Гранулометрический (механический) состав грунтов и почв
Твердая фаза почвы состоит из частиц различных размеров, которые называются механическими элементами или гранулами. Относительное содержание в почве или грунте механических элементов называется механическим или гранулометрическим составом, а количественное определение их гранулометрическим или механическим анализом.
В соответствии с ГОСТ 27593-88 «Почвы. Термины и определения», гранулометрический состав – это содержание в почве механических элементов, объединенных по фракции.
Проведение гранулометрического анализа очень важно при определении физико-механических свойств почв/грунтов, таких как порозность, влагоемкость, водопроницаемость, плотность, пластичность, липкость, набухание и др., то есть тех свойств, которые напрямую влияют на плодородие почв или знание которых необходимо при проведении строительных работ.
Механические элементы в зависимости от размера подразделяют на фракции: больше 3мм-камни, 3-1мм — гравий, песок 1-0,05мм (крупный, средний, мелкий), пыль – 0,05-0,001 (крупная, средняя, мелкая), ил – 0,001-0,0001 (грубый, тонкий) и коллоиды меньше 0,0001. Сумму всех механических элементов почвы размером меньше 0,01мм называют физической глиной, а больше 0,01мм – физическим песком. Кроме того, выделяют мелкозем, в который входят частицы меньше 1мм, и почвенный скелет – частицы больше 1мм.
Соотношение физической глины и физического песка лежит в основе классификации почв по механическому составу. Все почвы и грунты по механическому составу объединяют в несколько групп с характерными для них физическими и химическими свойствами: песок, супесь, суглинок, глина. Каждая группа подразделяется на подгруппы в зависимости от крупности механических элементов и преобладающих фракций.
Методы гранулометрического анализа
Гранулометрический состав можно определить приближенно в полевых условиях по внешним признакам и на ощупь «сухим» или «мокрым» методом. Этими методами могут воспользоваться садоводы-огородники при определении доз внесения удобрений, количества песка, торфа, опилок для улучшения структуры почвы и создания более благоприятных условий для роста сельскохозяйственных культур.
«Сухой» метод
Сухой комочек или щепотку почвы/грунта кладут на ладонь и тщательно растирают пальцами. Механический состав определяется по ощущению при растирании. Глинистые почвы в сухом состоянии с большим трудом растираются между пальцами, но в растертом состоянии ощущается однородный тонкий порошок. Суглинистые почвы при растирании в сухом состоянии дают тонкий порошок, в котором прощупывается некоторое количество песчаных частиц. Песчаные почвы состоят только из песчаных зерен с небольшой примесью пылеватых и глинистых частиц.
Пылеватые почвы и породы при растирании дают ощущение мягкости или «бархатистости»; песчанистые — жесткости, шероховатости; пылевато-песчанистые — мягкости, но и явного присутствия песчинок.
«Мокрый» метод
Образец растертой почвы или грунта увлажняют до тестообразного состояния, при котором почвы обладают наибольшей пластичностью. Затем пробуют на ладони скатать шарик и из него шнур толщиной около 3мм. Получившийся шнур пробуют свернуть в кольцо диаметром 2-3см. В зависимости от механического состава почвы/грунта показатели «мокрого» анализа будут различны. У рыхлых песков шарик не образуется; у связных песков — легко крошится; у супесей — имеет шероховатую поверхность; у суглинков — гладкую поверхность; у глинистых — гладкую, блестящую поверхность. Пески не образуют шнура; супеси дают зачатки шнура; у легких суглинков шнур образуется, но распадается на дольки; средние суглинки дают сплошной шнур, но при свертывании в кольцо он разламывается на дольки; тяжелый суглинок — шнур образуется сплошной, но при свертывании в кольцо трескается ; глины дают сплошной шнур, который свертывается в кольцо, не трескаясь.
Для точного установления гранулометрического состава применяют лабораторные методы, позволяющие находить количество всех групп механических элементов, слагающих почву или грунт.
При исследованиях гранулометрического состава почв/грунтов песчаного и крупнообломочного состава, реже в супесчаных, применяется ситовой метод (метод просеивания на ситах). Пробы грунта просеивают через набор сит с отверстиями разного диаметра: 10; 5; 2; 1; 0,5; 0,25; 0,1. Каждую фракцию грунта, задержавшуюся на ситах, взвешивают и рассчитывают процентное содержание по отношению к общей массе грунта. При проведении гранулометрического анализа песков с размером частиц от 10 до 0,5 мм просеивание проводится без промывки, а от 10 до 0,1 мм с промывкой водой
Для исследования гранулометрического состава глинистых и суглинистых грунтов для частиц менее 0,1мм применяют ареометрический и пипеточный методы гранулометрического анализа. Эти методы основаны на зависимости, существующей между скоростями падения частиц и их размером. Если взмутить суспензию почвы/грунта и оставить ее в спокойном состоянии, то постепенно взмученные частицы осядут. Быстрее будут осаждаться более крупные по размеру и более тяжелые механические элементы, то есть плотность и механический состав суспензии будут изменяться с течением времени.
При ареометрическом методе производят измерения плотности отстаиваемой в цилиндре суспензии ареометром через определенные промежутки времени. Плотность, измеренная ареометром, зависит от содержания в суспензии взвешенных твердых частиц. Получив значения убывающей плотности через определенные промежутки времени, с помощью расчетных формул или по номограммам определяют процентное содержание частиц определенного размера.
Пипеточный метод предполагает отбор проб суспензии из цилиндра с определенных глубин через разные промежутки времени. Для производства анализа взмучивают грунтовую суспензию и оставляют ее в покое на определенное время, после чего специальной пипеткой с нужной глубины отбирают пробу суспензии. Такая проба содержит только те частицы, которые не успели осесть за указанное время отстаивания. При следующих пробах, взятых пипеткой через большие промежутки времени от начала отстаивания суспензии, получают более мелкие частицы. Определяя массу высушенных проб и зная размер отобранных частиц (вычисляемый по длительности отстаивания суспензии и глубине взятия проб), вычисляют процентное содержание этих частиц в образце почвы/грунта.
Источник
Методы исследования механического состава почвы
Раздел II ИССЛЕДОВАНИЕ ПОЧВЫ. Занятие 1 ИССЛЕДОВАНИЕ МЕХАНИЧЕСКОГО СОСТАВА И ФИЗИЧЕСКИХ СВОЙСТВ ПОЧВЫ
Цель занятия. Ознакомиться с методами исследования почвы при изучении ее механического состава и физических свойств.
Материалы и оборудование. Пробы почвы; набор сит; почвенные термометры; стеклянные трубки; мерный цилиндр; цилиндр с сетчатым дном.
Содержание занятия. В з я т и е пробы почвы для исследования. Пробы почвы должны отражать средние показатели определенного земельного участка. Берут их специальным буром или чистой лопатой. Предварительно с поверхности почвы убирают (удаляют) растительность и другие посторонние предметы. Образцы почвы отбирают в хорошую сухую погоду на различной глубине в зависимости от поставленной задачи. Например, послойный (через каждые 20 см) способ отбора проб на глубине до I м важен для выяснения давности загрязнения почвы (определяют по перемещению хлоридов и других продуктов минерализации органических веществ из верхних слоев в нижние).
Каждую пробу массой 2—3 кг помещают в стеклянные банки с притертой пробкой или в чистый полиэтиленовый пакет, прикладывают записку с указанием даты, места и глубины взятия образца. В лаборатории отобранные пробы почвы рассыпают тонким слоем на листы бумаги, раздавливают слежавшиеся комки и высушивают на воздухе. Для анализа отбирают0,5—1 кг, остальную часть хранят. Перед началом лабораторных исследований из образца почвы удаляют корни и другие нехарактерные примеси, взвешивают их для установления процентного содержания.
Определение структуры и типа почвы. После высушивания пробы почву рассматривают на бумаге или тарелке и предварительно определяют ее тип и структуру. Если в почве содержится до 99 % песка и до 10 % глины, ее называют песчаной; от 10 до 30 % глины — супесчаной; от 30 до 50 % глины — суглинистой; более 50 % глины — глинистой. В черноземной почве гумус (растительный перегной) составляет более 20 %. В торфе содержится большое количество органического перегноя (50—80 %).
Определение механического состава почвы. От размера частиц, составляющих почву, и их соотношения зависит обмен почвенного воздуха с атмосферным. Насыщение почвы кислородом необходимо для процессов окисления органических веществ.
Для определения соотношения частиц почвы по их размеру применяют набор сит с разным диаметром отверстий. Чаще всего такие наборы состоят из 5—7 сит с отверстиями диаметром 10,7,5,3,2, 1, 0,25 мм. Складывают сита так, чтобы они плотно входили одно в другое. В верхнее сито, с самыми крупными отверстиями, насыпают 100 г разрыхленной воздушно-сухой почвы, закрывают его крышкой и, осторожно сотрясая весь набор, просеивают пробу. Частицы почвы диаметром 10 мм и более остаются на сите № 1, их называют крупным хрящем; частицы диаметром от 7 до 10 мм и от 5 до 7 мм остаются на ситах №2,3- средний хрящ; частицы диаметром от 2 до 5 мм остаются на ситах № 4, 5 — мелкий хрящ; частицы диаметром от 1 до 2 мм остаются на сите № 6 — крупный песок; частицы диаметром от 0,25 до 1 мм остаются на сите № 7 — мелкозем; на дне набора сит собираются частицы диаметром менее 0,25 мм — мелкий песок.
После просеивания почвы взвешивают содержимое всех сит и определяют соотношение частиц разного размера, ее механический состав.
Определение основных физических свойств почвы. Температуру почвы в гигиенических целях измеряют при выборе мест для устройства летних лагерей, тырл или стойбищ животных ранней весной или поздней осенью, на пастбищах и в загонах с помощью специальных термометров. Кроме этого органолептически определяют цвет и запах почвы, ее водные свойства: водоподъемную способность (капиллярность), фильтрационную способность (водопроницаемость), объем пор почвы, способность впитывать и удерживать влагу (влагоемкость).
Цвет почвы может быть темным (черным), светло-серым, светло-желтым и других оттенков в зависимости от количества находящихся в ней органических веществ и примесей.
Темная (черная) окраска указывает на содержание в почве большого количества органических веществ. При санитарной оценке такой почвы следует учитывать, что окраску почве придает гумус (перегной) в результате внесения больших доз навоза. В таких почвах патогенные микроорганизмы встречаются чаще.
Почвы, бедные гумусом, органическими веществами, имеют светло-серую (подзолистые) или светло-желтую (песчаные, глинистые) окраску, содержат малые количества биологически активных минеральных соединений.
Запах почвы можно определить непосредственно на месте, при взятии пробы. Для этого пробу почвы помещают в колбу, заливают горячей водой, закрывают пробкой и встряхивают, затем открывают пробку и определяют запах.
Чистая, незагрязненная почва не имеет запаха. Гнилостный, аммиачный, сероводородный и другие запахи свидетельствуют о загрязнении почвы навозом, мочой, неочищенными сточными водами, трупными остатками животных.
Водоподъемная способность (капиллярность) почвы зависит от ее механического состава, т. е. чем меньше размер частиц почвы, тем выше подъем влаги по капиллярам. Высокая капиллярность нередко служит основной причиной сырости почвы, помещений, если не приняты соответствующие меры (гидроизоляция).
Водоподъемную способность почвы определяют в лабораторных условиях. Для этого в штатив устанавливают стеклянные трубки диаметром 2,5—3 см (с сантиметровыми делениями и длиной 1 м). Нижние концы трубок обвязывают полотном. Каждую трубку заполняют исследуемой почвой, нижние концы трубок погружают в стаканы или ванночки с водой на глубину 0,5 см. В зависимости от размера частиц, а отсюда и размера капилляров в почве вода с неодинаковой скоростью будет подниматься вверх. По изменению окраски увлажненной почвы в трубках следят за скоростью и высотой поднявшейся по капиллярам воды, отмечая ее уровень через 5, 10, 30 и 60 мин и далее через каждый час до прекращения подъема уровня. По 3—5 про-бам почвы получают результаты ее водоподъемной способности.
Фильтрационная способность (водопроницаемость) почвы — скорость просачивания воды через почвы различных типов — зависит от их структуры. Водопроницаемость имеет большое санитарно-гигиеническое значение, поскольку определяет водно-воздушный режим почвы.
Для определения водопроницаемости сухой измельченной почвы берут стеклянную трубку диаметром 3—4 см и длиной 25—30 см. Отмерив от нижнего конца трубки 20 и 24 см, отмечают эти уровни на стекле. Нижний конец трубки обвязывают тонким полотном и при встряхивании наполняют исследуемой почвой до нижней черты (на 20 см). Укрепив трубку в штативе вертикально, подставляют под ее нижний конец мерный цилиндр с воронкой. Мерный цилиндр должен быть одинакового диаметра с трубкой. На цилиндре делают отметку снизу на уровне 4 см. Зафиксировав время, осторожно наливают в трубку на почву слой воды высотой 4 см, все время поддерживая этот уровень над почвой. Водопроницаемость выражают двумя показателями: временем, в течение которого вода пройдет через слой почвы толщиной 20 см, и временем, которое потребуется для накопления в цилиндре слоя воды высотой 4 см.
От объема пор почвы зависит ее аэрация. Для определения объема пор почвы берут мерный цилиндр, наливают в него 50 мл воды и высыпают 50 мл исследуемой почвы. Смешав почву с водой, отмечают на цилиндре общий объем. В результате заполнения пространства водой (пор между частицами почвы) общий объем смеси будет меньше 100 мл. Разница между заданным объемом и фактическим составит объем пор почвы.
Пример расчета. После смешивания 50 мл воды и 50 мл почвы объем составил 85 мл. Следовательно, поры почвы занимают объем 15 мл (100 — 85), или 30 %:
Влагоемкость — способность почвы впитывать и удерживать в себе определенное количество воды. При большой влагоемкости уменьшается ее возможность воздухо- и водопроницаемости. На таких участках почвы нередко наблюдается отсыревание полов, стен, ограждающих конструкций помещений, замедляется разложение органических веществ.
Для определения влагоемкости почвы берут стеклянный цилиндр с сетчатым дном и насыпают в него 100 г воздушно-сухой пробы. Цилиндр с почвой взвешивают. После этого погружают его в воду и наблюдают до появления воды в верхнем слое почвы. Это говорит о том, что часть воды впиталась почвой, находящейся в цилиндре. Вынув цилиндр из воды, ждут, пока полностью стечет невпитавшаяся вода. После этого цилиндр снова взвешивают. Разница между первым и вторым взвешиванием укажет массу влаги, удерживаемой исследуемой почвой.
Пример расчета. Масса цилиндра с сухой почвой (первое взвешивание) 150 г, масса цилиндра 50 г. Масса того же цилиндра с почвой после поглощения воды (вто-рое взвешивание) 170 г. Разница между первым и вторым взвешиванием составит 20 г (170 — 150). Следовательно, влагоемкость исследуемого образца равна 20 %.
Источник