Эпитаксия – основы материаловедения
Слово эпитаксия состоит из двух греческих слов: «эпи» — «над» и «таксис» — «упорядочивание». Поэтому термин эпитаксия означает наращивание кристаллографически ориентированных монокристаллических слоев на монокристаллические подложки или друг на друга. Монокристаллическая подложка в процессе выращивания играет роль затравочного кристалла.
Можно выделить два вида эпитаксии: гомоэпитаксию (автоэпитаксию) и гетероэпитаксию.
Гомоэпитаксия — это наращивание монокристаллической пленки на подложку из того же вещества, что и пленка. Например, наращивание эпитаксиальной пленки кремния на подложу (объемный кристалл) из монокристаллического кремния.
Гетероэпитаксия — это наращивание пленки на инородную подложку. Например, наращивание эпитаксиальной пленки PbTe на монокристаллическую подложку BaF2. Однако при гетероэпитаксии кристаллические решетки пленки и подложки должны быть подобны, а параметры решеток близки для обеспечения роста монокристаллического слоя.
Методы эпитаксиального выращивания монокристаллических пленок получили широкое распространение в технологии полупроводниковых приборов только тогда, когда научились получать пленки заданного состава, обладающие параметрами, близкими к параметрам объемных кристаллов. Можно сказать, что научно-технический прогресс в области микроминиатюризации интегральных схем в значительной мере обязан внедрению в производство методов эпитаксиальной кристаллизации. За9.1. Эпитаксия 321
Рис. 9.1. Схемы окрестностей p − n-перехода в случаях диффузионного (а) и эпитаксиального (б) легирования. При создании p − n-перехода методом диффузии примесей в кристалл по обе стороны от перехода располагаются довольно широкие области сильно скомпенсированного материала.
мена объемных кристаллов эпитаксиальными пленками позволила повысить выход годных приборов, сократить длительность операций, снизить их себестоимость.
К основным преимуществам эпитаксиальной технологии можно отнести следующие преимущества.
Эпитаксиальное наращивание полупроводниковых пленок осуществляется, как правило, при температурах более низких, чем температуры получения объемных монокристаллов. При этом упрощается контроль за процессом кристаллизации и обеспечивается лучшая воспроизводимость свойств. Понижение температуры роста сопровождается замедлением диффузии примесей (в том числе и загрязняющих) в процессе получения эпитаксиальных пленок. В итоге улучшаются выходные параметры полупроводниковых материалов.
Эпитаксиальные методы роста позволяют достаточно просто осуществлять легирование монокристаллических пленок непосредственно в процессе их выращивания, обеспечивают однородное распределение легирующих элементов в пленках, дают возможность выращивать резкие p − n-перехода со скачкообразно меняющейся концентрацией (рис. 9.1,б).
Применение эпитаксиальных слоев на подложке предоставляет разработчику приборов возможность изменения профиля легирования в изготовляемой структуре в гораздо более широких пределах, чем это возможно при использовании диффузии или ионной имплантации.
Существенной особенностью эпитаксиального наращивания из газообразной фазы является возможность осаждения чистого материала на сильно легированных подложках. Такая возможность чрезвычайно важна для производства полупроводниковых квантовых генераторов света (лазеров). С другой стороны, для ряда приложений (например, для изготовления транзисторов) необходимы тонкие эпитаксиальные слои полупроводниковых соединений на высокоомных подложках. Эпитаксиальные методы позволяют это довольно просто реализовать.
Использование эпитаксиальных пленок в электронной промышленности позволило существенно улучшить характеристики туннельных и лазерных диодов,1 разработать технологию получения транзисторов с высоким коэффициентом усиления на высоких частотах,2 мощных и высоковольтных транзисторов. На применении эпитаксиальных слоев основано производство таких приборов, как планарные полевые транзисторы, выполненные на структуре металл–окисел–полупроводник с изоляцией V-образными канавками (V-МОП). Эпитаксиальные структуры также используются для улучшения характеристик памяти с произвольным доступом и комплементарных интегральных МОП-схем. Новые перспективы в технике открыло применение эпитаксиальных гетероструктур, создание которых другими методами затруднено, в полупроводниковых приборах (например, для изготовления инжекционных лазеров). Кроме того, эпитаксия дает возможность получения многослойных структур со свойствами каждого слоя, практически не зависящими от свойств предыдущего слоя. Это открывает широкие возможности для разработки качественно новых типов электронных приборов.
Следует отметить, что интенсивная разработка технологических методов тонкопленочной эпитаксии, обеспечивающих прецизионное управление процессом роста и контроль качества получаемых структур, позволила совершить качественный скачок в развитии физики полупроводников. История развития физики полупроводников такова, что если основными объектами исследования лет 30 назад были монокристаллы, а лет 15 назад — эпитаксиальные пленки, то сейчас — это многослойные гетероструктуры, сверхрешетки, структуры с квантовыми нитями и точками.
Действительно, в ходе исследования свойств очень тонких пленок был обнаружен ряд новых интересных физических эффектов, которые откры
1Известно, что во многих оптоэлектронных приборах «объем» кристалла часто играет роль балласта, уменьшающего интенсивность выходящего излучения из-за оптического поглощения и рекомбинации. Отсюда естественное стремление уменьшить этот объем.
2 Стремление к увеличению напряжения пробоя база-коллектор при формировании транзистора в объеме кремния требовало применения материала с высоким удельным сопротивлением, что при большой толщине кремния приводило к чрезмерному увеличению сопротивления коллектора, вело к увеличению рассеиваемой мощности и уменьшению коэффициента усиления. Использование высокоомных эпитаксиальных слоев на подложках с низким удельным сопротивлением позволило решить эти проблемы. Таким же образом были решены аналогичные проблемы и при производстве биполярных интегральных схем.
ли возможность создания принципиально нового класса полупроводниковых приборов — приборов, разработанных на основе свойств структур с квантовыми ямами. Не удивительно, что в настоящее время структуры с квантовыми ямами, нитями, точками являются одними из наиболее интенсивно исследуемых объектов в физике полупроводников, а характеристика стран как «технологических держав» в значительной мере определяется именно уровнем развития технологии получения таких структур.
В настоящей главе будут рассмотрены основы существующих представлений о первых стадиях зарождения и дальнейшем росте эпитаксиальных пленок из газообразных фаз, а также некоторые методы эпитаксиального наращивания тонких слоев полупроводников, включая и жидкостную эпитаксию.
Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002
Источник
Эпитаксия из газообразной фазы – основы материаловедения
Процессы, происходящие при выращивании эпитаксиальных пленок методом газовой эпитаксии с помощью химических реакций, по существу, уже обсуждались при описании выращивания монокристаллов из газовой фазы (см. гл. 6). Рассматривались два основных способа выращивания эпитаксиальных пленок из газовой фазы с помощью химических реакций: 1) метод диссоциации и восстановления газообразных химических соединений и 2) метод газотранспортных реакций.
Первый способ отличается от второго тем, что в нем источником материала для роста эпитаксиальной пленки служат легколетучие химические соединения, которые подвергаются термической диссоциации или восстановлению соответствующим газообразным восстановителем на поверхности подложки, то есть для роста эпитаксиальной пленки используются химические реакции, происходящие только на поверхности подложки. При этом поверхность подложки играет роль катализатора. Каталитическая активность подложки зависит от строения поверхности (кристаллографии) и наличия активных центров на ней. Выбираются такие химические реакции, продукты которых, за исключением кристаллизующегося вещества, являются газами и легко удаляются из зоны реакции. Для достижения стационарного процесса роста образующиеся в результате химических реакций газы необходимо непрерывно удалять, для чего всегда целесообразно использовать проточные системы.
Во втором методе в основе выращивания пленок из газовой фазы лежат обратимые химические реакции, то есть используется возможность изменения направления реакции в зависимости от температуры. В зоне источника химические реакции идут с образованием летучих химических соединений, содержащих кристаллизуемое вещество. Затем летучие соединения за счет конвекции переносятся в зону конденсации, где происходит обратная химическая реакция с выделением кристаллизуемого вещества. В этом методе принципиальна обратимость химических реакций в отличие от первого.
Скорость роста эпитаксиального слоя определяется выходом химических реакций и поэтому зависит от концентрации взаимодействующих компонентов в газовой смеси, давления в системе, скорости прохождения газовой смеси над подложкой, каталитической активности и температуры подложки. Эти параметры можно регулировать в процессе эпитаксиального наращивания. Для каждого материала или группы схожих материалов подбираются такой тип реакций и такие условия конденсации, которые обеспечили бы наилучшие структурные и электрические параметры выращиваемых эпитаксиальных пленок. Рассмотрим примеры выращивания эпитаксиальных пленок этими способами.
Метод химических реакций
Метод химических реакций широко используется при выращивании эпитаксиальных пленок Si. Как правило, используются реакции восстановления галоидных соединений кремния (SiCl4 , SiBr4, SiI4 и SiHCl3) водородом.
Наибольшее распространение получил метод восстановления SiCl4
водородом. При этом водород обычно выполняет роль и газа-носителя, и восстановителя. Преимуществом этого метода является возможность достаточно простой очистки исходных реагентов. Процесс восстановления водородом осуществляется по схеме, изображенной на рис. 9.8. Реакционную камеру изготовляют, как правило, из кварцевого стекла и охлаждают водой или воздухом, чтобы исключить реакцию восстановления газовой смеси на стенках камеры, ограничив ее протекание поверхностью нагретых подложек. Реакционная камера соединяется с основной газовой магистралью. Поступающие в камеру газы проходят над поверхностью подложек и удаляются через стеклянную трубку в водоохлаждаемую ловушку. Вся система в целом должна тщательно продуваться. Поток водорода регулируется краном К1, который пропускает водород непосредственно в реакционную камеру, чтобы обеспечить требуемое молярное соотношение SiCl4/H2 = 1:20 – 1:50, и краном К2, направляющим водород в термостатированный испаритель, содержащий SiCl4 (для насыщения H2 парами SiCl4 ). Было установлено, что количество выделяющегося кремния при фиксированной температуре конденсации может быть заметно увеличено, если в газовую фазу дополнительно ввести молекулы HCl. Поэтому в систему включен кран K3, через который вводится обезвоженный HCl. Кремниевые подложки вырезают из монокристаллов с высоким структурным совершенством в определенном кристаллографическом направлении (как правило, перпендикулярно направлению роста ) и перед помещением их в реакционную камеру предварительно обрабатывают (механическая и химическая полировка). Осаждение ведут обычно при температуре подложек 1200–1290◦C. Были опробованы различные методы нагрева подложек, однако в подавляющем большинстве вариантов промышленных установок используют высокочастотный нагрев. Благодаря локализованному нагреву в этом случае осаждение кремния на стенках камеры сводится к минимуму. Таким образом, подложки нагреваются излучением и посредством теплопроводности от нагревателя, питаемого индукционными токами. При этом идут основная реакция осаждения реакции
SiCl4 + 2H2 = Si + 4HCl, (9.9)
SiCl4 + H2 = SiHCl3 + HCl, SiHCl3 + H2 = Si + 3HCl (9.10)
и конкурирующая реакция травления
SiCl4 + Si = 2SiCl2 . (9.11)
Рис. 9.8. Схема установки для получения эпитаксиальных пленок Si методом химических реакций: 1 — нагреватель; 2 — подложки; 3 — расходомеры; 4 — испаритель; 5 — источник легирующей примеси; 6 — реакционная камера.
Кроме того, в системе протекает ряд других реакций, определяемых возможными равновесиями в системе Si–H–Cl. Разность скоростей осаждения и газового травления подложки определяет скорость роста эпитаксиального слоя, характерное значение которой составляет 60–300 мкм/ч. Кроме того, скорость роста и качество получаемых эпитаксиальных пленок зависят от температуры подложки, относительной концентрации SiCl4 /H2 , скоростей газовых потоков, концентрации примесей, длительности процесса и геометрических характеристик системы.
Этим методом получают Si с удельным сопротивлением 1000Ом · см и
плотностью дислокаций 102–103 см−2. Легирование эпитаксиальных пленок Si, получаемых восстановлением SiCl4 , обычно осуществляется либо
1) непосредственным добавлением легирующей примеси в испаритель к жидкости SiCl4, либо 2) введением газообразных соединений примеси непосредственно в газовую фазу (PH3, SbCl3, AsCl3, BBr3 или BCl3).
Технология получения эпитаксиальных пленок Ge вполне аналогична описанной технологии выращивания пленок Si как с точки зрения используемого оборудования, так и самой сущности процесса.
Метод газотранспортных реакций
В процессе эпитаксиального роста с использованием обратимых химических реакций перенос вещества от источника к подложке осуществляется благодаря сдвигу равновесия используемой химической реакции в зонах источника и подложки, которые имеют разные температуры. Реагентами-переносчиками могут служить I2, Se, Te, H2, пары воды и
Рис. 9.9. а — Схема установки для получения эпитаксиальных пленок Ge методом газотранспортных реакций в закрытой системе; б — температурный профиль в реакционной камере в течение процесса роста (1 — источник вещества; 2 — реакционная камера; 3 — затравка; 4 — зона сброса; 5 — кварцевая ампула; 6 — эпитаксиальная пленка).
др. Например, получение пленок Ge с помощью этого метода основано на обратимых реакциях
GeI4 = Ge + 2I2 , 2GeI2 = Ge + GeI4 . (9.12)
При фиксированном полном количестве йода равновесие в этих реакциях смещается вправо при понижении температуры.
В рассматриваемом случае реакционная камера загружается затравкой и источником Ge, а затем откачивается. Далее в нее вводят пары I2 в количестве, необходимом для создания оптимального давления. Затем реакционная камера запаивается и помещается в печь (рис. 9.9). Вначале температурный профиль в реакционной камере устанавливается
таким образом, чтобы при 500–550◦C происходило травление материала
источника и затравки, а Ge в составе летучего соединения GeI4 удалялся и осаждался в зоне сброса, находящейся при температуре 300◦C. В замкнутой системе перенос Ge в составе летучего соединения из области, находящейся при высокой температуре, в более холодную область осуществляется диффузионным образом (молекулярная и (или) конвективная диффузия). Затем газообразный продукт разложения I2 вновь диффузионным образом переносится в зону источника. Далее температурный профиль изменяется так, чтобы температура в области подложки резко падала до 300–400◦C. После этого начинается осаждение на подложку при температуре 300–400◦C. Скорость переноса, определяемая скоростью диффузии и давлением йода, зависит также от температуры источника и затравки.
Аналогичные процессы происходят при выращивании эпитаксиальных пленок Si по реакциям
SiI4 = Si + 2I2, 2SiI2 = Si + SiI4. (9.13)
Характерные температуры для получения Si составляют Tист = 1150◦C и Tподл = 900–950◦C. Направление реакции сильно зависит от давления паров йода. Так, при низких давлениях преобладает реакция травления (Si + 2I2 → SiI4) и кремний переносится из холодной зоны в горячую.
При более высоких давлениях I2 (выше 60–100 мм рт. ст.) перенос Si идет из горячей зоны в холодную.
Метод газотранспортных реакций может быть использован для получения эпитаксиальных пленок и в проточных системах. Например, пленки GaAs, обладающие хорошими электрофизическими свойствами, получаются в проточных системах. В качестве исходных материалов используются следующие реагенты: AsCl3, Ga. Процесс проводится в установке, изображенной на рис. 9.10. Исходный Ga и подложки помещают в кварцевую трубу (реактор), которая расположена в двухзонной печи. В реактор подается смесь водорода и паров AsCl3. Для дозировки соотношения AsCl3/H2 поток водорода разделяют на две «нити»: по одной дозированное количество H2 подается непосредственно в реактор, а по другой — водород сначала проходит через испаритель, содержащий AsCl3, насыщается его парами, а затем смешивается с основным потоком H2 . Паро-газовая смесь, попадая в реактор, нагретый до температуры T1 = 800–850◦C, подвергается реакции
2AsCl3 + 3H2 → 6HCl + 2As. (9.14)
Образующийся хлористый водород реагирует с Ga, находящимся в лодочке,
2Ga + 2HCl → 2GaCl + H2. (9.15)
Пары мышьяка полностью поглощаются расплавленным галлием, находящимся в лодочке в зоне с температурой T1 = 800–850◦C, до тех пор, пока не образуется насыщенный раствор As в Ga. Газообразный GaCl переносится в более холодную часть камеры (T2 = 750–800◦C) и частично диссоциирует по реакции
3GaCl → 2Ga + GaCl3. (9.16)
После того, как образовался насыщенный раствор As в Ga (2.3% мышьяка), свободный мышьяк переносится вместе с GaCl и во второй зоне происходят реакции
6GaCl + As4 → 4GaAs + 2GaCl3 , 4GaCl + As4 + 2H2 → 4GaAs + 4HCl. (9.17)
Рис. 9.10. Схема установки для получения эпитаксиальных пленок GaAs методом газотранспортных реакций в проточной системе: 1 — водород; 2 — блок тонкой очистки водорода; 3 — игольчатые натекатели; 4 — расходомеры; 5 — испаритель с AsCl3 ; 6 — расплав галлия; 7 — подложки.
В качестве подложек используют пластины с ориентацией , вырезанные из монокристаллических слитков полуизолирующего GaAs (который получается введением глубоких примесей Cr и O).
Все рассмотренные методы эпитаксиального наращивания используются и для получения гетероэпитаксиальных слоев.
Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002
Источник