Меню

Образец агрохимического анализа почвы

Образец агрохимического анализа почвы

ВВЕДЕНИЕ

Мониторинг плодородия почв земель сельскохозяйственных угодий проводится с целью их агрохимической и эколого-токсикологической оценки, учета состояния плодородия почв, повышения продуктивности земель и эффективного применения органических и минеральных удобрений.

Специалистами ФГБУ ЦАС «Алтайский» было проведено агрохимическое обследование почв хозяйства в соответствии с «Методическими указаниями по проведению комплексного мониторинга плодородия почв земель сельскохозяйственного назначения» (Москва, 2003 г.). Для отбора почвенных объединенных проб использовался план внутрихозяйственного землеустройства. Каждая объединенная проба отобрана из пахотного горизонта с площади 40 га и состоит из 20 точечных проб. Отбор проб проведен с использованием GPS навигатора с установлением географических координат в точках отбора.

Химические анализы почвенных образцов проведены следующими методами:

1.Гумус по методу Тюрина в модификации ЦИНАО — ГОСТ 26213-912 ;

2.Обменный калий по методу Чирикова — ГОСТ 26204-91

3. Подвижный фосфор по методу Чирикова — ГОСТ 26204-91;

4..рН солевой суспензии в модификации ЦИНАО — ГОСТ 26483-85;

5.Сера по методу ЦИНАО — ГОСТ 264-85;

6.Поглощенные основания по методу ЦИНАО — ГОСТ 26487-85;

7.Подвижные формы микроэлементов по методу Бергера-Труога и Крупскому-

Александровой — ГОСТ 10144-88, 10147-88;

В результате камеральной обработки данных полевых изысканий и химических анализов подготовлены картографические материалы и рекомендации по применению минеральных и органических удобрений в хозяйстве.

РАЗДЕЛ I

Результаты агрохимического обследования почв земель сельхозназначения.

В мае 2011 года было проведено агрохимическое обследование почв земель сельскохозяйственных угодий на площади 8816 гектаров пашни. Всего отобрано и проанализировано в испытательной лаборатории агрохимцентра «Алтайский» 220 образов.

Содержание гумуса.

Результаты анализов на содержание гумуса в почвах хозяйства по итогам обследования 2011года представлены в таблице 1.

Группировка почв по содержанию гумуса

% от площади обследования

Реакция почвенной среды

% от площади обследования

Почвы хозяйства имеют на 4% обследованных площадей слабокислую, на 94% площадей близкую к нейтральной и нейтральную и на 2% площадей слабощелочную реакцию почвенной среды, что благоприятно для роста и развития растений.

Результаты исследований отражены на картограмме и в таблицах №5 и №7.

Содержание фосфора.

Агрохимическое обследование выявило различное содержание подвижного фосфора (Р2О5) в почвах хозяйства. Наименьшее его содержание (83мг/кг) отмечено в почвах рабочего участка №354 площадью 61га. Наибольшее содержание фосфора (463мг/кг) отмечено на рабочем участке №443 площадью 74га (табл.5).

На основании данных агрохимического обследования высокое и очень высокое содержание фосфора имеют 6590га пахотных земель, повышенное — 1962га и среднее — 264га пахотных земель (табл.3).

Результаты исследований отражены на картограмме и в таблицах №5 и №7.

Группировка почв по содержанию фосфора

% от площади обследования

В то же время, учитывая различное содержание фосфора в разрезе рабочих участков необходим индивидуальный подход к оценке обеспеченности сельскохозяйственных культур данным элементом на каждом участке.

Содержание калия

Не менее важное значение для жизни растений имеет калий.

По результатам проведенных исследований 100% пахотных земель имеют очень высокое содержание калия..

Результаты исследований отражены на картограмме и в таблицах №5 и №7.

Группировка почв по содержанию калия

Содержание К2О,. мг/кг

% от площади обследования

Содержание азота

Наиболее сложным является прогноз обеспеченности возделываемых культур азотом.

Для установления степени обеспеченности почв азотом, его содержание определяется в образцах, отобранных ранней весной или поздней осенью из слоя 0-40 см. Эта работа качественно и в срок на договорной основе может быть выполнена ФГБУ ЦАС «Алтайский» (тел. 3852-49-68-68).

Содержание микроэлементов

Существенное влияние на формирование урожая и его качественные показатели оказывает обеспеченность почв микроэлементами. При низком уровне содержания их в почве дополнительное внесение микроэлементов повышает урожай зерновых на 10-20 %.

По данным исследований пахотные почвы хозяйства имеют низкое содержание цинка, марганца, меди и кобальта, среднее содержание молибдена, высокое содержание бора (табл. 5).

При определенных условиях данные элементы могут оказаться лимитирующим фактором в формировании урожая.

РАЗДЕЛ II

Рекомендации по рациональному и экологически безопасному применению агрохимикатов и повышению плодородия почв

На основании многолетних опытных данных агрохимических центров и научно-исследовательских институтов Сибири разработаны и рекомендуются для внесения оптимальные и экологически безопасные дозы минеральных удобрений, рассчитанные на прибавку урожая с учетом обеспеченности почв элементами питания, по группам сельскохозяйственных культур (табл.8).

Приводим пример расчета полной нормы удобрений на примере рабочего участка №1 площадью 82га для зерновых культур. Средневзвешенное содержание подвижного фосфора по результатам обследования 2011 года на этом участке составляет 110 мг/кг почвы, что соответствует средней степени обеспеченности и доза внесения фосфорных удобрений будет равна 60 кг/га действующего вещества.

Доза азотных удобрений рассчитана по содержанию нитратного азота в слое 0-40 см, который определяется в образцах почвы, отобранных ранней весной или поздней осенью. Например, содержание нитратного азота равно 8 мг/кг почвы, что соответствует низкой обеспеченности. В этом случае рекомендуемая доза азотных удобрений должна составить 50 кг/га действующего вещества.

Читайте также:  Чем подкормить черенки роз для укоренения

Соответственно, при высоком содержании обменного калия в почве ( 331 мг/кг) доза калийных удобрений для зерновых культур составит 30 кг/га действующего вещества.

Таким образом, полная доза минеральных удобрений для зерновых культур будет равна N50P60К30 кг/га действующего вещества.

Согласно таблице 8 доза минеральных удобрений для пропашных культур составит N60P60K30, для однолетних и многолетних трав — N50P40K30, для овощных и картофеля – N60 P120К90 кг/га д.в.

Если в предыдущие годы поле было удобрено, то при расчете доз следует учесть последействие удобрений. При ограниченных ресурсах минеральных удобрений их необходимо использовать в первую очередь под приоритетные культуры, характеризующиеся более высокой рентабельностью их применения. При прочих равных условиях удобрения выделяют прежде всего, на поля (участки) с более благоприятным для растений фитосанитарным состоянием и реакцией почвенной среды. Эффективность удобрений на сильно кислых почвах и сильно засоренных посевах снижается в 1,5 -2 раза.

Рекомендуется один раз в ротацию севооборота вносить навоз, доза внесения 30-40 т/га. Место внесения органических удобрений в севообороте определяется отзывчивостью на них сельскохозяйственных культур и периодом положительного действия их на урожай. Более высокая отзывчивость на органические удобрения наблюдается у наиболее требовательных к плодородию овощных (капуста, огурцы и др.) и пропашных культур (сахарная свекла, картофель, кормовые корнеплоды, силосные и др.) Из зерновых культур наиболее отзывчивы на органические удобрения озимая пшеница и озимая рожь. Поэтому, в первую очередь, органические удобрения вносят под овощные и наиболее отзывчивые на них пропашные, озимые зерновые культуры. Под озимые культуры органические удобрения вносят в чистом или занятом пару под парозанимающие культуры.

С целью сохранения органического вещества в почве следует максимально использовать пожнивные остатки, солому, которую разбрасывают по полю с одновременным внесением азотных удобрений дозой 20-30 кг/га действующего вещества и последующей заделкой ее, применять сидеральные пары.

При одностороннем использовании только органических или только минеральных удобрений нельзя добиться высокой устойчивой продуктивности земледелия. Роль минеральных удобрений возрастает при ограниченных ресурсах органических удобрений, что имеет место в современных условиях.

Наряду с азотными, фосфорными и калийными макроудобрениями большое значение имеют и микроудобрения — борные, молибденовые, медные, цинковые, марганцевые, кобальтовые, которые при правильном применении значительно повышают урожайность и качество многих сельскохозяйственных культур. Потребность этих культур в микроудобрениях иногда проявляется настолько резко, что без них растения заболевают и дают очень низкий урожай. Такие болезни растений, как сердцевинная гниль и дуплистость свеклы, пустозерность зерновых, хлорозные заболевания и многие другие, вызываются резким недостатком усвояемых форм микроэлементов в почве. Однако в сельскохозяйственной практике гораздо чаще встречаются случаи менее острого недостатка микроэлементов, при которых растения хотя и не обнаруживают явных признаков заболевания, но плохо развиваются и не дают высокого урожая.

Применение микроудобрений обеспечивает значительное увеличение урожайности и улучшает качество растительной продукции и ее питательной ценности. Рекомендуемые дозы внесения микроудобрений даны в таблице 14.

Сегодня существенное значение имеет опора как коллективных, так и крестьянских, фермерских хозяйств на биологизацию земледелия, которая включает: оптимизацию структуры посевных площадей; внедрение севооборотов с насыщением их высокопродуктивными средоулучшающими культурами, в первую очередь бобовыми; вовлечение в хозяйственно-биологический круговорот органического вещества и элементов питания растительных остатков и сидератов; повышение биологического потенциала азотфиксирующей микрофлоры; применение энергосберегающих приемов обработки почвы; использование физических и биологических методов борьбы с сорняками, болезнями и вредителями растений, а также рациональное использование всех видов органических и минеральных удобрений.

Освоение биологизированного земледелия без использования минеральных удобрений и средств защиты растений позволяет повысить продуктивность пашни, но не исключает отрицательного баланса элементов питания, хозяйственную зависимость от сорняков, болезней и вредителей растений.

При отрицательном балансе NPK, без удобрений сегодня не обойтись, они не только увеличивают урожай, но и способствуют накоплению гумуса за счет почвенных и корневых остатков.

Умелое внедрение зональных научно-обоснованных систем земледелия, передовых агроприемов, позволяет повысить продуктивность пашни в 1,3-1,5 раза, приостановить или значительно снизить деградацию плодородия почв, оптимизировать их гумусовое состояние и азотный режим, создать устойчивую кормовую базу и обеспечить рост продуктивности животноводства, снизить материальные и энергетические затраты, повысить рентабельность производства.

Оптимальное соотношение биологизированных и техногенных факторов, сочетание биологических, агротехнических и агрохимических мероприятий, а также мер по защите растений, позволит сохранить почвенное плодородие и получать стабильные урожаи зерновых, кормовых и технических культур.

Источник

Агрохимический анализ. Обоснование и интерпретация

Агрохимический анализ почв проводят для того, чтобы [2]:

  1. Определить, достаточно ли в почве доступных питательных веществ для растений;
  2. Следить за изменением свойств почвы, которые так или иначе влияют на рост и развитие растений;
  3. Оценить характер и определить особенности взаимодействия почвы с применяемыми удобрениями и поступающими из атмосферы веществами;
  4. Рассчитать количество удобрений, которое необходимо внести в почву.
Читайте также:  Час у дачи урожай

Что мы делаем при анализе и почему именно это?

Мы определяем основные свойства почвы, которые тем или иным образом могут сказаться на росте и развитии растений. Одним из важнейших показателей, определяемых при агрохимическом анализе, является реакция среды (рН). Почему важно контролировать рН?

  1. В основном наибольшие урожаи сельскохозяйственных растений получают при слабокислой или нейтральной реакции среды, но очень часто почва становится более кислой и это препятствует получению высоких урожаев. [12]
  2. Реакция среды воздействует на способность растений поглощать из почвы питательные элементы. При более низких рН она уменьшается, а иногда даже приводит к потере питательных элементов из корней растений [12];
  3. рН сказывается на миграции и аккумуляции веществ в почве [3], в том числе токсичных [6];
  4. Микробиологическая активность почвы тоже зависит от реакции среды [3];
  5. Помимо этого, рН влияет на катионообменную ёмкость почв [4] – максимальное количество катионов, которое может быть удержано почвой в обменном состоянии при заданных условиях [1] и потенциально доступно растениям.

Поэтому при агрохимическом анализе мы определяем рН водной вытяжки из почвы. Но он позволяет судить только о степени кислотности или щёлочности и не даёт количественного представления о содержании кислот и оснований из-за высокой буферности почв. Однако, например, содержание кислотных компонентов может увеличиваться, а рН оставаться практически неизменным. В связи с этим помимо рН водной вытяжки мы определяем потенциальную кислотность — рН солевой вытяжки [8].

Кроме реакции среды важны так же и сами питательные элементы. Растения больше всего нуждаются в следующих из них:

Азот — один из наиболее распространённых элементов в природе, тем не менее растениям часто не хватает азота, так как растения могут усваивать только определённые формы соединений азота (в основном аммонийную и нитратную формы) [3]. В то же время азот является незаменимым элементом в растении, входя в состав белков, ДНК, многих жизненно важных органических веществ. При недостатке азота нарушается процесс фотосинтеза из-за разрушения хлорофилла, возможно высыхание и отмирание частей растений, поэтому обеспечение азотом — одна из важнейших проблем при выращивании сельскохозяйственных культур. В связи с этим для оценки доступного для растений азота мы определяем содержание аммонийного и нитратного азота в почве.

Фосфор тоже жизненно необходим растениям и также входит в состав многих органических соединений. Кроме того, он участвует в энергетическом обмене клеток. Но подвижные формы фосфора во многих почвах находятся в дефиците [4], что приводит к снижению активности ферментов, контролирующих клеточный метаболизм, и веществ, участвующих в синтезе РНК, белков и делении клеток. Соответственно, при недостатке фосфора рост растений замедляется, что, естественно, не может не сказаться на урожае [10]. Поэтому очень важно определять содержание подвижных форм фосфора в почве.

Калий является важнейшим элементом питания растений, он входит в состав цитоплазмы клетки, в значительной степени определяет её свойства и поэтому влияет практически на все процессы в клетке. Калий участвует в поглощении и транспорте воды, открывании и закрывании устьиц. Также при калийном голодании нарушается структура митохондрий и хлоропластов, что в свою очередь оказывает влияние на фотосинтез и дыхание [10]. Поэтому достаточное содержание калия в почве повышает устойчивость растений к воздействию низких и высоких температур, сопротивляемость растений болезням, а также сокращает сроки созревания растений [12]. Растениям доступны только подвижные формы калия, поэтому именно их мы и определяем.

Органическое вещество почвы является важным показателем её плодородия. Оно состоит из ещё не успевших разложиться органических остатков и уже претерпевших изменения органических веществ, называемых гумусом. Гумус способствует накоплению и удержанию питательных для растений веществ, которые при его разложении переходят в почвенный раствор и могут потребляться растениями [3]. Количество гумуса в почве определяют через количество органического углерода в почве.

Как должно быть в идеале и в каких диапазонах могут колебаться указанные параметры?

Данные показатели могут различаться для разных типов почв, и для разных сельскохозяйственных культур могут быть оптимальными разные диапазоны значений, тем не менее в среднем плодородие почвы можно оценить следующим образом:

Таблица 1. Оценка потенциального плодородия почв по содержанию гумуса и доступных для растений фосфора, калия и азота.

Уровень содержания Подвижный фосфор Р2O5, млн -1 * Обменный калий
К2O, млн -1 *
Нитратный азот
N — NO3, млн -1 **
Аммонийный азот
N-NH3+, N-NH4, млн -1 **
Содержание
гумуса
(С орг*1,724),
% от массы
почвы***
Очень высокий Более 250 Более 250 Более 10
Высокий 250–150 250–170 Более 20 Более 40 6–10
Повышенный 150–100 170–120
Средний 100–50 120–80 15–20 20–40 4–6
Низкий 50–25 80–40 10–15 10–20 2–4
Очень низкий Менее 25 Менее 7 Менее 10 Менее 10 Менее 2

* — по Г. В. Мотузовой и О.С. Безугловой, 2007 (по методу Кирсанова);

** — по Г. П. Гамзикову, 1981;

*** — по Л. А. Гришиной и Д. С. Орлову, 1978.

Таблица 2. Градация кислотности (щёлочности) почв по величине рН водной и солевой вытяжек [11].

Характеристика почвы рНН2О Характеристика почвы рНKCl
Сильнокислые 3,0–4,5 Сильнокислые 5,6
Слабощелочные 7,0–7,5
Щелочные 7,5–8,0
Сильнощелочные >8,5

Что делать, если что-то не в норме?

Одним из основных приёмов повышения плодородия почв является внесение удобрений. В таблице 3 представлены некоторые из них.

Таблица 3. Вещества, добавляемые в почву для улучшения её свойств [7].

Какой показатель выходит за рамки нормального Что нужно добавлять в почву
рН Известь (если реакция кислая), гипс (если реакция щелочная)
Азот Натриевая, кальциевая, аммиачная селитра, сульфат аммония, аммиак жидкий, карбомид-аммиачная селитра, аммиачная вода, хлористый аммоний
Фосфор Суперфосфат простой гранулированный, суперфосфат двойной гранулированный, фосфоритная мука, преципитат, мартеновский фосфатшлак, обесфторенный фосфат
Калий Калий хлористый, калийная соль смешанная, сильвинит, сульфат калия-магния (калимагнезия), цементная калийная пыль, калий сернокислый, сульфат калия, полигалит, каинит, жидкий гумат калия
Органический углерод Навоз, торф, различные растительные компосты, сапропель, зелёное удобрение (сидераты)

При недостатке в почве азота, фосфора и калия применяют комплексные удобрения, содержащие в своём составе сразу несколько питательных элементов. Например, это аммонизированный суперфосфат, аммофос, диаммофос, калийная селитра, нитрофос и нитроаммофос, нитрофоска и нитроаммофоска, карбоаммофос и карбоаммофоска, жидкие комплексные удобрения. Преимущество их заключается в том, что при внесении удобрений в крупных масштабах снижаются затраты на транспортировку смешивание, хранение и внесение удобрений. Из недостатков комплексных удобрений выделяют то, что соотношение элементов питания в них изменяется слабо и при внесении их в почву может получиться так, что одних элементов попадёт в почву больше, чем нужно, тогда как других окажется недостаточно [7].

Существуют также бактериальные удобрения, содержащие специальные бактерии, которые улучшают питание растений. Их применяют только при выращивании бобовых растений и для каждого вида подбирают разные штаммы бактерий [7].

Какое же удобрение лучше?

Таблица 4. Сравнение органических, минеральных и биологических удобрений [7].

Органическое Минеральное Биологическое
Содержание питательных элементов Все необходимые элементы Некоторые элементы, определяемые типом удобрения Нет
Форма элементов питания Недоступна для растений, но при разложении органического вещества постепенно выделяются доступные питательные вещества Доступная для растений Не содержит элементов питания, но способствует усвоению растениями питательных веществ
Скорость действия Медленно (3–4 года) Быстро Медленно (3–5 лет) Наличие микроорганизмов Да Нет Да Повышение качества почвы Да Нет Да Специфичность для определённого вида растения Нет Да Да

Внося удобрение надо помнить, что его избыток так же плохо сказывается на растениях, как и недостаток. Необходимо рассчитывать количество вносимого удобрения исходя из свойств почвы и произрастающих сельскохозяйственных культур. Для того, чтобы правильно подобрать удобрение и рассчитать его дозу, нужно обратиться в аккредитованную лабораторию, где специалисты проведут анализ почвы согласно установленным ГОСТам и определят указанные выше параметры (рН, аммонийный и нитратный азот, подвижный фосфор, обменный калий и углерод органического вещества).

Список литературы:

  1. ГОСТ 27593-88. Почвы. Термины и определения // Охрана природы. Почвы / Сборник. Государственные стандарты. М: ИПК Изд-во стандартов, 1998.
  2. Е. П. Дурынина, В. С. Егоров Агрохимический анализ почв, растений, удобрений. М: Изд-во МГУ, 1998г., 113 с
  3. Кауричев И.С., Гречин И.П., Почвоведение. Москва: Колос, 1969, 543 с.
  4. Ковда В.А., Розанов Б.Г. Почвоведение. Часть 1. Почва и почвообразование. М.: Высшая школа, 1988. 400 с.
  5. Мотузова Г.В., Безуглова О.С. Экологический мониторинг почв: учебник/ Г.В.Мотузова, О.С.Безуглова. М.: Академический Проект: Гаудеамус, 2007, 237 с.
  6. Мотузова Г. В., Карпова Е. А., Химическое загрязнение биосферы и его экологические последствия. М: МГУ, 2013, 304 с.
  7. Никляев В. С. Основы технологии сельскохозяйственного производства. Земледелие и растениеводство. М.: Былина, 2000, 555 с.
  8. Орлов Д. С., Садовникова Л. К., Лозановская И. Н., Экология и охрана биосферы при химическом загрязнении. М.: Высш. шк., 2002, 334 с.
  9. Орлов Д.С., Бирюкова О.Н., Розанова М.С. Дополнительные показатели гумусного состояния почв и их генетических горизонтов // Почвоведение. 2004. № 8. С. 918-926)
  10. Полевой В. В. Физиология растений. М: Высшая школа, 1989, 464 с.
  11. Прожорина Т. И, Затулей Е. Д, Химический анализ почв. Часть 2. Издтельско-полиграфический центр ВГУ, 30 с.
  12. Соколова Т. А. Калийное состояние почв, методы его оценки и пути оптимизации. М: МГУ. 1987, 47 с.

Источник

Adblock
detector