутствии сульфатов в количестве нескольких десятых процента и более. Помутнение раствора также указывает на содержание сульфатов — сотые доли процента. Слабое помутнение, заметное лишь на черном фоне, бывает при незначительном содержании сульфатов — тысячные доли процента.

Нитрат-ионы. К 5 мл фильтрата по каплям прибавляют раствор дифениламина в серной кислоте. При наличии нитратов и нитритов раствор окрашивается в синий цвет.

Кальций. К 10 мл фильтрата добавить несколько капель 10%-ного раствора соляной кислоты и 5 мл 4%-ного раствора оксалата аммония. Бе­лый осадок оксалата кальция свидетельствует о наличии нескольких процентов кальция. При незначительном содержании кальция (сотые и ты­сячные доли процента) наблюдается не осадок, а легкое помутнение ра­створа.

Железо (II и III). В две пробирки внести по 3 мл вытяжки. В первую пробирку прилить несколько капель раствора красной кровяной соли K3[Fe(CN)6], во вторую — несколько капель 10%-ного раствора роданида аммония или калия NH4SCN или KSCN. Появившееся синее окрашивание в первой пробирке и красное во второй свидетельствует о наличии в почве соединений железа (II) и железа (III). По интенсивности окрашивания можно судить об их количестве.

Алюминий. К 5 мл солевой почвенной вытяжки прибавляют по каплям 3%-ный раствор фторида натрия до появления осадка. Чем быстрее и обильнее выпадает осадок, тем больше алюминия содержится в почве.

Натрий. О присутствии натрия в почве судят по ярко-желтому окра­шиванию пламени горелки при внесении в него стеклянной палочки с кап­лей раствора почвенной вытяжки.

Присутствие соединений тяжелых металлов в почвах можно опреде­лять и количественным методом. Для этого готовят водную вытяжку (раз­дел 6.2.1), которую анализируют по методикам, описанным в главе 7 дан­ной книги, или по другим имеющимся в кабинете химии инструкциям.

Полученный результат в мг/л вытяжки пересчитывают в мг/кг почвы по

где Сn — содержание определяемого элемента в почве, мг/кг;

Св — концентрация этого же элемента в водной вытяжке, мг/л.

Дата добавления: 2015-04-11 ; просмотров: 193 ; Нарушение авторских прав

Источник

Методы исследования биологической активности почв (метод определения дыхания почвы)

В биодиагностике почв большое значение имеет определение почвенного дыхания как интегрального показателя работы всей биоты. Интенсивность выделения углекислоты дает достоверную информацию о напряженности микробиально-биохимических процессов, о направленности трансформации органического вещества, а также позволяет судить о самоочищающей способности антропогенно нарушенных почв. Определение углекислоты методом титрования – быстрый и достаточно простой способ исследовать биологические свойства почв в больших объемах, когда работа ставится на поток и необходимо получить репрезентативные данные.

Билет 7

Инструментальные методы определения плотности сложения почвы.

Плотностью (удельным весом) твердой фазы почвы наз отношение массы твердой фазы определенного объема к массе воды того же объема при 4 °C.

Величина плотности твердой фазы почвы зависит от количества органического вещества, удельный вес которого равен в среднем 1,4, и минералогического состава ее, так как удельный вес различных минералов почв колеблется от 2,5 до 3,8. В большинстве случаев плотность твердой фазы (удельный вес) почвы в среднем равна 2,50–2,65. Знание плотности (удельного веса) твердой фазы почвы необходимо для вычисления скважности почвы.Плотность (удельный вес) твердой фазы почвы определяют из образца почвы с нарушенной структурой, т. е. растертой в порошок пикнометрическим способом – путем определения объема какой-либо навески почвы при вытеснении ею воды. В качестве пикнометра обычно употребляют мерную колбу на 100 мл.

На аналитических весах берут 10 г воздушно-сухой почвы в небольшую фарфоровую чашку. Одновременно в отдельной навеске определяют гигроскопическую воду. Для удаления из дистиллированной воды воздуха 200–250 мл кипятят в колбе в течение 30 мин., далее охлаждают до комнатной температуры. Затем пикнометр на 100 мл наполняют точно до метки этой водой и взвешивают на аналитических весах.

Пикнометр во время работы нужно брать только за горлышко и не нагревать его рукой, так как даже незначительные колебания температуры отражаются на точности определения плотности (удельного веса). Рекомендуется записать температуру, при которой проводилось первое взвешивание пикнометра. После взвешивания из пикнометра отливают примерно половину воды и, вставив в его горлышко воронку, осторожно пересыпают взятую навеску почвы. Смывают приставшие к воронке и чашке твердые частицы почвы дистиллированной водой в пикнометр и кипятят его содержимое на электрической плитке или спиртовке 30 мин., не допуская разбрызгивания. После кипячения пикнометр охлаждают до первоначальной температуры, доливают оставшейся прокипяченной водой до метки и взвешивают вторично. Если охлаждение пикнометра проводят в сосуде с водой, наружные стенки его перед взвешиванием тщательно обтирают фильтровальной бумагой.

Инструментальные методы определения микроэлементов в почве, преимущества и недостатки.

Из более чем 100 элементов таблицы Менделеева 70 с лишним можно найти в растениях. Два десятка из них совершенно необходимы для питания, а еще 12 считаются необходимыми условно. Азот, фосфор и калий — основные элементы, содержатся в значительных количествах. И наз их макроэлементами. Помимо них, к жизненно необходимым относятся железо, марганец, медь, цинк, бор, молибден, кобальт. Пусть и содержатся они в сотых долях процента, в микроскопических дозах, оттого и микроэлементы, да без них не обойтись.Определение микроэлементов в почвах и растениях рентгенофлуоресцентным методом с полным отражени

Инструментальные методы определение базовых характеристик биологических свойств почвы.

Биологические свойства почвы хар. наличием в них различных микроорганизмов и процессами роста растений. Отмирающие растения и их части, отлагаясь в почве, обога­щают ее питат. вещ. в устойчивых против вымы­вания формах. Корневая система растений перемещает минераль­ные вещества из нижних слоев в верхние. Биологический процесс, таким образом, является фактором концентрации питательных веществ в почве. В верхнем слое концентрируются как минераль­ные соли, так и синтезированные органические вещества, содер­жащие много азота. Сюда относится, в частности, перегной (гумус).Большинство показателей биологической активности почвы определяют в лабораторных условиях в средних смешанных пробах, которые составляют из индивидуаль­ных образцов, взятых буром. Число их должно быть не менее четырех с каждой делянки двух несмежных повто­рений исследуемого варианта опыта. Пробы берут по одной или двум диагоналям, избегая нехарактерных мест. Перед взятием проб верхний слой почвы (0,5—1 см) удаляют. Средний образец м=1,5 кг помеща­ют в полиэтиленовый мешок, вкладывают этикетку с указани­ем названия опыта, даты, глубины слоя почвы, номера варианта. В лаб средний образец измельчают шпателем, тщательно перемешивают и удаляют из него корни растений и различные включения. Опр. биолог. активности почвы проводить в 1-2 сут

Билет 8

1.Инструментальные методы определения агрегатного состава.(Методом Саввинова.?)

Существует ряд способов разделения почвы на фракции. Ситовой анализ, состоит в том, что подготовленный к механическому анализу образец почвы (грунта) просеивается через сита с отверстиями разных размеров.

Агрегатный анализ. В природе очень редко можно встретить действительно раздельнозернистые почвы и грунты (напр., пески). Обычно же как в почвах, так и в грунтах элементарные частицы связаны в агрегаты, сложные зерна. Многие свойства почв и грунтов определяются не количеством элементарных частиц, а устойчивостью и количеством вторичных частиц, или агрегатов. Эти последние часто определяют водные и воздушные свойства почвы, поэтому в последнее время особенное внимание обращается на определение агрегатного состава. Различают макроагрегатный и микроагрегатный состав. Первый определяется ситовым анализом в стоячей воде (купание), второй- ситовым и пипеточным анализом и агрегантного анализа вычисляютя коэффициенты структурности почв. Выбор фракции частиц и границ их размеров зависит от принятой классификации элементов механич. Состава.

Источник

Читайте также:  Безотвальную обработку почвы применяют для борьбы с

Все про удобрения © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Читайте также:

  1. Cтруктуры внешней памяти, методы организации индексов
  2. I. Основные термины и определения
  3. II. Методы искусственной детоксикации организма
  4. II. Методы несанкционированного доступа.
  5. III. Методы искусственной физико-химической детоксикации.
  6. III. Методы манипуляции.
  7. IV. Традиционные методы среднего и краткосрочного финансирования.
  8. IX. Методы СТИС
  9. IX. ЯВЛЕНИЯ “БИОЛОГИЧЕСКОЙ ТЕЛЕСВЯЗИ” У ЖИВОТНЫХ.
  10. R Терапевтическая доза лазерного излучения и методы ее определения